$WILEY

Interdisciplinary Reviews

This is the pre-peer-reviewed version of the following article: CXXR: an
extensible R interpreter, DOI: 10.1002/wics.1251, which has been pub-
lished in final form at Wiley Interdisciplinary Reviews: Computational
Statistics, Volume 5, Issue 3, pp. 181-9, May/June 2013. Note that there
are major differences between this version and the final version.

Article type: Advanced Review

CXXR: A Workbench for
Future R Development

Andrew Runnalls

School of Computing, University of Kent

Keywords
R, CXXR, provenance, serialization

Abstract

This paper describes CXXR, a project to refactor the R interpreter from C into
C++, with a view to making the internals of the interpreter more readily acces-
sible to researchers and developers.

The continued growth of CRAN is testament to the increasing number of de-
velopers engaged in R development. But far fewer researchers have experi-
mented with the R interpreter itself. The code of the interpreter, written for the
most part in C, is structured in a way that will be foreign to students brought
up with object-oriented programming, and the available documentation, though
giving a general understanding of how the interpreter works, does not really
enable a newcomer to start modifying the code with any confidence.

The CXXR project is progressively refactoring the interpreter into C++, whilst all
the time preserving existing functionality. By restructuring the code into tightly
encapsulated and carefully documented classes, CXXR aims to open up the
interpreter to more ready experimentation by statistical computing researchers.

This paper focusses on two example tasks: (a) providing, as a package, a
new type of data vector, and (b) adding the capability to track the provenance

1

of R objects. The paper shows how CXXR greatly facilitates these tasks by
internal changes to the structure of the interpreter, and by offering a higher-
level interface for packages to exploit.

CXXR

The object of the CXXR project is gradually to reengineer the fundamental parts of the
R interpreter from C into C++, with the intention that:

* Full functionality of the standard distribution of R (including the recommended
packages) is preserved;

* The behaviour of R code is unaffected (unless it probes into the interpreter inter-
nals);

» There is no change to the existing interfaces for calling out from R to other
languages (.C, .Fortran, .Call and .External).

* Likewise there is no change to the main APIs (R.h and S.h) for calling into R.
However, a broader API is made available to external C++ code.

Work on CXXR started in May 2007, at that time shadowing R-2.5.1; the current re-
lease (as of August 2012) shadows R-2.14.1, and an upgrade to 2.15.1 is in progress.'

This paper will refer to the standard R interpreter as CR, in contradistinction to CXXR.
Bare R will be used to refer to the language and user interface that both these inter-
preters implement.

The original motivation for embarking on the CXXR project was to introduce prove-
nance tracking facilities into R, and progress on this front will be described later in
the paper. But CXXR has a broader mission, which is to make the R interpreter more
accessible to developers and researchers, by various means. For example, the C++
classes and other code structures within CXXR are carefully documented. Secondly,
CXXR tightens up the encapsulation boundaries within the interpreter, so that a de-
veloper can be more confident that modifying code in one place will not unexpectedly
break things elsewhere. This is part-and-parcel of moving towards an object-oriented
software structure, something that graduate students are increasing familiar with, and
which the R language itself has moved towards. Finally CXXR aims to express the
internal algorithms of the interpreter at a higher level of abstraction, and make them
available to external code through CXXR’s own API, and we shall see some examples
of this shortly.

'The CXXR initiative is not part of the official R project; however, the author wishes to acknowledge the
help and encouragement of many members of the R Core Team.

Layers

CXXR code falls into three categories, which can be considered roughly to form three
concentric layers. At the centre is the CXXR core, which is written as far as possible in
idiomatic C++, making free use of the C++ standard library, and some use of the Boost
libraries of peer-reviewed, portable C++ (Boost [2012]). Everything in the core layer is
placed in the C++ namespace CXXR. The following is a summary of the functionality
currently within the core:

* Memory allocation and garbage collection.

* SEXPREC union replaced by an extensible class hierarchy rooted at class RObject
(described below).

e Environments (i.e. variable to object mappings), with hooks to support prove-
nance tracking.

» Expression evaluation. (S3 method dispatch partially refactored; S4 dispatch not
yet refactored.)

¢ Contexts and indirect flows of control (with some loose ends).
* Unary and binary function generics. [-subscripting.

* Object duplication is now handled by C++ copy constructors.

On the outside is the packages and modules layer, and the aim here is that existing
R packages should work with CXXR with minimal alteration—usually none at all.
Runnalls [2010] explored the extent to which this had been achieved by testing CXXR
with 50 key packages (other than the base and ‘recommended’ packages, which are
routinely maintained as part of CXXR development) from the central R archive CRAN,
namely the packages on which most other packages in the archive depend. The upshot
was that, apart from fixing some latent bugs in the packages (and bugs in CXXR itself),
only three lines of package code needed to be modified for all the tests included in
these 50 packages to pass. All these changes were in the C code which some packages
include; in no case did a package’s R code need to be changed.

In between the core and the packages layer is the transition layer, which consists of C
files from the CR interpreter adapted to work with the CXXR core. In almost all cases
these C source files have been redesignated as C++, but the programming idioms are
largely those of CR (which in addition to C idioms frequently exhibits those of Fortran
and especially LISP).

The ROb ject class hierarchy

One of the major changes in CXXR is the way that objects visible in R are imple-
mented. In CR, these objects are implemented using a C union, which can be thought

3

of as a way of telling the C compiler that a particular memory address may hold any
one of several specified datatypes: in fact this union (named SEXPREC) comprises no
fewer than 23 distinct types, corresponding to the different types of R object. All of
these types have in common an integer-valued field known as the SEXPTYPE which
is used at runtime to determine which type of object it is; the various values of the
SEXPTYPE are given mnemonic names such as INTSXP to identify an integer vector,
or BUILTINSXP to identify an R function implemented directly within the interpreter.

This approach has several disadvantages. First of all, the compiler does not know
which of the 23 types is occupying a particular address: this is determined only at
runtime. Consequently much of the type checking in the interpreter must itself be done
at runtime, by examining the SEXPTYPE field: the implementation simply doesn’t
leverage the compiler’s own considerable capabilities for type checking. This type
ambiguity can also make debugging at the C level difficult.

Another snag is that this approach in effect turns the set of R data types into a closed list.
If you wanted to add a new type of R object, that would mean delving into the heart
of the interpreter and making fundamental modifications, something which package
developers have rightly been reluctant to do. The adverse effect of this can be gauged
by studying the code of the powerful Mat rix package (Bates and Maechler [2012]):
the code is constantly having to convert matrices from a format representable using
CR’s limited range of datatypes into the data structures required by third-party libraries
such as LAPACK, and then—having applied a function from a third-party library—to
convert the result back into a CR-compatible format. As we shall now see, CXXR
allows this to be short-circuited, by allowing any desired C/C++ data structure to be
incorporated directly into an R object.

In CXXR, the different types of R object are implemented as a C++ class inheritance
hierarchy, rooted at an abstract class unimaginatively named RObject, and shown in
Fig. 1.> Readers familiar with R will have no difficulty mapping most® of the C++
class names in this figure onto the corresponding type of object in the R language. A
particular point to note is that all of R’s built-in vector types are implemented using
a single C++ class template called FixedVector: this includes vectors of integers,
vectors of reals, vectors of complex numbers, vectors of strings (R’s character
type), as well as R lists.

Along with this change to a C++ class hierarchy, CXXR is carrying out a wholesale
restructuring of the interpreter code. First of all, the project is endeavouring gradually
to move all code relating to a particular data type into one place, and then to use C++’s
public/protected/private mechanisms to conceal implementational details and to defend
class invariants. Secondly, CXXR uses C++ templates to express key algorithms at a
higher level of abstraction.

2 Although the C++ language contains a number of built-in mechanisms for determining which type an
object belongs to within a class inheritance hierarchy, CXXR nevertheless also retains the SEXPTYPE field
of CR. This is for backwards compatibility with existing code.

3With the exception of the Bai1Out classes, which are not visible to R users. These are used in CXXR to
implement indirect flows of control in R (e.g. return, break) without incurring the overhead of throwing
C++ exceptions.

:

CXXR::BuiltinFunction
CXXR::Promise

CXXR::Closure

CXXR:Symbol
J CXXR::FixedVector< T, ST, Initializer >

CXXR::VectorBase CXXR::CachedString
CXXR::String
CXXR:WeakRef CXXR:UncachedString

Figure 1: The ROb ject class hierarchy. (Adapted from a diagram produced by doxy-
gen.)

CXXR::S40bject

Most important of all, CXXR aims to make it easy for developers to extend the class
hierarchy.

Example: MyGMP

We will now give an extended example illustrating the ease with which CXXR enables
new sorts of objects to be introduced into R at the C++ code level, by extending the
RObject class hierarchy.

R of course has the ability to handle vectors of integers, but the range of values that can
be represented by these built-in integers is limited by the word-length of the computer
you’re using; in fact currently R’s built-in integers are limited to 32 bits, even on a
64-bit architecture.

Suppose a developer wanted to write a package, which we shall call MyGMP, adding
to R the capability of handling arbitrarily large integers. This developer is aware that
there is a free GNU library, the GNU MP library (GMP [2012]) that provides ‘big-
int’s, as they are called, for C and C++, and would like to build on that.

(Some readers will be aware that there already is such an R package, the gmp package
(Lucas et al. [2004]), which offers bigints and much else besides. The rudimentary
package described in this paper does not in any way match the capabilities of gmp: its
purpose is simply to illustrate how relatively easy it is to get such a package off the
ground using CXXR.)

The GNU MP library defines a C++ class mpz_class to represent an arbitrarily large
integer. But one of the attractive features of R for statistical analysis is that it can
flag individual data points as being ‘not available’, represented NA in R. As it stands
mpz_class doesn’t have this capability: it can represent positive integers, negative
integers, zero, but not NA.

Fortunately, in CXXR we can put this right essentially in one line of C++ code, using
the class template NAAugment, which does what the name suggests:

namespace MyGMP {
typedef CXXR::NAAugment<mpz_class> Biglnt;
}

This type definition gives us a new C++ class BigInt which can represent an arbitrarily
large integer or NA, and this is all set up in such a way that the generic algorithms in
CXXR can handle NAs with little or no attention from the package writer.

Each object of the new class BigInt represents a single bigint. But of course R works
primarily with data vectors—or matrices or higher dimensional arrays. No problem:
we can introduce vectors of BigInts into CXXR essentially with one further line of
code, which reinstantiates the same C++ class template FixedVector that is used
for the built-in vector types:

namespace MyGMP {
typedef CXXR:: FixedVector<Biglnt,
CXXSXP,
ApplyBigIntClass> BigIntVector;

}

The FixedVector class template takes three template parameters. The first is the
type of element the vector is to contain, here BigInt. The second is the SEXPTYPE
to be ascribed to objects of this type. CXXSXP is a special SEXPTYPE value used
in CXXR to flag up any type of RObject that does not correspond to a CR object
type: in the event that code inherited from CR encounters this SEXPTYPE value, it
will normally raise an error. The third template parameter must be the name of an
‘initializer’ class, that is to say a class which defines a static initialize () function
which is to be used to initialize newly-created objects. In the present case this is the
class ApplyBigIntClass, defined as follows:

namespace MyGMP {
struct ApplyBigIntClass

{

static void initialize (CXXR:: RObject* obj)

{

obj—>setAttribute (CXXR:: ClassSymbol ,
CXXR:: asStringVector (”Biglnt”));

|
}

The effect of this is to ensure than newly created BigIntVector objects are given
the R class attribute BigInt.

With the few lines of code listed above, BigIntVectors have now joined the
RObject class hierarchy. We can now assign BigIntVectors to R variables, and
facilities such as garbage collection, and the dimensioning of matrices and arrays—all
this is automatically in place.

Binary functions

Obviously the MyGMP package needs to have the capability to carry out arithmetic on
BigIntVectors: multiplication for example. Let us first review how binary opera-
tions such as multiplication work for R vectors. Basically each element of the result is
determined by multiplying together the corresponding elements of the two operands,
so for example the first element of the result is the product of the first elements of the
two operands.

But there are some complications. For example, if either of the operand elements is
NA, then normally the corresponding result element must be set to NA. If the operands
are of unequal length, the elements of the shorter operand are reused in rotation. But
R gives a warning if the longer operand is not an exact multiple of the length of the
shorter operand. It is also necessary to consider attributes: for example in R you can
give names to individual elements of vectors, or to the rows and columns of matrices.
Somehow the attributes of the result of a binary operation must be inferred from the
attributes of the operands. There are some further complications if the operands are
matrices or arrays.

CXXR defines a generic algorithm for implementing R binary functions, and makes it
available to package C++ code via the CXXR API. To use the algorithm the program-
mer needs to specify four things:

1. The elementwise operation that is to be performed. In the case of multipli-
cation this operation is given to us directly by the GNU MP library, which
overloads the C++ multiplication operator “x” for operands of mpz_class.
This appears in the code below as the template parameter to the class template
BinaryFunction.

2. The two operands (in the present case BigIntVectors).

3. The type of vector (or other vector-like container) to be produced as the result: in
the present case again a BigIntVector. This appears in the code below as the
template parameter to the templated function BinaryFunction: :apply ().

7

4. Finally, it is necessary to specify how the attributes of the result are inferred
from those of the operands, and this is determined by an optional second tem-
plate parameter to the BinaryFunction class template. Fortunately, this is
better standardised in R for binary operations than it is for unary operations, so
usually—as here—this parameter can be left to take its default value.

Using this generic algorithm, introducing multiplication of BigIntVectors to the
MyGMP package requires just the following C++ code:

extern "C" {
BigIntVector+* MyGMP_multiply(const BigIntVectors vl,
const BigIntVectors vr)

{
using namespace CXXR:: VectorOps;
return
BinaryFunction<std :: multiplies <mpz_class> >()
.apply<BigIntVector >(vl, vr);
}

}

which is invoked via a simple R function in the package:

“#.Biglnt® <— function(vl, vr) {
. Call ("MyGMP_multiply", as.bigint(vl), as.bigint(vr))
}

Unary functions are handled in a similar way.

All in all, the developer does not need to do much programming at all in the MyGMP
package before it becomes possible, for example, to compute large factorials in R. Here
is an example session:

> f <— as.bigint(e(1:20, NA))
> for (i in 3:21) f[i] <— f[i]=f[i—1]

> f
[1] "1 mym nen
[4] "24~ 120" "720"
[7] "5040" "40320" "362880"
[10] "3628800" "39916800" "479001600"
[13] "6227020800" "87178291200" "1307674368000"
[16] "20922789888000" "355687428096000" "6402373705728000"

[19] "121645100408832000" "2432902008176640000" NA
This example illustrates the fact that NAs propagate as expected without needing spe-

cial consideration within the package code.

Subscripting

The factorial example above included the use of square brackets to perform subscript-
ing on a BigIntVector, and this capability is something that needs to be provided
explicitly by the MyGMP package.

R is rightly renowned for the power of its subscripting operations: subscript expres-
sions can be used to access or replace elements of vectors, rows and/or columns of
matrices, and slices of higher dimensional arrays. To give a few examples: a row of
a matrix (for example) can be specified either by its position, or by its name (if it has
one). Negated row numbers signify ‘include all rows except these’. Odd numbered
rows of a matrix m can be selected by specifying a logical expression as the index:
m[c (TRUE, FALSE),], theelements of the ‘logical’ vector c (TRUE, FALSE)
being recycled as necessary up to the total number of rows in m.

In fact the R Language Definition document devotes over four of its 51 pages to de-
scribing R’s subscripting facilities, and even that glosses over some edge cases. In the
CR interpreter there are some 2000 C language statements implementing these facili-
ties. But in a sense this C code is ‘locked up’: it isn’t made available to external code
via a documented API, and it is written exclusively to handle CR’s built-in data types.
Consequently, as it stands, we can’t directly exploit this code to bring subscripting
facilities to BigIntVectors.

CXXR takes a more open approach. It makes subscripting facilities available through
its API using a class with the obvious name: Subscripting. This class works using C++
generic algorithms, which abstract away from the type of the elements of the vector (or
matrix or higher-dimensional array). Consequently the algorithms are not restricted to
R’s built-in data types: BigInt elements work just fine.

But not only do the algorithms abstract away from the type of elements of the vector,
they also abstract away from the particular data structure used to implement the vector.
So this opens the way to using the algorithms with packed data: perhaps a developer
implements a new vector object type in which 32 DNA bases are packed into a 64-bit
word. Or a developer may introduce into the RObject class hierarchy a new vector
implementation for large datasets in which most of the data are held on disk, after the
fashion of the ff package (Adler et al. [2012]). In either case the developer can use
CXXR’s subscripting algorithms to index into these new vector types.

As far as BigIntVectors are concerned, using CXXR’s Subscripting class
means that we can carry across the full power of R subscripting with just a few lines
of package code. Here for example is the package C++ code needed to implement
subassignment, i.e. the replacement operation that occurs when square brackets appear
on the left-hand side of an assignment:

using namespace CXXR;
using namespace MyGMP;

extern "C" {
BigIntVectors MyGMP_bigintsubassign(const PairLists args)
{
args = args—>tail ();
BigIntVectors lhs
= SEXP_downcast<BigIntVectors>(args—>car ());
args = args—>tail ();
const BiglntVectors rhs
= SEXP_downcast<const BigIntVectors>(args—>car());

9

args = args—>tail ();
return Subscripting ::subassign(lhs, args, rhs);

}

which is invoked via the following R function in the package:

‘[<—.Biglnt® <— function(v, ..., value) {
.External ("MyGMP_bigintsubassign", v, as.bigint(value), ...)

}

(In the C++ code above, the templated function SEXP_downcast () is used to cast
a pointer to some type in the RObject class hierarchy to a pointer to a type further
down the hierarchy (i.e. further to the right in Fig. 1). According to the configura-
tion options with which CXXR is built, this cast may be either checked (using a C++
dynamic_cast) or unchecked (static_cast).)

Serialization

For our class MyGMP to be of full value, it is necessary that objects of this class can
be saved at the end of an R session alongside other types of R object, and restored
at the start of the next session. In other words this class must participate in session
serialization and deserialization.

The current CR code for serialization is not readily extensible. It is built around the
limited number of datatypes comprised by SEXPREC union, and the serialization code
is concentrated into a few huge functions. Moreover, the serialization format is in-
herently binary in nature, which makes debugging very difficult: it is difficult even to
determine whether a bug is happening during serialization or during deserialization.

CXXR now has the capability to save and restore user sessions using an XML serial-
ization format. This capability builds upon the facilities of the ingenious Boost C++
Serialization Library (Ramey [2009]). This library handles well the task of serializing
a directed graph in which the nodes are heap-borne C++ objects of various types, and
the edges are pointers. Each node in the graph will be serialized only once, even if
it is pointed to by several pointers, and on deserialization all pointers will be set up
correctly, even though the graph nodes will now be at different memory addresses. The
library also takes care of the possibility that a pointer of type T, say, may actually
point to an object of some type inheriting from T.

All of this is achieved using C++ templates, and in a way which delegates to individual
classes the details of how objects of that class will be serialized. So alongside the code
defining the functionality of class MyGMP, some of which we reviewed above, we can
place code defining how BigIntVector objects are serialized. In fact the following
code suffices:

10

template <class Archive>
void load (Archive& ar, mpz_class& bi,
const unsigned int version)

{
std :: string d;
ar >> BOOST_SERIALIZATION_NVP(d);
bi = d;

}

template <class Archive>
void save (Archive& ar, const mpz_class& bi,
const unsigned int version)

std ::string d = bi.get_str();
ar << BOOST_SERIALIZATION_NVP(d);

}

template <class Archive>
void serialize (Archive& ar, mpz_class& bi,
const unsigned int version)

}

boost:: serialization :: split_free (ar, bi, version);

To understand this code, recall that BigIntVector is typedefed to an instantia-
tion of the class template FixedVector. This class template already defines a (tem-
plated) member function serialize () which defines how FixedVector objects
should be serialized using the facilities of boost : : serialization. This function
delegates the task of serializing the individual elements of the FixedVector accord-
ing to the type of these elements. In the present case (BigIntVector) the type of
the elements is of course BigInt, and as we saw earlier BigInt is typedefed to
an instantiation of the class template NAAugment <T>. This class template in its turn
defines a member function serialize () defining how NAAugment objects should
be serialized, and this in its turn delegates the task of serializing its payload, according
to the type T of that payload.

In the present case the payload type is mpz_class, so all that remains is to specify
how objects of mpz_class should be serialized. This is a class from a third-party
library which does not define a serialize () member function. That is not a prob-
lem, however, since the boost: :serialization library will also accept a free-
standing serialize () function as defined in the code above.

This serialize () function calls the (inlined) library function split_free (),
which simply forwards the call either to save (), if the template parameter Archive
is an output archive type (i.e. for serialization), or to load () if Archive is an
input archive type (deserialization). The save () function is passed a reference to
the mpz_class object to be serialized, and represents this object as a decimal string
within the output archive; 1oad () performs the converse operation.

11

The code excerpt above calls the macro BOOST_SERIALIZATION_NVP, which is
provided as part of the serialization library and handles ‘name-value pairs’; this call
causes the string d to be serialized within an XML element with name “d”. The fol-
lowing snippet shows how a single element of a BigIntVector is represented within
an archive:

<item>
<m_value>
<d>2432902008176640000</d>
</m_value>
<m_na>0</m_na>
</item>

The reader may be puzzled by the unused parameter ‘version’ of the functions
above. This reflects another feature of the Boost serialization library that is very valu-
able within CXXR, namely that the serialization format is versioned on a class by class
basis. That is to say, whenever an archive includes the serialized form of one or more
objects of a particular class C1s, the archive records which version of serialization for
this class was used: by default this is Version 0. If in the course of time, developers
decide that a new serialization format is necessary for this class, perhaps because a
new data member has been added to C1s, then they can change the output serialization
code accordingly, and designate the resulting format as Version 1. They will also need
to amend the code for input archives so that it can handle both archives in the new Ver-
sion 1 and in the superseded Version O format. But note that these changes affect only
the code associated with class C1s: there is no need for any changes to the higher-level
serialization code, nor in the ‘magic numbers’ at the start of an archive file.

Once development of the new serialization approach is complete, it is intended that
CXXR will switch to a serialization format based on compressed XML as its default
serialization format; however CXXR will of course retain the ability to load sessions
serialized in CR format, and to save CR-compatible data in CR format. Among the
issues that remain to be addressed is the fact that, for example, the MyGMP package—
and in particular its dynamically-loaded C++ library—must already have been loaded
before any attempt is made to deserialize an archive containing the serialized forms of
MyGMP objects. (Ideally it would also be possible to load the non-MyGMP-dependent
content from an archive without loading the package; whilst this is feasible in principle,
providing this capability is not seen as a priority.)

Provenance Tracking

This paper will now briefly describe another line of development building on CXXR,
namely work to provide provenance tracking facilities.

Have you ever returned to a data analysis after a period of months, and asked yourself
questions such as the following?

* How exactly was a particular data object or model derived from the original data?

12

* What data points were discarded, and how were they identified as being suspect?

* One of the several datasets that went into the original analysis is now known to
have been corrupt. Which results does this invalidate?

In other words you are interested in interrogating the provenance of data objects and
models. Provenance-awareness is a topic of increasing importance in information sci-
ence, and is the subject of two series of conferences: IPAW (International Provenance
and Annotation Workshop), and USENIX TaPP (Theory and Practice of Provenance).

Interestingly one of the first provenance-aware applications was S, and Becker and
Chambers [1988] is often cited as a pioneer paper. An S session would maintain an
audit file, recording all the top-level commands, and identifying the data objects read
and modified by the commands. This audit file could then be analysed using a separate
tool, S AUDIT, described in Becker et al. [1988]. A development branch of the CXXR
code base has been exploring the possibility of introducing this capability for R. A
preliminary report on this was given in Silles and Runnalls [2010].

Two key concepts of the Open Provenance Model (OPM, see Moreau et al. [2010]) are
an artifact, which it defines as “Immutable piece of state, which may have a physical
embodiment in a physical object, or a digital representation in a computer system”,
and process, which it defines as “Action or series of actions performed on or caused
by artifacts, and resulting in new artifacts”. (A third key concept of the OPM is agent,
but this is not currently used in CXXR.) Artifacts and processes are together consid-
ered to define a directed hypergraph, with the artifacts as nodes, and the processes as
hyperedges.* CXXR maps these concepts onto R concepts as follows:

Artifact: A binding of an R symbol (variable) to an R object.

Process: An R top-level command, i.e. an expression entered directly at the inter-
preter prompt.

The reader may be surprised that it is R bindings, rather than R objects themselves,
that are taken as artifacts. But consider the R object O (represented in R as an integer
vector of length 1 containing just zero). The provenance of 0 may be of interest to
philosophers, but what is of more practical interest is the fact that a particular R variable
(e.g. num.outliers) has the value 0.

Note also that R top-level commands are treated as black boxes from the point of view
of provenance tracking: there is no attempt to track the evaluation of subexpressions or
the function calls that are involved in evaluating a top-level expression.

Provenance-enabled CXXR instruments the reading and writing of bindings within
the ‘global environment’ (R’s main workspace), plus certain other environments, and
maintains an audit trail defining the OPM hypergraph leading up to all extant bindings.
This provenance information can then be interrogated within the interpreter itself.

As an illustration, consider the following simple R command session:

4These are hyperedges rather than plain edges because a process may take more than one artifact as an
input, and/or produce more than one artifact as an output.

13

one <— 1

two <— c("deux", "zwei")
two <— one + one

three <— 3

square <— function (x) X#*X
four <— square (two)

five <— four + 1

nine <— square (three)
rm(two, five)

VVVVVVYVVYV

With provenance-enabled CXXR, we can ask about the ‘pedigree’ of a binding, i.e. the
entire sequence of top-level commands that are relevant to a current symbol binding:

> pedigree ("four")$commands
[[11]

one <— 1

[[211

two <— one + one

(0311

square <— function(x) X * X

[[4]1]

four <— square (two)

Notice how the provenance of the user-defined function square is included here, as
well as the provenance of the data objects one, two and four itself. This reflects the
fact that in R, functions are fully-fledged objects.

The provenance record also includes the times when these top-level commands were
issued:

> pedigree("four")$timestamps
[1] "2012—-07—-27 08:03:09 GMT" "2012—-07—-27 08:03:42 GMTI"
[3] "2012—-07-27 08:04:03 GMTI" "2012—-07-27 08:04:09 GMT"

The pedigree command can also be applied to a set of object names, so for example
to find the joint pedigree of all the objects still existing in the session, we can use the
command:

> pedigree (1s ()) $commands
[[111]

one <— 1

[r21]

two <— one + one

[[3]1]
three <— 3

14

([4]]

square <— function(x) X * X

([51]

four <— square (two)

([6]]

nine <— square (three)

Notice how the symbol five makes no appearance in this pedigree, because the object
named five no longer exists, and its former value had no bearing on the value of any
current bindings. However, the symbol two does make an appearance: even though no
object named two still exists, one of the former values of the symbol two played a part
in computing the value of the current object named four.

For a discussion of some outstanding issues with provenance-enabled CXXR, see Run-
nalls and Silles [2012].

Conclusion

CXXR aims to open up the R interpreter to developers, providing a workbench
on which they can develop their own ideas regarding extensions, modifica-
tions and adaptations to R. As this paper has illustrated, one important way
in which CXXR achieves this is by implementing objects visible in R using a
C++ class inheritance hierarchy which developers can extend. This is comple-
mented by a drive to rewrite key algorithms within the R interpreter at a higher
level of abstraction, and to make them available via the CXXR API. As one
possible extension of R, the paper has briefly described work on introducing
provenance-tracking facilities to CXXR.

Much work remains to be done in the development of CXXR itself. A conspicu-
ous gap at present is a Windows port of CXXR: until now it has been built and
tested only on Linux and (to a lesser extent) on MacOS X.

References

Daniel Adler, Jens Oehlschlagel, et al. ff: memory-efficient storage of large
data on disk and fast access functions. Available as package £f from CRAN,
http://cran.r-project.org, 2012.

Douglas Bates and Martin Maechler. Matrix: Sparse and dense matrix classes
and methods. Available as package Matrix from CRAN, http://cran.
r-project.org, 2012. This package is included in the standard distributions
of CR and CXXR.

Richard A. Becker and John M. Chambers. Auditing of data analyses. SIAM J.
Sci. and Stat. Comput., 9(4):747-60, July 1988.

15

Richard A. Becker, John M. Chambers, and Allan R. Wilks. The New S Lan-
guage. Wadsworth and Brooks, Pacific Grove, CA, 1988. ISBN 0-534-09192-X.

Boost. Boost C++ libraries. Available at http://www.boost.org, 2012.

GMP. The GNU multiple precision arithmetic library. Available at http://
gmplib.org, 2012.

Antoine Lucas etal. RBigintegers. Available as package gmp from
CRAN, http://cran.r-project.org, and from http://mulcyber.
toulouse.inra.fr/projects/gmp, 2004.

Luc Moreau etal. The Open Provenance Model, core specification (v1.1).
Available from http://eprints.soton.ac.uk/271449/, 2010.

Robert Ramey. Boost serialization. Available at http://www.boost.org,
20009.

Andrew R. Runnalls. CXXR and add-on packages. From useR! 2010 confer-
ence, available at http://user2010.0org/Slides/Runnalls.pdf, 2010.

Andrew R. Runnalls and Chris A. Silles. Provenance tracking in R. From IPAW
2012, available in poster formathttp://www.cs.kent.ac.uk/projects/
cxxr/pubs/IPAW2012_poster.pdf, 2012.

Chris A. Silles and Andrew R. Runnalls. Provenance-awareness in R. In
D. McGuinness, J. Michaelis, and L. Moreau, editors, Provenance and Anno-
tation of Data and Processes, Lecture Notes in Computer Science. Springer,
Berlin/Heidelberg, 2010. ISBN 978-3-642-17818-4.

16

