
CXXR and Add-on Packages

Andrew Runnalls
School of Computing, University of Kent, UK

Outline

1 CXXR

2 Compatibility with CRAN Packages

3 Exploiting CXXR in Packages

4 Looking Forward

The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++.

By converting the interpreter internals to a well-documented
object-oriented design, we hope that it will become easier for
researchers to produce experimental versions of the interpreter, and
explore new avenues for possible R development.

Work on CXXR started in May 2007, shadowing R-2.5.1; current work
shadows R-2.10.1, with an upgrade to R-2.11.1 imminent.

We’ll refer to the standard R interpreter as CR.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr

The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++.

By converting the interpreter internals to a well-documented
object-oriented design, we hope that it will become easier for
researchers to produce experimental versions of the interpreter, and
explore new avenues for possible R development.

Work on CXXR started in May 2007, shadowing R-2.5.1; current work
shadows R-2.10.1, with an upgrade to R-2.11.1 imminent.

We’ll refer to the standard R interpreter as CR.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr

CXXR Constraints

At every stage of refactorization, CXXR aims to preserve the full
functionality of the standard R distribution. In particular it is intended
that as far as possible:

The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
The .C, .Fortran, .Call and .External call-out interfaces
are unaffected;
The R.h and S.h APIs are unaffected. (However, code compiled
against Rinternals.h may need minor alterations.)

Progress So Far

Important aspects of CXXR development to date include:

The SEXPREC union has been replaced by an extensible hierarchy
of C++ classes rooted at class CXXR::RObject. (All of CXXR’s
C++ code is placed within the C++ namespace CXXR, and we’ll
usually omit the prefix from now on.)
Memory allocation and garbage collection have been completely
refactored, and decoupled from R-specific functionality. Garbage
collection is now based primarily on reference counting, with
(non-generational) mark-sweep as a backstop.
R’s evaluation logic has been refactored into C++, with the
exception so far of method dispatch.
In a development branch, Chris Silles is providing facilities for
tracking the provenance of R data objects (like the old S AUDIT
facility), and for interrogating this provenance within a CXXR
session.

Progress So Far

Important aspects of CXXR development to date include:

The SEXPREC union has been replaced by an extensible hierarchy
of C++ classes rooted at class CXXR::RObject. (All of CXXR’s
C++ code is placed within the C++ namespace CXXR, and we’ll
usually omit the prefix from now on.)
Memory allocation and garbage collection have been completely
refactored, and decoupled from R-specific functionality. Garbage
collection is now based primarily on reference counting, with
(non-generational) mark-sweep as a backstop.
R’s evaluation logic has been refactored into C++, with the
exception so far of method dispatch.
In a development branch, Chris Silles is providing facilities for
tracking the provenance of R data objects (like the old S AUDIT
facility), and for interrogating this provenance within a CXXR
session.

Progress So Far

Important aspects of CXXR development to date include:

The SEXPREC union has been replaced by an extensible hierarchy
of C++ classes rooted at class CXXR::RObject. (All of CXXR’s
C++ code is placed within the C++ namespace CXXR, and we’ll
usually omit the prefix from now on.)
Memory allocation and garbage collection have been completely
refactored, and decoupled from R-specific functionality. Garbage
collection is now based primarily on reference counting, with
(non-generational) mark-sweep as a backstop.
R’s evaluation logic has been refactored into C++, with the
exception so far of method dispatch.
In a development branch, Chris Silles is providing facilities for
tracking the provenance of R data objects (like the old S AUDIT
facility), and for interrogating this provenance within a CXXR
session.

Progress So Far

Important aspects of CXXR development to date include:

The SEXPREC union has been replaced by an extensible hierarchy
of C++ classes rooted at class CXXR::RObject. (All of CXXR’s
C++ code is placed within the C++ namespace CXXR, and we’ll
usually omit the prefix from now on.)
Memory allocation and garbage collection have been completely
refactored, and decoupled from R-specific functionality. Garbage
collection is now based primarily on reference counting, with
(non-generational) mark-sweep as a backstop.
R’s evaluation logic has been refactored into C++, with the
exception so far of method dispatch.
In a development branch, Chris Silles is providing facilities for
tracking the provenance of R data objects (like the old S AUDIT
facility), and for interrogating this provenance within a CXXR
session.

The RObject Class Hierarchy
Vector classes

RObject

VectorBase

String
(CHARSXP)

UncachedString CachedString

DumbVector<T, ST>
(LGLSXP, INTSXP,

REALSXP, CPLXSXP,
RAWSXP)

HandleVector<T, ST>
(VECSXP, EXPRSXP,

STRSXP)

GCNode

Base class of objects
visible from R, and the
default home of attributes.

C++ code sees:
typedef RObject* SEXP;

For C code SEXP is an
opaque pointer.

Base class of
objects subject to
garbage collection

The RObject Class Hierarchy
Other classes

RObject

WeakRef
(WEAKREFSXP)

Environment
(ENVSXP)

Promise
(PROMSXP)

ConsCell

ExternalPointer
(EXTPTRSXP)

Symbol
(SYMSXP) FunctionBase

ByteCode
(BCODESXP)

DottedArgs
(DOTSXP)

Expression
(LANGSXP)

PairList
(LISTSXP)

Closure
(CLOSXP)

BuiltInFunction
(BUILTINSXP,
SPECIALSXP)

The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a particular
datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants, e.g.:

Every attribute of an RObject shall have a distinct Symbol object
as its tag.
No two Symbol objects shall have the same name.

Allow developers readily to extend the class hierarchy.

The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a particular
datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants, e.g.:

Every attribute of an RObject shall have a distinct Symbol object
as its tag.
No two Symbol objects shall have the same name.

Allow developers readily to extend the class hierarchy.

The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a particular
datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants, e.g.:

Every attribute of an RObject shall have a distinct Symbol object
as its tag.
No two Symbol objects shall have the same name.

Allow developers readily to extend the class hierarchy.

Performance

The following tests were carried out on a 2.8 GHz Pentium 4 with 1 GB
RAM and 1 MB L2 cache, comparing R-2.10.1 with CXXR release
0.29-2.10.1, using comparable optimization options. Times are CPU
time (user + system).

Benchmark CR CXXR CR/CXXR
(secs) (secs)

bench.R2 129.1 114.5 1.13
base5-Ex.R3 30.4 44.8 0.68
stats-Ex.R 48.7 92.7 0.53
jens.R4 116.2 78.1 1.49

2By Jan de Leeuw, at http://r.research.att.com/benchmarks.
3Fivefold concatenation of base-Ex.R, omitting internal quit()s.
4Based on example R code from Jens Oehlschlägel Managing Large Datasets in

R—ff Examples and Concepts [2010].

http://r.research.att.com/benchmarks

Timing Analysis with stats-Ex.R

CR CXXR

0
50

0
10

00
15

00
20

00

 DO

 UW
 GC

SYM

EOH

OTH

 DO

 UW

 GC

SYM

EOH

OTH DO Time servicing do_ functions,
excluding nested R expression
evaluation and the next three
categories below.

UW Stack unwinding, e.g. C++
exception propagation, or
findcontext() in CR.

GC Garbage collection.

SYM Symbol look-up.

EOH Evaluation overhead, i.e. time
spent evaluating R expressions
not included in the categories
above.

OTH Anything else, e.g. time spent
outside the evaluation loop.

Outline

1 CXXR

2 Compatibility with CRAN Packages

3 Exploiting CXXR in Packages

4 Looking Forward

How Compatible is CXXR with Packages from CRAN?

Until this year, CXXR had only been tested with packages forming part
of the standard distribution, including the ‘Recommended’ packages.

How well does it work with other packages from CRAN?

We have now tried CXXR with 50 other packages from CRAN.

In choosing packages to test, we asked ‘How many other packages in
CRAN depend on or suggest this package, directly or indirectly?’ The
packages tested were those for which this was a maximum.

Many thanks to Uwe Ligges for a script to identify these packages.

How Compatible is CXXR with Packages from CRAN?

Until this year, CXXR had only been tested with packages forming part
of the standard distribution, including the ‘Recommended’ packages.

How well does it work with other packages from CRAN?

We have now tried CXXR with 50 other packages from CRAN.

In choosing packages to test, we asked ‘How many other packages in
CRAN depend on or suggest this package, directly or indirectly?’ The
packages tested were those for which this was a maximum.

Many thanks to Uwe Ligges for a script to identify these packages.

CRAN Packages Tested

akima 486 DBI 372 fBasics 318
rgl 472 RSQLite 360 e1071 318
RUnit 463 maps 359 ape 318
SparseM 461 mapproj 359 mix 317
RColorBrewer 446 robustbase 354 mclust 316
scatterplot3d 438 RODBC 342 leaps 316
mvtnorm 416 xtable 337 logspline 315
bitops 397 randomForest 335 quantreg 313
rsprng 395 gtools 335 numDeriv 311
rlecuyer 393 abind 333 multicore 309
Rmpi 392 tripack 326 mlmRev 308
nws 391 gee 322 lme4 308
sp 390 timeDate 321 MEMSS 308
rpvm 388 biglm 321 slam 304
coda 388 timeSeries 320 kernlab 303
snow 386 mlbench 318 car 302
tkrplot 384 gdata 318

Package versions were those current on 2010-05-05.

Test Procedure

Working through the packages in order of decreasing number of
reverse dependencies, each package was installed into CXXR with a
(Unix shell) command such as:

> CXXR CMD INSTALL --install-tests foo_1.2-3.tar.gz

(For some packages a --configure-args flag was also necessary,
and/or setting of environment variables.)

The package was then tested within a CXXR session with the R
command:

> print(tools::testInstalledPackage(’foo’))

This will carry out any package-specific tests as well as testing the
package’s code examples and vignettes.

How good a test this is varies enormously from package to package.

Test Procedure

Working through the packages in order of decreasing number of
reverse dependencies, each package was installed into CXXR with a
(Unix shell) command such as:

> CXXR CMD INSTALL --install-tests foo_1.2-3.tar.gz

(For some packages a --configure-args flag was also necessary,
and/or setting of environment variables.)

The package was then tested within a CXXR session with the R
command:

> print(tools::testInstalledPackage(’foo’))

This will carry out any package-specific tests as well as testing the
package’s code examples and vignettes.

How good a test this is varies enormously from package to package.

Results
The good

Of the 50 packages:

36 installed and tested OK ‘out of the box’.
A further two packages installed OK, and
testInstalledPackage returned 0 (signifying OK) but under
CXXR there were additional R warnings.
In a further five packages, the test suite exhibited problems under
both CXXR and our CR installation.5 With appropriate tweaks and
workarounds, three of these five packages then passed the tests
under CXXR (and all of them under CR).

This makes a total of 41 packages that passed
testInstalledPackage without altering either the package or
CXXR.

5For example, there were three packages for which testInstalledPackage
would only work if the working directory had the same name as the package.

Results
The good

Of the 50 packages:

36 installed and tested OK ‘out of the box’.
A further two packages installed OK, and
testInstalledPackage returned 0 (signifying OK) but under
CXXR there were additional R warnings.
In a further five packages, the test suite exhibited problems under
both CXXR and our CR installation.5 With appropriate tweaks and
workarounds, three of these five packages then passed the tests
under CXXR (and all of them under CR).

This makes a total of 41 packages that passed
testInstalledPackage without altering either the package or
CXXR.

5For example, there were three packages for which testInstalledPackage
would only work if the working directory had the same name as the package.

Results
The good

Of the 50 packages:

36 installed and tested OK ‘out of the box’.
A further two packages installed OK, and
testInstalledPackage returned 0 (signifying OK) but under
CXXR there were additional R warnings.
In a further five packages, the test suite exhibited problems under
both CXXR and our CR installation.5 With appropriate tweaks and
workarounds, three of these five packages then passed the tests
under CXXR (and all of them under CR).

This makes a total of 41 packages that passed
testInstalledPackage without altering either the package or
CXXR.

5For example, there were three packages for which testInstalledPackage
would only work if the working directory had the same name as the package.

Results
The good

Of the 50 packages:

36 installed and tested OK ‘out of the box’.
A further two packages installed OK, and
testInstalledPackage returned 0 (signifying OK) but under
CXXR there were additional R warnings.
In a further five packages, the test suite exhibited problems under
both CXXR and our CR installation.5 With appropriate tweaks and
workarounds, three of these five packages then passed the tests
under CXXR (and all of them under CR).

This makes a total of 41 packages that passed
testInstalledPackage without altering either the package or
CXXR.

5For example, there were three packages for which testInstalledPackage
would only work if the working directory had the same name as the package.

Results
The not-so-good

Five packages revealed bugs in CXXR (seven bugs in all). When
these were fixed, all of them passed testInstalledPackage.
Four packages proved to contain bugs (five bugs in all) that had
remained latent under CR. In three cases, these were gaps in
protection against garbage collection (i.e. missing
PROTECT()/UNPROTECT()).
After fixing these problems, three of the four packages then
passed testInstalledPackage; the remaining package also
fell foul of the next problem.
Two packages included C code that was inconsistent with CXXR.
Fixing these problems required changing three lines of code in all,
and did not affect the packages’ compatibility with CR.

After the changes described above, all 50 packages passed
testInstalledPackage.

Results
The not-so-good

Five packages revealed bugs in CXXR (seven bugs in all). When
these were fixed, all of them passed testInstalledPackage.
Four packages proved to contain bugs (five bugs in all) that had
remained latent under CR. In three cases, these were gaps in
protection against garbage collection (i.e. missing
PROTECT()/UNPROTECT()).
After fixing these problems, three of the four packages then
passed testInstalledPackage; the remaining package also
fell foul of the next problem.
Two packages included C code that was inconsistent with CXXR.
Fixing these problems required changing three lines of code in all,
and did not affect the packages’ compatibility with CR.

After the changes described above, all 50 packages passed
testInstalledPackage.

Results
The not-so-good

Five packages revealed bugs in CXXR (seven bugs in all). When
these were fixed, all of them passed testInstalledPackage.
Four packages proved to contain bugs (five bugs in all) that had
remained latent under CR. In three cases, these were gaps in
protection against garbage collection (i.e. missing
PROTECT()/UNPROTECT()).
After fixing these problems, three of the four packages then
passed testInstalledPackage; the remaining package also
fell foul of the next problem.
Two packages included C code that was inconsistent with CXXR.
Fixing these problems required changing three lines of code in all,
and did not affect the packages’ compatibility with CR.

After the changes described above, all 50 packages passed
testInstalledPackage.

Results
The not-so-good

Five packages revealed bugs in CXXR (seven bugs in all). When
these were fixed, all of them passed testInstalledPackage.
Four packages proved to contain bugs (five bugs in all) that had
remained latent under CR. In three cases, these were gaps in
protection against garbage collection (i.e. missing
PROTECT()/UNPROTECT()).
After fixing these problems, three of the four packages then
passed testInstalledPackage; the remaining package also
fell foul of the next problem.
Two packages included C code that was inconsistent with CXXR.
Fixing these problems required changing three lines of code in all,
and did not affect the packages’ compatibility with CR.

After the changes described above, all 50 packages passed
testInstalledPackage.

Outline

1 CXXR

2 Compatibility with CRAN Packages

3 Exploiting CXXR in Packages

4 Looking Forward

Exploiting CXXR in Packages

Extending the RObject hierarchy: The internal RObject class
hierarchy can be extended by packages, rather than their
having to use external pointers and finalizers. This brings
further benefits. . .

‘Virtual attributes’: C++ classes within the RObject hierarchy can
apply their own checks on attribute settings, and determine
how attribute values are stored within the class object.

Delegated serialization/deserialization: C++ classes within the
RObject hierarchy can control how objects of that class are
serialized. So custom objects can be saved as part of the
CXXR session. (Work in progress.)

Simpler GC-protection:
CR’s PROTECT()/REPROTECT()/UNPROTECT()
mechanism for protecting SEXPs against garbage collection
is somewhat error prone. CXXR offers a much simpler
mechanism using C++ smart pointers.

Exploiting CXXR in Packages

Extending the RObject hierarchy: The internal RObject class
hierarchy can be extended by packages, rather than their
having to use external pointers and finalizers. This brings
further benefits. . .

‘Virtual attributes’: C++ classes within the RObject hierarchy can
apply their own checks on attribute settings, and determine
how attribute values are stored within the class object.

Delegated serialization/deserialization: C++ classes within the
RObject hierarchy can control how objects of that class are
serialized. So custom objects can be saved as part of the
CXXR session. (Work in progress.)

Simpler GC-protection:
CR’s PROTECT()/REPROTECT()/UNPROTECT()
mechanism for protecting SEXPs against garbage collection
is somewhat error prone. CXXR offers a much simpler
mechanism using C++ smart pointers.

Exploiting CXXR in Packages

Extending the RObject hierarchy: The internal RObject class
hierarchy can be extended by packages, rather than their
having to use external pointers and finalizers. This brings
further benefits. . .

‘Virtual attributes’: C++ classes within the RObject hierarchy can
apply their own checks on attribute settings, and determine
how attribute values are stored within the class object.

Delegated serialization/deserialization: C++ classes within the
RObject hierarchy can control how objects of that class are
serialized. So custom objects can be saved as part of the
CXXR session. (Work in progress.)

Simpler GC-protection:
CR’s PROTECT()/REPROTECT()/UNPROTECT()
mechanism for protecting SEXPs against garbage collection
is somewhat error prone. CXXR offers a much simpler
mechanism using C++ smart pointers.

Exploiting CXXR in Packages

Extending the RObject hierarchy: The internal RObject class
hierarchy can be extended by packages, rather than their
having to use external pointers and finalizers. This brings
further benefits. . .

‘Virtual attributes’: C++ classes within the RObject hierarchy can
apply their own checks on attribute settings, and determine
how attribute values are stored within the class object.

Delegated serialization/deserialization: C++ classes within the
RObject hierarchy can control how objects of that class are
serialized. So custom objects can be saved as part of the
CXXR session. (Work in progress.)

Simpler GC-protection:
CR’s PROTECT()/REPROTECT()/UNPROTECT()
mechanism for protecting SEXPs against garbage collection
is somewhat error prone. CXXR offers a much simpler
mechanism using C++ smart pointers.

Outline

1 CXXR

2 Compatibility with CRAN Packages

3 Exploiting CXXR in Packages

4 Looking Forward

Next Stages

Upgrade CXXR to shadow R 2.11.1
Port CXXR to Windows. Any volunteers?
Improve performance.
At present data provenance is tracked only within a single R
session. This is being extended to cross-session tracking.
Refactor method-dispatch code into C++.
Consider how better to handle R’s array subscripting/subsetting
operations within a C++ framework. The present VectorBase
class is underpowered, and does not provide a mature base for
CXXR package-writers to build on.

Performance

The following tests were carried out on a 2.8 GHz Pentium 4 with 1 GB
RAM and 1 MB L2 cache, comparing R-2.10.1 with CXXR release
0.29-2.10.1, using comparable optimization options. Times are CPU
time (user + system).

Benchmark CR CXXR CR/CXXR
(secs) (secs)

bench.R6 129.1 ± 0.4 114.5 ± 0.2 1.13
base5-Ex.R7 30.4 ± 0.1 44.8 ± 0.7 0.68
stats-Ex.R 48.7 ± 0.1 92.7 ± 0.4 0.53
jens.R8 116.2 ± 0.3 78.1 ± 0.7 1.49

(Means of 5 runs; tolerances 2σ)

6By Jan de Leeuw, at http://r.research.att.com/benchmarks.
7Fivefold concatenation of base-Ex.R, omitting internal quit()s.
8Based on example R code from Jens Oehlschlägel Managing Large Datasets in

R—ff Examples and Concepts [2010].

http://r.research.att.com/benchmarks

Timing Analysis with base5-Ex.R

CR CXXR

0
10

00
20

00
30

00
40

00
50

00

 DO

 UW
 GC

SYM

EOH

OTH

 DO

 UW

 GC

SYM

EOH

OTH DO Time servicing do_ functions,
excluding nested R expression
evaluation and the next three
categories below.

UW Stack unwinding, e.g. C++
exception propagation, or
findcontext() in CR.

GC Garbage collection.

SYM Symbol look-up.

EOH Evaluation overhead, i.e. time
spent evaluating R expressions
not included in the categories
above.

OTH Anything else, e.g. time spent
outside the evaluation loop.

Nested LCONS

In CXXR, objects of type LANGSXP (implemented by C++ class
Expression), DOTSXP (class DottedArgs) and BCODESXP (class
ByteCode) are permitted only to appear at the head of a pairlist; all
remaining elements of the list must be of type LISTSXP (class
PairList).

So for example the C code:

SEXP h c a l l = LCONS(h , LCONS(cond , R_NilValue)) ;

needs to be changed to

SEXP h c a l l = LCONS(h , CONS(cond , R_NilValue)) ;

for use under CXXR.

Code Migration from R to C++

In CXXR, underlying every R object (whether of an R class type or not)
is a C++ object of a class inheriting from RObject.

Very often in R packages, much code is specifically associated with a
particular type of R object. This is most obvious in R class definitions.
The code in question may be written in R itself, in C or C++, or maybe
in some other language.

CXXR aims to allow you easily to migrate the functionality of that code
into the C++ class underlying those objects. This can be done in small
steps, and to the extent that you see fit.

Code Migration from R to C++

In CXXR, underlying every R object (whether of an R class type or not)
is a C++ object of a class inheriting from RObject.

Very often in R packages, much code is specifically associated with a
particular type of R object. This is most obvious in R class definitions.
The code in question may be written in R itself, in C or C++, or maybe
in some other language.

CXXR aims to allow you easily to migrate the functionality of that code
into the C++ class underlying those objects. This can be done in small
steps, and to the extent that you see fit.

Code Migration from R to C++

In CXXR, underlying every R object (whether of an R class type or not)
is a C++ object of a class inheriting from RObject.

Very often in R packages, much code is specifically associated with a
particular type of R object. This is most obvious in R class definitions.
The code in question may be written in R itself, in C or C++, or maybe
in some other language.

CXXR aims to allow you easily to migrate the functionality of that code
into the C++ class underlying those objects. This can be done in small
steps, and to the extent that you see fit.

Evolution of an R Class under CXXR

An ‘external pointer’ R object contains an untyped pointer, which can
be configured to point to an arbitrary C/C++ data structure.

A common issue is how to recover the memory space used by this
data structure when the external pointer object is garbage-collected.
The standard approach is to use a finalizer. . .

Evolution of an R Class under CXXR

An ‘external pointer’ R object contains an untyped pointer, which can
be configured to point to an arbitrary C/C++ data structure.

A common issue is how to recover the memory space used by this
data structure when the external pointer object is garbage-collected.
The standard approach is to use a finalizer. . .

Evolution of an R Class under CXXR

Finalization is implemented using an auxiliary ‘weak reference’ object,
which designates the object to be finalized as its key.

During a mark-sweep garbage collection, if it is determined that the
key of a weak reference is unreachable, the finalizer is executed. Then
the key and the weak reference are garbage-collected.

Evolution of an R Class under CXXR

The same mechanism remains available under CXXR, implemented
via the class WeakRef.

A drawback is that neither weak reference objects nor their keys can
be garbage-collected by the reference counting scheme.
Consequently objects of class "foo" will remain in existence until the
next full garbage collection.

Evolution of an R Class under CXXR

The same mechanism remains available under CXXR, implemented
via the class WeakRef.

A drawback is that neither weak reference objects nor their keys can
be garbage-collected by the reference counting scheme.
Consequently objects of class "foo" will remain in existence until the
next full garbage collection.

Evolution of an R Class under CXXR

An easy change: instead of using class ExternalPointer itself, we
can introduce a new C++ class Foo inheriting from
ExternalPointer, and incorporate the finalization logic in the class
destructor. Foo objects can now be garbage-collected by reference
counting.

Evolution of an R Class under CXXR

But why use ExternalPointer objects at all? If, for example, class
"foo" has the characteristics of a data vector, we can make its C++
representation inherit instead from VectorBase.

Evolution of an R Class under CXXR

Finally, we may be able to incorporate the C++ data structures
implementing class "foo" directly into the Foo object, eliminating an
indirection and probably simplifying the code.

Attributes in CR

Each R object can have a list of named attributes associated with it.

Under CR, the C function setAttrib() applies checks to the value
supplied for any attribute named "class", "comment", "dim",
"dimnames", "names", "row.names" or "tsp". Apart from that,
anything goes.

CXXR: Virtual Attributes

In CXXR, the trend is to delegate attribute control to individual classes
within the RObject hierarchy.

Class RObject contains a pairlist of attributes just as in CR. Attribute
values are set using the method:

v i r t u a l void RObject : : s e t A t t r i b u t e (const Symbol∗ name,
RObject∗ value) ;

However, because this method (and other attribute-related methods)
are declared virtual, their default implementations can be
overridden by other C++ classes in the RObject hierarchy.

CXXR: Virtual Attributes

In CXXR, the trend is to delegate attribute control to individual classes
within the RObject hierarchy.

Class RObject contains a pairlist of attributes just as in CR. Attribute
values are set using the method:

v i r t u a l void RObject : : s e t A t t r i b u t e (const Symbol∗ name,
RObject∗ value) ;

However, because this method (and other attribute-related methods)
are declared virtual, their default implementations can be
overridden by other C++ classes in the RObject hierarchy.

CXXR: Virtual Attributes

Where CXXR packages provide new C++ classes within the RObject
hierarchy, they can use this ‘virtual attribute’ facility in two ways:

To apply class-specific checks that attribute values are consistent
with the C++ class invariants. For example, arrays from package
ff have a "dimorder" attribute which determines their layout
(row-major, column-major etc.). The underlying C++ class could
verify that any value supplied for this attribute is a permutation of
1 : n.
To use an internal representation of attribute values that augments
or replaces the default representation. For example, the value of a
"rotation" attribute may appear to the R user to be an angle
but be stored internally as a sine/cosine matrix.

CXXR: Virtual Attributes

Where CXXR packages provide new C++ classes within the RObject
hierarchy, they can use this ‘virtual attribute’ facility in two ways:

To apply class-specific checks that attribute values are consistent
with the C++ class invariants. For example, arrays from package
ff have a "dimorder" attribute which determines their layout
(row-major, column-major etc.). The underlying C++ class could
verify that any value supplied for this attribute is a permutation of
1 : n.
To use an internal representation of attribute values that augments
or replaces the default representation. For example, the value of a
"rotation" attribute may appear to the R user to be an angle
but be stored internally as a sine/cosine matrix.

Delegated Serialization/Deserialization
(Work in progress: early days!)

Being able to track data object provenance from one R session to
another means that information about the provenance of data objects
must be saved alongside the data objects themselves. This is leading
to a revision to the way in which object serialization and deserialization
are carried out in CXXR.

As part of this, serialization and deserialization will be carried out by
virtual functions of the abstract class CXXR::Serializable, from
which CXXR::RObject will inherit.

CXXR package-writers who augment the RObject class hierarchy will
be able to exploit this to save and restore their custom objects between
CXXR sessions.

Delegated Serialization/Deserialization
(Work in progress: early days!)

Being able to track data object provenance from one R session to
another means that information about the provenance of data objects
must be saved alongside the data objects themselves. This is leading
to a revision to the way in which object serialization and deserialization
are carried out in CXXR.

As part of this, serialization and deserialization will be carried out by
virtual functions of the abstract class CXXR::Serializable, from
which CXXR::RObject will inherit.

CXXR package-writers who augment the RObject class hierarchy will
be able to exploit this to save and restore their custom objects between
CXXR sessions.

GC Protection Using Smart Pointers

The following example gives the flavour of C++ programming for
CXXR:

/ / Ret ur n a r ever s ed copy of a pai r l i s t :

PairList* reverse(const PairList* inlist)

{
GCStackRoot<PairList> revlist;

while (inlist) {

revlist

= PairList::construct(inlist->car(), revlist,
inlist->tag());

inlist = inlist->tail();

}

return RObject::clone(revlist);
}

GC Protection Using Smart Pointers

The following example gives the flavour of C++ programming for
CXXR:

/ / Ret ur n a r ever s ed copy of a pai r l i s t :

PairList* reverse(const PairList* inlist)

{
GCStackRoot<PairList> revlist;

while (inlist) {

revlist

= PairList::construct(inlist->car(), revlist,
inlist->tag());

inlist = inlist->tail();

}

return RObject::clone(revlist);
}

GCStackRoot is a (templated)
'smart pointer' type. It can be
used like a pointer (PairList*
in this case) but protects
whatever it points to from
garbage collection.

GC Protection Using Smart Pointers

The following example gives the flavour of C++ programming for
CXXR:

/ / Ret ur n a r ever s ed copy of a pai r l i s t :

PairList* reverse(const PairList* inlist)

{
GCStackRoot<PairList> revlist;

while (inlist) {

revlist

= PairList::construct(inlist->car(), revlist,
inlist->tag());

inlist = inlist->tail();

}

return RObject::clone(revlist);
}

No need for
REPROTECT()
here.

GC Protection Using Smart Pointers

The following example gives the flavour of C++ programming for
CXXR:

/ / Ret ur n a r ever s ed copy of a pai r l i s t :

PairList* reverse(const PairList* inlist)

{
GCStackRoot<PairList> revlist;

while (inlist) {

revlist

= PairList::construct(inlist->car(), revlist,
inlist->tag());

inlist = inlist->tail();

}

return RObject::clone(revlist);
} The revlist smart pointer goes

out of scope here, and its
destructor automatically ends
the GC protection it offers.
No need for UNPROTECT().

GC Protection Using Smart Pointers

The following example gives the flavour of C++ programming for
CXXR:

/ / Ret ur n a r ever s ed copy of a pai r l i s t :

PairList* reverse(const PairList* inlist)

{
GCStackRoot<PairList> revlist;

while (inlist) {

revlist

= PairList::construct(inlist->car(), revlist,
inlist->tag());

inlist = inlist->tail();

}

return RObject::clone(revlist);
}

But if you prefer to do things the CR way, CXXR permits that too!

	CXXR
	Compatibility with CRAN Packages
	Exploiting CXXR in Packages
	Looking Forward
	Extras
	Performance
	Nested LCONS
	Evolution of an R Class under CXXR
	Virtual Attributes
	Delegated Serialization/Deserialization
	GC Protection Using Smart Pointers

