University of

ent

Provenance Trackingin R
Andrew Runnalls and Chris Silles

™\
A SN

Computing

The CXXR project aims
gradually to reengineer the
fundamental parts of the
R interpreter from C into
C++ in such a way that:

e the full functionality of the stan-
dard distribution of R (includ-
ing the recommended packages)
is preserved;

e the behaviour of R code is unaf-
fected (unless it probes into inter-
preter internals);

e there is no change to the existing
interfaces for calling out from R to
other languages such as C or For-
tran, nor to the main APlIs for call-
ing into R.

CXXR achieves a high degree of com-
patibility with R packages from the
CRAN repository: see [1].

The AUDIT facilities [2] that once
formed part of S and S-plus were
an invaluable feature, and one mo-
tivation behind CXXR was to intro-
duce similar but better facilities into
the R interpreter. Early work on a
provenance-enabled variant of CXXR
was presented in [3].

Work on CXXR started in May 2007,
at that time shadowing R-2.5.1. Since
then CXXR has been regularly up-
graded to keep pace with the major re-
leases of R (usually synching on the .1
minor release), so for example over the
last year CXXR has shadowed the in-
creasing deployment of the bytecode
compiler within standard R. The cur-

rent release of CXXR shadows R-2.14.1.

R OBJECTS IN CXXR

Standard R provides for only a fixed
range of object types (implemented as a
C union) to be assigned to R variables,
and to participate in the interpreter’s
garbage collection scheme. In contrast,
data objects in CXXR are implemented
as a C++ class hierarchy, which can
be extended at will. The provenance-
tracking variant of CXXR leverages this
feature extensively.

OPM RELATIONSHIP

The provenance-enabled variant of
CXXR maps the concepts of the OPM
as follows:

Artifact: A binding of an R symbol
(variable) to an R object.

Process: An R top-level command, i.e.
an expression entered directly at
the interpreter prompt.

Agent: Not currently used in CXXR.

Why bindings? You may be surprised
that it is R bindings, rather than R ob-
jects themselves, that are taken as artifacts.
But consider the R object 0 (i.e. the inte-
ger vector of length 1 containing just zero).
The provenance of 0 may be of interest to
philosophers, but what is of more practical
interest is the fact that a particular R vari-
able (e.g. num.outliers) has the value 0.

Provenance-enabled CXXR instru-
ments the reading and writing of bind-
ings within the ‘global environment’
(R’s main workspace), and maintains
an audit trail defining the OPM hyper-
graph leading up to all extant bindings.
This provenance information can then
be interrogated within the interpreter it-
self: this marks a difference from the S
AUDIT facility, which required a sepa-
rate tool to query provenance data.

SERIALIZATION

A recent development in CXXR (not
yet incorporated into the development
trunk) is to reengineer the way that
data are serialized and deserialized be-
tween one session and the next, by
drawing on the serialization facilities
of the well-regarded open-source Boost
C++ libraries (www.boost .org). This
means that not only can developers ex-
tend the range of data types usable
within the interpreter, they can also—
within the new C++ class definitions
themselves—specify how objects of that
class are saved to and restored from
the session archive (which now uses an
XML format). This applies not least
to the classes implementing the prove-
nance audit trail, so that this is carried
forward from one CXXR session to the
next.

EXAMPLE

Imagine you’ve just come back from vacation, and are on the point of resuming an
R data analysis. Probably you’d start with. ..

> 1s ()
[1] "air.boot" "air.fun" "air.rg" "cleanEx"
[5] "diff.means" "gravl" "grav.fun" "gravity"
[9] "grav.L" "grav.mom" "grav.p" "grav.qg"
[13] "grav.tilt" "grav.tilt.boot" "grav.w" "grav.zO0"
[17] "mean.diff" "new.data" "new.fit" "nuke"
[21] "nuke.boot" "nuke.data" "nuke.diag" "nuke.fun"
[25] "nuke.lm" "nuke.reg" "pkgname™" "ratio"

...and suddenly wish you’d kept better notes of what you’d done before!
Fortunately, with provenance-enabled CXXR, you can easily query the “pedigree’
of R variables, like this:

> pg <- pedigree("grav.tilt.boot")
> pgScommands

[[1]]
load ("gravity.rda")

[[2]]

gravl <- gravityl[as.numeric (gravityl[, 2]) >= 7,]

[[3]]
grav.fun <- function(dat, w, orig) {
strata <- tapply(dat[, 2], as.numeric(datf[, 2]))
d <- dat[, 1]
ns <- tabulate(strata)
w <- w/tapply(w, strata, sum) [strata]
mns <— tapply(d * w, strata, sum)
mn2 <- tapply(d » d x w, strata, sum)

s?2hat <- sum((mn2 - mns”2)/ns)
as.vector (c(mns[2] - mns[l], s2hat, (mns[2] - mns[l] - orig)/sqgrt (s2hat)))
}
[[4]]
grav.z0 <- grav.fun(gravl, rep(l, 26), 0)
[[5]]
grav.L <- empinf (data = gravl, statistic = grav.fun, stype = "w",
strata = gravl[, 2], index = 3, orig = grav.z0[1l])
[[6]]

grav.tilt <- exp.tilt(grav.L, grav.zO0[3], strata = gravl[, 2])

[[7]]
grav.tilt.boot <- boot (gravl, grav.fun, R = 199, stype = "w",
strata = gravl([, 2], weights = grav.tilt$p, orig = grav.z0[1l])

This shows, in time order, all the top-level R commands previously issued that are
relevant to the current value of the R variable grav.tilt .boot. Moreover you
can find out when these commands were issued:

> pgStimestamps

[1] "2012-06-08 15:02:57 GMT" "2012-06-11 10:57:59 GMT"
3] "2012-06-11 10:58:17 GMT" "2012-06-11 10:58:27 GMT"
5] "2012-06-11 10:59:26 GMT" "2012-06-11 10:59:36 GMT"
]

U

[
[
["2012-06-11 11:00:43 GMT"

ACKNOWLEDGMENTS

CXXR would of course have been im-
possible without R and the tireless ef-
forts of the R core team and other R con-
tributors.

The example above is based on mate-
rial from the R boot package, which in

turn is based on an example from Davi-
son and Hinkley [1997].

Consider the following R session:

> x <= 1:10

> mysteryf <- edit (function (x) {})
> y <—- mysteryf (x)

> rm(mysteryf)

>y
(1] 3 8 6 12 0 2 6 12 8 O

To understand fully the provenance
of the current binding of v, it isn’t suf-
ficient to know that it was generated by
the above sequence of commands. We
also want to know what the function
mysteryf was. But it has already been
deleted from the R session!

The problem here is the function
edit, which calls an external editor
to edit an R object. Rather unusu-
ally among R functions, its return value
doesn’t depend only on its arguments,
nor even on its arguments and on other
bindings in the R session: it depends on
something external to the R session entirely.
(load in the main example is another
such function.) We call functions like
this xenogenetic, and the bindings they
give rise to xenogenous: “due to an out-
side cause”.

To work around this problem,
the approach currently being ex-
plored is for the audit trail to identify
whether a binding is xenogenous,
and if so to record the wvalue of that
binding. So in the example above,
the value bound to mysteryf by
the top-level command mysteryf
<— edit (function (x) {}) will be
recorded in the audit trail for as long
as any artifact dependent on that binding
exists.

In the example, the mystery func-

tion can be retrieved like this:
> pedigree ("y") Svalues|[[2]]
function (x

[1] Runnalls, A.:
packages. In:

[2] Becker, R.A., Chambers,].M.: Auditing
of data analyses. SIAM J. Sci. Stat. Com-

put. 9 (1988) 747-60

CXXR and add-on
useR! 2010. (2010)
Available at http://user2010.0rg/
slides/Runnalls.pdf.

In R (and CXXR), an environment
is—roughly speaking—a container for

bindings. At present CXXR tracks
the provenance of bindings within R’s
global environment . GlobalEnv. This
tracking can be extended to other stan-
dard environments set up at the start of
an R session, though this can result in
a deluge of provenance data that would
rarely be of value.

Each invocation of a function writ-
ten in R results in the creation of a lo-
cal environment. Normally these are
evanescent, and can be ignored by the
provenance tracker. But there are ex-
ceptions, and it is for example possi-
ble to define an R function—such as
counter in the example below—which
in effect has internal state, stored in a
local environment and carried forward
from one invocation to the next.

makecounter <— function () {
count <- 0

function () {

count <<- count + 1
count

}

counter <- makecounter ()
ounter () ###

1] 1

>

4

+

+

+
)
+

>

> C

[1]

> x <— counter ()
> X

[1]

1] 2

At present the CXXR provenance
tracker does not realise that the com-
mand marked ### is relevant to the
provenance of x, but work is in the
pipeline to rectify this.

One remaining concern is that there
is currently no method of referring to
local environments in a way that is
meaningful between R sessions: this
can hamper reproducibility, especially
in the presence of xenogenesis.

[3] Silles, C., Runnalls, A.: Provenance-
awareness in R. In McGuinness, D.,
Michaelis, J., Moreau, L., eds.: Prove-
nance and Annotation of Data and Pro-
cesses. Volume 6378 of Lecture Notes in

Computer Science. Springer Berlin /
Heidelberg (2010) 64-72

