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The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
No change to the existing interfaces for calling out from R to other
languages (.C, .Fortran. .Call and .External).
No change to the main APIs (R.h and S.h) for calling into R.
However, a broader API is made available to external C++ code.

Work started in May 2007, shadowing R-2.5.1; the current release
shadows R-2.12.1, and an upgrade to 2.13.1 is in progress.

We’ll refer to the standard R interpreter as CR.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr
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Why Do This?

An initial motivation was to be able to introduce provenance-tracking
facilities into CXXR: more on this later.

But CXXR has a broader mission: to make the R interpreter more
accessible to developers and researchers.

This is being achieved by various means, including:

Improving the internal documentation;
Tightening up the internal encapsulation boundaries within the
interpreter;
Moving to an object-oriented structure, thus reflecting a
programming approach with which students are increasingly
familiar.
Expressing internal algorithms at a higher level of abstraction, and
making them available to external code through the CXXR API.
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CXXR Layers
Core

CXXR
core

Tr
ansition Layer

Packages
Written as far as possible in
idiomatic C++, making free
use of the C++ standard
library, and some use of the
peer-reviewed Boost libraries.
Contained in the C++
namespace CXXR.
Interfaces thoroughly
documented using doxygen.
As far as possible
self-contained: avoids calls
into the outer layers.

http://www.boost.org
http://www.doxygen.org
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CXXR
core

Tr
ansition Layer

Packages
The aim is that existing R packages
should work with CXXR with
minimal alteration, usually none at
all. This is achieved by leaving the
primary interfaces unchanged.



CRAN Packages Tested
for useR! 2010 paper

Paper at useR! 2010 explored the compatibility of CXXR with 50 key
packages from CRAN: those on which the largest number of other
CRAN packages depend.

abind gdata MEMSS RColorBrewer scatterplot3d
akima gee mix rgl slam
ape gtools mlbench rlecuyer snow
biglm kernlab mlmRev Rmpi sp
bitops leaps multicore robustbase SparseM
car lme4 mvtnorm RODBC timeDate
coda logspline numDeriv rpvm timeSeries
DBI mapproj nws rsprng tkrPlot
e1071 maps quantreg RSQLite tripack
fBasics mclust randomForest RUnit xtable

Package versions were those current on 2010-05-05.

Apart from fixing latent bugs, only
three lines of package code needed
to be modified for all the tests in-
cluded in the packages to pass.

All these changes were in package
C code, never R code.
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CXXR Layers
Transition layer

CXXR
core

Tr
ansition Layer

Packages
C files from CR adapted as
necessary to work with the core.

With some exceptions, these C
files have been redesignated as
C++.
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How R Objects are Implemented in CR

In CR, all R objects (as listed by the R command objects()) are
implemented using a C ‘union’. This is a way of telling the C compiler
that a particular memory address may hold any one of several distinct
datatypes: in this case 23 types, corresponding to the different types of
R object.

This has several disadvantages:

The compiler doesn’t know which of the 23 types is occupying a
particular union block. Consequently all type checking must be
done at run-time; the possibilities of compile-time type checking
are not exploited.
Debugging at the C level is difficult.
Introducing a new type of R object means modifying a data
definition at the very heart of the interpreter.
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The RObject Class Hierarchy

In CXXR, the various sorts of R objects are implemented using a C++
class inheritance hierarchy rooted at RObject:

CXXR::RObject

CXXR::ConsCell

CXXR::Environment

CXXR::ExternalPointer

CXXR::FunctionBase

CXXR::Promise

CXXR::S4Object

CXXR::Symbol

CXXR::VectorBase

CXXR::WeakRef

CXXR::GCNode

CXXR::ByteCode

CXXR::DottedArgs

CXXR::Expression

CXXR::PairList

CXXR::BuiltInFunction

CXXR::Closure

CXXR::FixedVector< T, ST, Initializer >

CXXR::String

CXXR::CachedString

CXXR::UncachedString

(Based on a diagram produced by Doxygen.)
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All R's built-in vector
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using this single C++
class template

(Based on a diagram produced by Doxygen.)



The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a
particular datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details.
Allow developers readily to extend the class hierarchy.



The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a
particular datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details.
Allow developers readily to extend the class hierarchy.



The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a
particular datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details.
Allow developers readily to extend the class hierarchy.



Extending the Class Hierarchy: Example
Introducing arbitrarily large integers

Suppose we wanted to write a package adding to R the
capability of handling arbitrarily large integers, drawing on the
GNU Multiple Precision Library at gmplib.org.
In fact there already is such a package: the GMP package by
Antoine Lucas et al. which does this and much more . . .
. . . however the purpose of this example is to show how CXXR
makes this task relatively straightforward. We’ll call our nascent
package MyGMP.

http://gmplib.org
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Extending the Class Hierarchy: Example
Adding NA to what the GNU library provides

The GNU MP library defines a C++ class mpz_class to represent an
arbitrarily large integer.

But an attractive characteristic of R is its ability to flag individual data
points as ‘not available’: NA. As it stands mpz_class does not have
this capability.

Fortunately, in CXXR we can put this right essentially in one line of
C++ code:

namespace MyGMP {
typedef CXXR: : NAAugment<mpz_class> B i g I n t ;

}

This type definition gives us a new C++ class which can represent an
arbitrarily large integer or ‘NA’. This is set up in such a way that
CXXR’s generic algorithms can detect and handle NAs with little or no
attention from the package writer.
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Extending the Class Hierarchy: Example
Vectors of BigInts

So far we can represent an individual BigInt. But of course R works
primarily with vectors (or matrices or higher dimensional arrays). We
can introduce vectors/matrices/array of BigInts into CXXR
essentially with one further line of C++ code:

namespace MyGMP {
typedef CXXR: : FixedVector <B ig In t ,

CXXSXP,
ApplyBig In tClass > B ig In tVec to r ;

}

BigIntVectors have now joined the RObject class hierarchy
alongside the built-in data vector types. We can now assign
BigIntVectors to R variables, and facilities such as garbage
collection, copy management, dimensioning and so on are
automatically in place.



Extending the Class Hierarchy: Example
Vectors of BigInts

So far we can represent an individual BigInt. But of course R works
primarily with vectors (or matrices or higher dimensional arrays). We
can introduce vectors/matrices/array of BigInts into CXXR
essentially with one further line of C++ code:

namespace MyGMP {
typedef CXXR: : FixedVector <B ig In t ,

CXXSXP,
ApplyBig In tClass > B ig In tVec to r ;

}

BigIntVectors have now joined the RObject class hierarchy
alongside the built-in data vector types. We can now assign
BigIntVectors to R variables, and facilities such as garbage
collection, copy management, dimensioning and so on are
automatically in place.



Binary Operations in R

Consider a binary operation on R
vectors:

vr <− v1∗v2

Basically this involves determining
each element of the result by
applying the binary operation to the
corresponding elements of the two
operands, so for example vr [1] is
set to v1[1]∗v2[1].

But there are complications. For
example:

If either operand element is NA,
the corresponding result element
must be set to NA.
If the operands are of unequal
length, the elements of the
shorter operand are reused in
rotation. But give a warning if its
length is not a submultiple of that
of the longer operand.
Attributes (e.g. element names)
of the result must be inferred
somehow from the corresponding
attributes of the operands.

There are some further complications if the operands are matrices or
higher dimensional arrays.
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Generic Algorithm for R Binary Functions

CXXR defines a generic algorithm (based on the C++ class template
CXXR::VectorOps::BinaryFunction) for implementing R binary
functions, and makes it available to package C++ code via the CXXR
API.

To use this algorithm the package writer need only specify:

The elementwise operation to be performed, e.g. the multiplication
operation defined for mpz_class by the GNU MP library.
The two operands.
The type of vector (or other vector-like container) to be produced
as the result.
The way in which attributes of the result (e.g. row and column
names) are to be inferred from the operands (and usually a default
value suffices for this).
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Extending the Class Hierarchy: Example
Computing factorials

With very little programming at the package level, we are already in a
position to calculate some largish factorials:

> f <− as . b i g i n t ( c (1 :20 , NA) )
> for ( i i n 3 :21) f [ i ] <− f [ i ] ∗ f [ i −1]
> f

[ 1 ] " 1 " " 2 " " 6 "
[ 4 ] " 24 " " 120 " " 720 "
[ 7 ] " 5040 " " 40320 " " 362880 "

[ 1 0 ] " 3628800 " " 39916800 " " 479001600 "
[ 1 3 ] " 6227020800 " " 87178291200 " " 1307674368000 "
[ 1 6 ] " 20922789888000 " " 355687428096000 " " 6402373705728000 "
[ 1 9 ] " 121645100408832000 " " 2432902008176640000 " NA



Subscripting in R

R is renowned for the power of its subscripting operations.

> mx

Country La tes t Qtr 2011 2012
Aus t r i a 3.9 3.6 2.7 1.9
Belgium 3.0 4.3 2.3 1.8
France 2.2 3.8 2.1 1.7
Germany 5.4 6.1 3.4 2.2
Greece −5.5 0.7 −4.1 −0.1

(GDP growth, The Economist, 2011-07-09)
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On the right are some examples of
subscripting the R matrix above.

> mx[ c ( " France " , "Germany" ) , −2]

Country La tes t 2011 2012
France 2.2 2.1 1.7
Germany 5.4 3.4 2.2

> mx[ , 3 ]
Aus t r i a Belgium France

2.7 2.3 2.1
Germany Greece

3.4 −4.1

> mx[ , 3 , drop=FALSE]

Country 2011
Aus t r i a 2.7
Belgium 2.3
France 2.1
Germany 3.4
Greece −4.1
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On the right are some examples of
subscripting the R matrix above.

Subscripting expressions may also
appear on the left-hand side of an
assignment.

> mx[ , " 2012 " ] <− mx[ , " 2012 " ] + 0.5
> mx

Country La tes t Qtr 2011 2012
Aus t r i a 3.9 3.6 2.7 2.4
Belgium 3.0 4.3 2.3 2.3
France 2.2 3.8 2.1 2.2
Germany 5.4 6.1 3.4 2.7
Greece −5.5 0.7 −4.1 0.4



Subscripting in R
(continued)

The R Language Definition document devotes over four of its 51 pages
to describing subscripting facilities. . . and even that doesn’t tell the
whole story.

The CR interpreter includes about 2000 C-language statements to
implement these facilities.

But this C code is effectively ‘locked up’ for two related reasons:

it isn’t made available via a documented API,
it is hard-wired around CR’s built-in data types.

Consequently this code is not, as it stands, suitable for providing
subscripting facilities for our BigIntVectors.
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CXXR’s Subscripting Class

CXXR’s Subscripting class aims to encapsulate R’s subscripting
facilities within a number of generic algorithms.

These algorithms abstract away from:

The type of the elements of the R vector/matrix/array. (BigInts
work just fine!)
The data structure used to implement the vector/matrix/array itself.
This opens the door to using the algorithms with packed data (e.g.
A/T/G/C DNA bases), or with vector structures for large datasets
which hold data on disk (in the style of the ff package).

Using the Subscripting class, we can carry across the full power of
R subscripting to BigIntVectors with just a few lines of package
code.
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Summary So Far

CXXR aims to open up the R interpreter to
developers. In particular:

Objects visible to R are implemented
using a C++ class hierarchy which
developers can easily extend.
Key algorithms embodying R
functionality are being rewritten at a
higher level of abstraction and published
via the CXXR API.
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Tracking Provenance During Data Analysis

Have you ever returned to a data analysis after a gap of months (or
maybe years) and asked yourself such questions as the following?

How exactly was this data object, or that model, derived from the
original data?
What data points were discarded, and how were they identified as
being suspect?
One of the datasets that went into the original analysis is now
known to have been corrupt. Which results does this invalidate?

In other words, you are interesting in interrogating the provenance of
data objects, models, etc. This is a topic of increasing importance in
information science.
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In other words, you are interesting in interrogating the provenance of
data objects, models, etc. This is a topic of increasing importance in
information science.



Provenance Tracking in S and R

One of the pioneer provenance-aware applications was S, with its
AUDIT facility: the classic paper Auditing of Data Analyses2 by Becker
and Chambers is widely cited in the provenance-awareness literature.

An S session would maintain an audit file, recording all the top-level
commands issued in this and previous sessions within the workspace,
and identifying the data objects read and modified by the commands.
This audit file could then be analysed using a separate tool, S AUDIT.

Chris Silles has been exploring the possibility of introducing such a
facility into R, building on CXXR . . . but with the difference that
provenance information can be interrogated directly from within an R
session.

2SIAM J. Sci. Stat. Comput. 9 [1988] pp. 747–60
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Provenance Tracking Example

Consider this example R command
session:

> one <− 1
> two <− c ( " deux " , " zwei " )
> two <− one + one
> three <− 3
> square <− f u n c t i o n ( x ) x∗x
> fou r <− square ( two )
> f i v e <− f ou r + 1
> nine <− square ( th ree )
> rm ( two , f i v e )



Provenance Tracking Example

Consider this example R command
session:

> one <− 1
> two <− c ( " deux " , " zwei " )
> two <− one + one
> three <− 3
> square <− f u n c t i o n ( x ) x∗x
> fou r <− square ( two )
> f i v e <− f ou r + 1
> nine <− square ( th ree )
> rm ( two , f i v e )

Querying the provenance of an R
object (strictly, an R binding):

> provenance ( nine )
$command
nine <− square ( th ree )

$symbol
nine

$timestamp
[ 1 ] "01/07/11 15:50:43.497459"

$parents
[ 1 ] " square " " th ree "

$ch i l d ren
NULL



Provenance Tracking Example

Consider this example R command
session:

> one <− 1
> two <− c ( " deux " , " zwei " )
> two <− one + one
> three <− 3
> square <− f u n c t i o n ( x ) x∗x
> fou r <− square ( two )
> f i v e <− f ou r + 1
> nine <− square ( th ree )
> rm ( two , f i v e )

Querying the full pedigree of an R
object:

> pedigree ( fou r )
one <− 1
two <− one + one
square <− f u n c t i o n ( x ) x ∗ x
fou r <− square ( two )



Provenance Tracking and Serialization

Although having provenance information available during a
single R session is useful, its real value arises when a data
analysis (perhaps carried out by someone else) is resumed after
a lapse of time.
This means that it is essential that provenance information is
saved at the end of a session along with the data objects to
which it relates.
This has led us to look more generally at serialization and
deserialization within CXXR: the process by which a set of R
objects is rendered into a form suitable for saving in a file, and
subsequently restored.
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Serialization/Deserialization Objectives

Delegate to each C++ class responsibility for
serializing/deserializing objects of that class (instead of
having a monolithic serialize() function as in CR).
Provide for provenance information to be
serialized/deserialized automatically alongside the data to
which it relates.
Provide an easy-to-use framework for package writers to
have objects of package-supplied C++ classes (such as
BigIntVector) serialized/deserialized along with other
session data.

Current work is building on the facilities of the
Boost serialization library.

http://www.boost.org/doc/libs/release/libs/serialization
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CXXR: An Ideas Hatchery

CXXR is offered as a workbench for
you to try your own ideas out.

But volunteers to assist in the
development of CXXR itself are also
welcome. A conspicuous gap is a
Windows port of CXXR: until now it
has been tested only on Linux and (to
a lesser extent) on MacOS X.





Functionality Now in CXXR Core

Memory allocation and garbage collection.
SEXPREC union replaced by an extensible class hierarchy rooted
at class RObject.
Environments (i.e. variable→object mappings), with hooks to
support provenance tracking.
Expression evaluation. (S3 method dispatch partially refactored;
S4 dispatch not yet refactored.)
Contexts and indirect flows of control (with some loose ends).
Unary and binary function generics. [-subscripting.
Object duplication is now handled by C++ copy constructors. (In
an experimental development branch, object duplication is
managed automatically, removing the need for NAMED() and
SET_NAMED().)



Conway’s ‘Game of Life’

CPU time for 100 iterations over a square matrix with wraparound
(toroidal topology):

Grid size CR CXXR
(secs) (secs)

32× 32 0·047 0·053
64× 64 0·168 0·191

128× 128 0·686 0·743
256× 256 3·084 3·004
512× 512 33·402 14·239

1024× 1024 144·386 60·128

The tests were carried out on a 2.8 GHz Pentium 4 with 1 MB L2
cache, comparing R-2.12.1 with CXXR 0.35-2.12.1.



Extending the Class Hierarchy: Example
Multiplying vectors/arrays of arbitrarily large integers

Package R code:

‘ ∗ . B ig In t ‘ <− function ( v l , v r ) {
. Cal l ( "MyGMP_ m u l t i p l y " , as . b i g i n t ( v l ) , as . b i g i n t ( v r ) )

}

Package C++ code:

extern "C" {
B ig In tVec to r ∗ MyGMP_multiply ( const B ig In tVec to r ∗ v l ,

const B ig In tVec to r ∗ vr )
{

using namespace CXXR: : VectorOps ;
return

BinaryFunct ion <Genera lB inaryAt t r ibu teCop ie r ,
s td : : m u l t i p l i e s <mpz_class> >()

. apply <B ig In tVec to r >( v l , v r ) ;
}

}



Extending the Class Hierarchy: Example
Subassignment: ‘[<-‘

Package R code:

‘ [<− . B ig In t ‘ <− function ( v , . . . , value ) {
. External ( "MyGMP_ b ig in t subass ign " , v , as . b i g i n t ( value ) , . . . )

}

Package C++ code:

extern "C" {
B ig In tVec to r ∗ MyGMP_bigintsubassign ( const P a i r L i s t ∗ args )
{

args = args−> t a i l ( ) ;
B ig In tVec to r ∗ l hs

= SEXP_downcast< B ig In tVec to r ∗>( args−>car ( ) ) ;
args = args−> t a i l ( ) ;
const B ig In tVec to r ∗ rhs

= SEXP_downcast<const B ig In tVec to r ∗>( args−>car ( ) ) ;
args = args−> t a i l ( ) ;
return Subsc r ip t i ng : : subassign ( lhs , args , rhs ) ;

}
}
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