
Page 1 of 25

April 2017

Lot 5 of Data Analytics FY16/17

Final Technical Report: TR UoK/Dstl 2017/1

Dover: Scalable Algorithms for Graph Mining in Java

Rob Baker, Alena Frankel, Peter Rodgers

Page 2 of 25

Abstract

The Dover project addresses two related variants of graph mining. One is to look for
subgraphs (or behaviours of interest) present in a target graph, which corresponds to the
subgraph isomorphism problem. The other is to find motifs (over-represented subgraphs) in
large graphs, which involves a number of algorithms, including graph isomorphism. The time
complexity of algorithms to perform these isomorphisms means that exact solutions are
infeasible in the general case. Hence, we provide algorithms to solve exact and approximate
solutions to both of these variants.

Subgraph isomorphism (finding pattern graphs in larger target graphs) finds significant
practical application in pattern recognition where searching for matching subgraphs is used
for Machine Learning. Various applications of motifs have been proposed, however the
widest use is found in Bioinformatics where frequent graph searching algorithms look for
occurrences of subgraphs that are greater than might be expected from chance.

A principle focus of this work has been on scalability. The work targets graphs in excess of
one million nodes and ten million edges. The implementation emphasises efficiency and we
provide sample performance indicators for the implemented algorithms on both synthetic and
real-world graphs. Dover is implemented in pure Java for ease of integration with other
systems.

1. Introduction

This technical report is the final deliverable from the Dstl tender for Lot 5 of Data Analytics
FY16/17, which ran October 2016 to April 2017. The bid document was titled “Scalable
Subgraph Isomorphism” and the project completed by teams at the University of Kent and
Roke Manor Research Limited. The result of the work is open source software and data,
which we call “Dover”. The project tackled two related but separate tasks in Graph Mining:
firstly, finding motifs in graphs and secondly finding structures of interest in graphs. The
principle challenge was in the size of data, with a specified minimum 1 million nodes and 10
million edges. This is significantly larger than addressed by previous systems [Coc10]. Our
solution to this scaling problem is efficient implementation of approximate solutions, so that
by restricting search we can get some, but not all structures of interest and by sampling the
graph we can get a representative indication of motifs. As we discuss below, we show
capability significantly beyond the required size. Another aspect to the project was that of
dealing with behaviour graphs, that is graphs that show change over time. Our methods
were firstly implemented over standard graphs, then behaviour graph functionality was
added.

Subgraph isomorphism finds significant practical application in pattern recognition [FPV14]
where searching for matching subgraphs is used for Machine Learning and image
recognition. Motif finding is most often found in analysis of bioinformatics data [Bai09] where
frequent graph mining is the process of discovering motifs, or occurrences of subgraphs that
are overrepresented in the graph. Motifs have been applied to crime pattern analysis
[DM15], YouTube spamming [CHC12] and social networks [Fan12].

This document includes sample profiling data, all such data was run on Java 8, jre 1.8.0_91
on Windows 10. The hardware was a Dell XPS i7 6700HQ with 32GB RAM and a 1TB SSD.

Throughout this document we outline code snippets and examples to ease use, further
integration and development. Section 2 describes the software system and installation
details. Section 3 gives a user guide to both the graphical interface and command line
functions. Section 4 details the underlying data structures used. Section 5 describes the
fundamental algorithms implemented. The description of how these are used in various
graph mining methods is given in Section 5.

Page 3 of 25

2. Software Access and Installation

The software is implemented in Java 8, jre 1.8.0_91, compiled using Eclipse Neon.1a (4.6.1)
on Windows 10. Whilst we expect the code to be portable, no rigorous testing beyond these
specifications has been performed. All code written for this project is released under GPL 3.
All external libraries and code is under GPL or less restrictive open source licence.

Git repository: https://github.com/peterrodgers/dover.git

Get a copy of the code via:

git clone https://github.com/peterrodgers/dover.git

The DisplayGraph source code is packaged with the dover code. The following libraries are
included in the repository and their jars should be added in Eclipse via Project Properties
-> Java Build Path -> Libraries:

• commons-cli

• Jama

• jsoup

Sample data can be downloaded from https://www.cs.kent.ac.uk/projects/dover/

Create a jar file via: buildjar.bat found in the top level directory.

Create the javadocs via: document.bat found in the top level directory.

3. User Guide

To install Dover, download dover.jar. There are two interfaces to the system, command line
and GUI.

3.1. Command Line

There is a command line interface to Dover. It does not provide as much visual feedback as
the GUI, but still allows most of the functionality to be performed.

It is strongly recommended that you allow the JVM to have access more RAM when running
Dover. For example, if you are running on a 16GB RAM we recommend a command of the
type: java -Xmx14g -jar dover.jar. This amount will vary depending on the amount of RAM
available to you. As the -Xmx value is system dependent, it is not shown in the below
examples.

It is also possible to view a manual page: java -jar dover.jar -h. Specifying no Dover
parameters will instead load the GUI, e.g. java -Xmx14g -jar dover.jar. This is a useful
way to load the GUI with specific JVM options.

3.1.1. Exact Subgraph Isomorphism

To run the exact subgraph isomorphism algorithm, use the following parameters:

-s <arg> Runs the subgraph isomorphism algorithm. Specifies the location of the

target graph.

-p <arg> Specifies the location of the pattern graph.

For example: java -jar dover.jar -s targetgraph -p patterngraph

Page 4 of 25

3.1.2. Approximate Subgraph Isomorphism

To run the approximate subgraph isomorphism algorithm, use the following parameters:

-S <arg> Runs the approximate subgraph isomorphism algorithm. Specifies the

location of the target graph.

-p <arg> Specifies the location of the pattern graph.

-n <arg> Specifies the number of nodes in the enumerated subgraphs. A larger

number will allow more matches, but increases the runtime.

--subspernode <arg>

 Specifies the number of subgraphs enumerated per node. This will

define the number of subgraphs tested based on the number of nodes in

the target graph.

For example: java -jar dover.jar -S targetgraph -p patterngraph -n 5 --subspernode 5

3.1.3. Exact Motif Finding

To run the exact motif finder, use the following parameters:

-m <arg> Runs the exact motif finding algorithm. Specifies the location

of the target graph.

--minsize <arg> Specifies the minimum size of motifs to be found.

--maxsize <arg> Specifies the maximum size of motifs to be found.

--saveall Optional. Specifies is every example of a motif is to be

found. Warning: This can take considerable time and disk

space.

For example: java -jar dover.jar -m targetgraph --minsize 4 --maxsize 5 or java -jar
dover.jar -m targetgraph --minsize 4 --maxsize 5 --saveall

3.1.4. Approximate Motif Finding

To run the approximate motif finder, use the following parameters:

-M <arg> Runs the approximate motif finding algorithm. Specifies the

location of the target graph.

--minsize <arg> Specifies the minimum size of motifs to be found.

--maxsize <arg> Specifies the maximum size of motifs to be found.

--subspernode <arg> Specifies the number of subgraphs enumerated per node. This

will define the number of subgraphs tested based on the number

of nodes in the target graph.

--attempts <arg> Specifies the number of attempts to enumerate a subgraph. 20

is normally sensible for subgraphs of size < 8.

--clusters <arg> Specifies the number of clusters to group motifs into.

--iterations <arg> Specifies the number of iterations to run kMedoids for.

Increasing this number will increase the runtime.

For example: java -jar dover.jar -M targetgraph --minsize 4 --maxsize 5 --
subspernode 5 --attempts 20 --clusters 5 --iterations 2

3.1.5. Adjacency List to Dover Converter

To run the converter, use the following parameters:

-c <arg> Runs the converter. Specifies the location of the adjacency list.

-n <arg> Specifies the number of nodes in the graph.

-e <arg> Specified the number of edges in the graph

-d Optional. Indicates if the graph is directed.

For example: java -jar dover.jar -c adjlist.adj -n 30 -e 40

Page 5 of 25

3.2. Graphical User Interface

3.2.1. Selecting a Target Graph

Select a target graph by clicking Open File in the target graph panel. This will allow a
directory to be selected contain the various buffers and .info file. This graph can be cleared
by clicking Clear Selection.

It is possible to Create and Edit a target graph. Editing a graph is inadvisable if the graph
contains more than around 30 nodes. Creating and editing a graph uses the Graph Editor.

Page 6 of 25

3.2.2. Graph Editor

The graph editor allows the modification or creation of graphs. Double click to create a node,
and right-click and drag to create an edge between nodes. Double left clicking on a node or
edge will display an editor box - this can be used to specify a label of a node or edge, along
with an age. It is also possible to change the type of an edge to timeEdge if you wish to
perform analysis on behaviour graphs.

Under the File menu, there is an option to save this graph, as well as two variations of a
spring embedder to automatically draw the graph (one is animated, the other is not). This
layout method aims to display the various time slices (if relevant) in a sensible manner.

Page 7 of 25

3.2.3. Exact Subgraph Isomorphism

To run the exact subgraph isomorphism algorithm, navigate to the Exact Subgraph tab.
Here, use the Open File button to select a pattern graph. As with the target graph, it is
possible to Create or Edit a pattern graph. Once complete, click Find subgraphs and the
algorithm will run. When complete, a message will be displayed to the user.

Page 8 of 25

3.2.4. Approximate Subgraph Isomorphism

To run the approximate subgraph isomorphism algorithm, navigate to the Approx Subgraph
tab. Here, use the Open File button to select a pattern graph. As with the target graph, it is
possible to Create or Edit a pattern graph.

There are a number of tuning parameters for this algorithm.

• The Number of Nodes in Subgraphs parameter specifies the number of nodes in the

enumerated subgraphs. A larger number will potentially allow more matches, but increases

the runtime. This must be a positive integer.

• The Number of Subgraphs per Nodes parameter specifies the number of subgraphs

enumerated per node. This will define the number of subgraphs tested based on the number

of nodes in the target graph.

Once complete, click Find subgraphs and the algorithm will run. When complete, a
message will be displayed to the user.

Page 9 of 25

3.2.5. Exact Motif Finder

To run the exact motif finder algorithm, navigate to the Exact Motif tab.

There are a number of tuning parameters for this algorithm:

• The Min Size and Max Size parameters specify the sizes of the motifs to find - these

numbers are inclusive.

• The Save all motifs options allows the user to save every example of the found motifs.

Beware that this adds considerable time to the running of the algorithm (especially when

not using an SSD) and can occupy large amounts of disk space.

• It is also possible to specify a particular reference set to use in comparison the the target

graph. This can be set using the Open File button, and is optional. If the user does not

specify a reference set, the target graph will be rewired several times to use instead.

Finally, when all parameters have been set, the Find Motifs button will run the algorithm.
This process can take a considerable amount of time, so two progress bars provide updates
to the user. Once complete, a message will be displayed and (if supported) a web browser
will be opened displaying the results.

Page 10 of 25

3.2.6. Approximate Motif Finder

To run the approximate motif finder algorithm, navigate to the Approx Motif tab.

There are a number of tuning parameters for this algorithm:

• The Min Size and Max Size parameters specify the sizes of the motifs to find - these

numbers are inclusive.

• The Clusters parameter specifies how many groups the found motifs will be assigned to. The

more groups, the increased likelihood that wildly differing graphs will be stored separately.

However, a number of these groups may be empty.

• The Iterations parameter specifies the number of times the reassignment of motifs will be

completed. It is advisable to use a number greater than 1, but each increasing the number of

iterations will increase the runtime of the algorithm.

• The Number of Subgraphs per Nodes parameter specifies the number of subgraphs

enumerated per node. This will define the number of subgraphs tested based on the number

of nodes in the target graph.

• The Attempts to find subgraphs parameter has a default value of 20. This determines how

many attempts will be run to enumerate a particular subgraph. If the number of subgraphs

enumerated is considerably less than Number of Subgraphs per Nodes * Number of

Nodes, then increasing this number may be of value.

Finally, when all parameters have been set, the Find Motifs button will run the algorithm.
Once complete, a message will be displayed and (if supported) a web browser will be
opened displaying the results.

Page 11 of 25

3.2.7. Adjacency List to Dover Converter

It is also possible to convert a graph from an adjacency list to the Dover format. Here, use
the Open File button to select an adjacency list. Parameters are:

• Number of Nodes and Number of Edges specify the number of nodes and edge in the

adjacency list.

• Selecting Undirected or Directed specifies if the graph has directed or undirected edges.

Finally, when all parameters have been set, the Convert button will build the graph in Dover

format.

Page 12 of 25

3.2.8. Random Graph

The GUI allows the creation of a random graph. This can be useful when testing the system.
Use the Open File button to select a location to save the graph. The Number of Nodes and
Number of Edges parameters specify the number of nodes and edge in the new graph.
Checking the Simple Graph parameter will not create any parallel edges in the graph, while
checking Directed will create directed edges. Finally, when all parameters have been set,
the Create Random Graph button will build the random graph.

4. Underlying Data Structures

Standard object-oriented graph storage models cannot manage the size of data required in
this project. Informal testing of existing data structures (using the DisplayGraph package
integrated into this project) showed performance limited to less than 1,000,000 edges.

Hence, a more efficient storage mechanism is required. Java provides the ByteBuffer data
structure. Here, the number of bytes stored is specified by the programmer, and the can be
bytes directly accessed as various basic data types, such as bytes, chars, integers or longs.
Access to data is fast and the ByteBuffers can be stored and loaded from hard disk at high
speed. To store items such as nodes and edges, the items must be serialized and items
stored one after the other in the buffer. The disadvantages to ByteBuffers are two-fold: firstly,
time for implementation is greater as the representation of items in the ByteBuffers needs to
be carefully defined and access must be coded at a low level; secondly removing and
changing is difficult when using this serial representation.

We use 5 ByteBuffers to store information (Figure 1, below). These are for: nodes, edges,
node labels, edge labels, and connections. For Nodes and Edges, we interleave item
attributes through the ByteBuffer. Hence, each node takes 28 bytes, and each edge takes
20 bytes. ByteBuffers are limited in size to MAX_INT bytes, which is 2,147,483,647, This
indicates a top limit of approximately 76 million nodes and 100 million edges. We have not
explored this limit due to RAM limitations.

Whilst node and edges are fixed length, labels and connectivity information are variable
length.

Page 13 of 25

Node attributes are:

• The start of label information in the node label buffer and the number of chars

present

• Four attributes for connection information for nodes. This is also stored in edges, see

below. The redundancy here speeds up algorithms, as it means it is constant time

complexity to find a neighbour of a node. The connection buffer stores pairs: each

pair is the connecting edge index and the node at the other end of the edge: both are

stored for speed reasons. The connections into this node are stored first where this

node is node2 in an edge, followed by the connections out (where this node is node1

in an edge). To allow access to both of these lists separately, the node has a two

connection start attributes, and two degree attributes: in degree and out degree. Self-

sourcing edges appear in both lists.

• Weight, a user definable attribute

• Type, a user definable attribute

• Age, which has a particular use in behaviour graphs

Edge Attributes are

• Two nodes: node1 and node2, specifying the nodes at either end of the edge by their

indexes. We note that having node1 and node2 specified means the graph can be

seen as directed.

• The start of label information in the node label buffer and the number of chars

present

• Weight, a user definable attribute

• Type, a user definable attribute

• Age, which has a particular use in behaviour graphs

Creating the FastGraphs is via factory methods that create new graphs. The constructors
should not be used by application programmers. Use of the data structures is via accessor
methods, so no direct access to ByteBuffers by application programmers is required. Nodes
and edges are identified by integers, and getters are provided all attributes including labels.
Some editing of attributes by setters is provided, but this is limited to fixed length attributes.
To edit labels, nodes and edges, a new FastGraph must be created from the existing one,
which can be an expensive operation, hence if multiple edits are required, we advise
performing as many as possible at the same time. See the javadocs for the various methods
provided.

Page 14 of 25

Here is a code snippet to create a graph consisting of a triangle with 3 nodes and 3 edges,
and perform some simple operations:

 // define the nodes that will appear in the new graph
 LinkedList<NodeStructure> addNodes = new LinkedList<NodeStructure>();

 NodeStructure ns0 = new NodeStructure(0,"ns0", 1, (byte)1, (byte)0);

 NodeStructure ns1 = new NodeStructure(1,"ns1", 1, (byte)1, (byte)0);

 NodeStructure ns2 = new NodeStructure(2,"ns2", 1, (byte)0, (byte)0);

 addNodes.add(ns0);
 addNodes.add(ns1);

 addNodes.add(ns2);

 // define the edges that will appear in the new graph

 // the nodes must be defined first, as the last two arguments give the node indexes

 LinkedList<EdgeStructure> addEdges = new LinkedList<EdgeStructure>();
 EdgeStructure es0 = new EdgeStructure(0,"es0", 1, (byte)0, (byte)0, 0, 1);

 EdgeStructure es1 = new EdgeStructure(1,"es1", 2, (byte)0, (byte)0, 0, 2);

 EdgeStructure es2 = new EdgeStructure(2,"es2", 2, (byte)0, (byte)0, 1, 2);

 addEdges.add(es0);

 addEdges.add(es1);
 addEdges.add(es2);

 // use a factory to create the new graph

 FastGraph g = FastGraph.structureFactory("new graph",(byte)0,addNodes,addEdges,false);

 // iterate through all the nodes, and output the labels of those with type 1
 for(int n = 0; n < g.getNumberOfNodes(); n++) {

 if(g.getNodeType(n) == 1) {

 System.out.println(g.getNodeLabel(n));

 }

 }

 // iterate through all the edges, and output the labels of those with weight 2

 for(int e = 0; e < g.getNumberOfEdges(); e++) {

 if(g.getEdgeWeight(e) == 2) {

 System.out.println(g.getEdgeLabel(e));

 }
 }

The DisplayGraph package is included in the distribution. It allows visualization of small
graphs. The limit for comprehensible visualization is around 30 nodes. This command
creates a DisplayGraph:

 // visualize the graph. This creates a new DisplayGraph and window to show it in

 g.displayFastGraph();

Graphs can be saved and loaded. The default directory is data/ under the current working
directory, although other locations can be specified:

 // this will create a new directory if it does not already exist

 // It contains the ByteBuffers and information about the graph

 g.saveBuffers(null, "test");

 // This creates a new graph from the saved data

 FastGraph loadGraph = FastGraph.loadBuffersGraphFactory(null, "test");

Page 15 of 25

Figure 1: ByteBuffer Structure

Behaviour graphs, which model changes in data over time are implemented by the use of
the “age” attribute of nodes and edges and the introduction of time edges. Age 0 is assumed
to be the earliest generation, and age 0 is always the first generation in a behaviour graph.
To model nodes that persist into the next generation, they are connected to the
corresponding node in the previous generation by a “time edge”. These are edges with a
reserved type TIME, currently assigned 127. These edges are treated differently to normal
edges in the algorithms, as explained later. Each node and edge in the time slice is given an
age one greater than the previous – all nodes and edges in a time slice have the same age
attribute. Note that this is a misuse of the term age as the oldest items have age 0, and
those in later time slices have greater ages.

5. Fundamental Algorithms

These algorithms are utilized in the Graph Mining methods given in Section 6. All algorithms
assume an undirected graph.

Page 16 of 25

5.1. Graph Isomorphism

Graph Isomorphism is the topological equality of graphs. We implement a version that
requires the input graphs to be connected. The method first tests cheap inequality measures
in the graphs. If these pass then a brute force comparison is executed to see if there is a
mapping between all nodes.

The cheap tests initially performed (in order) are:

1. Node count – the number of nodes must be equal

2. Edge count – the number of edges must be equal

3. Node degree profile – the number of nodes with particular degree must be equal

4. Eigenvalue – the eigenvalues of the graphs must be equal

In terms of performance, for randomly generated graphs with equal nodes and edges, the
node degree profile filters most non-isomorphic graphs. The below table shows the number
of non-exponential tests carried out (nodes and edges were equal by generation, so are not
listed). Here “Isomorphic” (when the two graphs are equal) and “Fail by Brute Force” added
up form the number of times the exponential brute force algorithm is applied. The low
number for “Fail by Brute Force” is typical, as well over 99% of non-isomorphic graphs are
caught by the cheap tests in nearly all normal circumstances.

Nodes Edges Isomorphic Fail by
Degree
Profile

Fail by
Eigenvalue

Fail by
Brute
Force

Average
time per
test

4 3 61.7% 38.3% 0% 0% 9.4E-6s

5 6 26.3% 71% 2.6% 0% 1.85E-5s

6 9 7.9% 81.4% 10.7% 0% 2.32E-5s

7 12 1.2% 89.2% 9.6% 0% 2.69E-5s

8 16 0.07% 94.5% 5.4% 0% 3.17E-5s

The brute force method initially calculates the possible matches in the second graph for each
node in the first graph. This is the set of nodes in the second graph with the same degree as
the node in the first graph. An exponential time (on the number of nodes in the graph)
backtracking search is then performed, taking a node n1 from the first graph and attempting
to find a match from its matching set of nodes. For each node in the second graph, n2, the
neighbours of n1 and n2 must correspond. That is, if a node is a neighbour of n1 and it has
an assigned match in the other graph, the matching node must be a neighbour of n2.
Similarly for neighbours of n2. If a match is found, the next node in the first graph is checked
for possible matches. If no matches can be found for n1, backtracking occurs, and the last
previously matched node in the first graph is checked for other matches. The process ends
successfully when all nodes are assigned a match. A failure to find a solution occurs when
all possible node matches have been tried without success.

An example of use of the isomorphism algorithm is:

 FastGraph g1 = FastGraph.randomGraphFactory(10,20,1,true,false);

 FastGraph g2 = FastGraph.randomGraphFactory(10,20,2,true,false);

 ExactIsomorphism ei = new ExactIsomorphism(g1);

 boolean result = ei.isomorphic(g2);

Note that the ExactIsomorphism class is created with one of the graphs to be tested as a
parameter to the constructor. The class stores profiling information for this graph. Hence, if
one graph (g1) is to be tested against a number of other graphs, then there is a performance

Page 17 of 25

increase if an instance of the class is created once with g1 and the isomorphic(gX) method
called on the graphs to be tested against. The matching nodes can be found with
getLastMatch() which should only be called after isomorphic(gX) has been called. This
returns an integer array where the index are the nodes in the first graph and the value at a
index is the matching node in the second graph.

Subgraphs can be classified using a serialized form. The serialized forms are one way of
performing all of the cheap isomorphism tests given above as two serialized forms can be
directly compared. If they are different then the two graphs are not isomorphic. However,
note that if the serialized forms are the same, the two graphs may not necessarily be
isomorphic and a brute force check is still needed.

The serialized form is structured in the following way:

Nodes, Edges, Node Degree Profile, Eigenvalue, Relative Time Profile

For example, the graph above would be represented as:

4,3[0, 3, 0, 1][-1.732051, 0.0, 0.0, 1.732051][1,3]

In this case, the graph has 4 nodes, 3 edges and 0 nodes with 0 degree, 3 nodes with 1
degree, and so on. Then follows the eigenvalues for this graph, before the relative time
profile. In this case, there is 1 node at the lowest age value, with 3 nodes at the next one.
This allows graphs which span, say, ages 0 and 1, to have the same key as one that spans
2 and 3.

5.2. Subgraph Isomorphism

Subgraph isomorphism is the process of finding instances of a pattern graph in a target
graph. The algorithm is used for graph and behaviour matching, see Sections 6.1 and 6.2. It
is an NP-Complete problem, and so worst case solutions have exponential time complexity.

The method we use applies a brute force backtracking search to find all possible matches of
the pattern in the target. Initially, potential target node matches in the pattern graph are
identified. A node in the pattern graph is a potential match with a node in the target graph if
the pattern node has the same or less degree than the target node. A backtracking search is
then performed, taking a node np from the pattern and attempting to find a match from its
matching set of target nodes. For each node in the target, nt, the neighbours of np and nt
must correspond. That is, if a node is a neighbour of np and it has an assigned match in the
other graph, the matching node must be a neighbour of nt. Similarly for neighbours of nt. If a
match is found, the next node in the first graph is checked for possible matches. If no
matches can be found for np, backtracking occurs, and the last previously matched node in
the first graph is checked for other matches. If all nodes in the target are matched, the
matching nodes are stored and the process continues. The process ends when all nodes
have been tested.

Page 18 of 25

An example of use of the isomorphism algorithm where a pure topological search is made,
so that the nodes and edges are not restricted from matching any others in the target except
for topological matching is:

 FastGraph target = FastGraph.randomGraphFactory(40, 200, 999, true, false);

 FastGraph pattern = FastGraph.randomGraphFactory(10, 20, 1, true, false);

 ExactSubgraphIsomorphism esi = new ExactSubgraphIsomorphism(target,pattern,null, null);
 boolean result = esi.subgraphIsomorphismFinder();

 LinkedList<SubgraphMapping> mappings = esi.getFoundMappings();

Where SubgraphMapping is a class that holds single mapping from the target to the pattern.
getFoundMappings() should only be called after subgraphIsomorphismFinder() has been run.

Some timing information for randomly generated graphs for such unrestricted node and edge
matches is shown in the table below:

Pattern
Nodes

Pattern
Edges

Target
Nodes

Target
Edges

Matches
Found

Total Time

8 11 30 104 59654 1.31s

8 11 38 168 165882 18.8s

10 18 30 104 44 4.23s

10 18 38 168 1920 0.868s

12 21 30 104 10 0.03s

12 21 38 168 16004 3.05s

14 27 30 104 0 0.677s

14 27 38 168 5125 0.728s

The subgraph isomorphism constructor, ExactSubgraphIsomorphism, can be given node and
edge comparators. In the above the default comparators are used to allow nodes and edges
of any type and label to be matches (via null in the last two arguments). However, use of
comparators can greatly reduce the search required in the graph, permitting subgraph
isomorphisms to be found in very large graphs. If, for example, nodes are restricted to
matching nodes with the same label, using the SimpleNodeLabelComparator and similarly
SimpleNodeLabelComparator, then searching large graphs is feasible. Here we have a
particular pattern involving two named nodes. Where there are labels in the pattern, these
node and edge comparators only consider nodes and edges in the target with the same
name. Pattern nodes and edges without labels are free to match any node and edge in the
target.

Applying this to the 1.5 million node, 10 million edge graph derived from SNAP data [SNA16]
gives these results:

Pattern
Nodes

Pattern
Edges

Target
Nodes

Target
Edges

Matches
Found

Total Time

5 5 1500000 10000000 24 13.95s

Page 19 of 25

5.3. Graph Rewiring

Motif finding (Sections 6.3 and 6.4) requires a reference graph to test the data graph against.
The reference graph can be provided by the user, but in many cases such a reference graph
is not available. Hence a random graph needs to be generated. This is usually based on the
data graph. Typical approaches [WR06] attempt to keep similar characteristics of the data
graph whilst randomising the connectivity. We adapt this approach by rewriting the graph but
keeping the degree profile of the node set as it was in the original data graph. Rewiring is the
process of taking one end of an edge and assigning it to a different node. If another edge of
the newly assigned node is then removed to be reassigned elsewhere, the degree of the
node is maintained, whilst changing the connectivity of the graph. In one iteration, all edges
are rewired using this process, with the last rewiring move being to attach an edge to the first
node from which an edge was removed. The effect is to change the connectivity of the graph
radically, whilst maintaining the same number of nodes with a particular degree in the newly
rewired graph. We restrict an edge’s end point to moving just once in an iteration. The typical
effect is to change over 99% of the edge connectivity in the graph on a single iteration.

A reference graph for behaviour graphs is created by taking the zero generation of the data
graph, rewiring it, then creating new generations through a random node and edge
deletion/creation mechanism.

5.4. Graph Sampling

There are numerous methods for sampling subgraphs from a larger graph and many have
bias towards particular subgraphs. The method used is a neighbourhood sampling method
which randomly builds a subgraph in a combined depth and breadth approach.

The user must first define how many subgraphs per node are to be generated and the
number of attempts the system may take to build a subgraph.

The method takes each node in turn. From the node, a random neighbour is chosen and
added to the subgraph along with the starting node. From then, one of the nodes in the
subgraph is chosen at random and one of the neighbours of this node is chosen at random.
If there are no neighbours, or the chosen neighbour is already in the subgraph, then another
node and neighbour is picked at random instead. If the system continues to pick invalid
nodes, up to the limit defined by the user, then the subgraph is abandoned.

Once the required number of nodes have been added to the subgraph, then any edges
connecting these nodes are induced. This subgraph is now complete and stored for further
use.

Nodes Edges Subgraph
Size

Subgraphs
Per Node

Attempts Completion
Time (s)

Number of
subgraphs

1,500,000 10,000,000 4 5 10 56 7,500,000

1,500,000 10,000,000 8 5 10 123 7,499,353

5.5. Graph Edit Distance Approximation

Graph edit distance algorithms calculate the minimum number of changes required to one
graph so that it is isomorphic to the second. As the basis of an approximate motif finding
method, graph edit distance is suitable because it makes no assumptions about the
properties of the graphs. Whilst exact graph edit distance has an exponential time [ARR15]
complexity in the number of graph nodes, making it infeasible for larger graphs, inexact
graph edit distance sacrifices accuracy for speed, so is a viable option.

Alternative measures, such as Graph Hashing and Eigenvalues were rejected because the
output of these measures is not necessarily similar for similar graphs. Node and edge label

Page 20 of 25

comparison was considered too simplistic. Random walks and subtree matching were
examined, but they only have an indirect relevance to graph isomorphism and so their
conversion to a graph similarity measure for this project would have been too time
consuming.

Our approximation of graph edit distance is used to cluster motifs in the approximate motif
finder. The clustering method is described in Section 5.6. To determine the difference
between two graphs, one can use Graph Edit Distance. For performance reasons, in this
system, an approximation to that calculation is performed. The difference in node degree
profiles are compared to determine how “distant” one graph is to another. The node degree
profile is a count of the number of nodes with a particular degree.

In the above example, the node profiles are shown in the table below. These two graphs
have a difference of 6, and therefore unlikely to be assigned the same group.

Nodes with Degree 0 1 2 3

Graph 1 0 3 2 0

Graph 2 0 0 3 2

Difference 0 3 1 2 Total: 6

In another example, two graphs appear isomorphic, except one is connected by time edges.
This would be represented as follows:

Age 0 1

Nodes with Degree 0 1 2 0 1 2

Graph 1 0 0 4 0 0 0

Graph 2 0 2 0 0 2 0

Difference 0 2 4 0 2 0 Total: 8

For a 4-node subgraph, this approximation can complete just over 2million comparisons per
second.

A previous implementation of approximate graph edit distance, developed by integrating
code in the Graph Matching Toolkit was discarded as too slow for the size of data in this
project.

Sample code for running the comparison score is as follows:

 FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1");

 FastGraph g2 = FastGraph.loadBuffersGraphFactory(null, "g2");
 KMedoids km = new KMedoids(g1, 1, 1);

 double result = km.comparisonScore(g1, g2); //compare graphs

The result of the comparison is stored in result.

Page 21 of 25

If the graphs being compared have time edges dividing generations, then (a) the time edges
are not considered in the degree calculations and (b) the degree profiles are split into
generation degree profiles, rather than aggregated over the whole graph.

5.6. kkkk-medoids

k-medoids is a clustering method which assigns points to various groups based upon the
centre of that cluster. It is distinguished from many other clustering methods by not being
reliant on the data points having a position in metric space. Rather, it uses a distance
measure being applied to pairs of data points. When applied to the approximate motif
finding, the algorithm will determine which motifs belong into which clusters based on their
graph edit distance to the existing “central” motif (mediod). This process is iterative, with
group assignment followed by mediod discovery (where the most central motif in a group is
potentially re-assigned) repeated a number of times (specified by the user). For this project
the distance measure applied was the graph edit distance approximation described in
Section 5.5.

6. Graph Mining Methods

In this section we bring together the methods described in Section 5 into practical graph
mining techniques usable on large graphs. We describe both exact and approximate
variations of both graph matching and motif finding. We also show how these methods are
adapted for behaviour graphs, which represent changes to the data over time, as described
in Section 4.

6.1. Exact Structure/Behaviour Matching

The exact subgraph isomorphism algorithm determines all the subgraphs that exist with the
target graph that are isomorphic to the pattern graph, using the specified comparators. The
algorithm determines which nodes and edges are contained with the target graph and
returns a list of node mapping – i.e. which nodes in the target graph match to which nodes in
the pattern graph. From this, a subgraph can be built. Full details of the isomorphic algorithm
are in Section 5.2. The user may specify a comparator by labelling a node or edge, or by
writing a specific one for the user’s needs. This algorithm is efficient at discovering all
subgraphs where nodes are labelled, otherwise it can potentially return a large number of
matching subgraphs. In the example below, a 3-node 2-edge graph is designed with the end
nodes being Sean Dixon and Josie Abernathy. All 5 examples of this subgraph are found in
7 seconds, with one being shown below.

Nodes Edges Subgraphs Size Time (s) Results

2,700,000 11,200,000 3 nodes, 2 edges 7 5

Page 22 of 25

Example code for running the exact subgraph isomorphism algorithm is as follows:

 FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1"); //load graph 1

 FastGraph g2 = FastGraph.loadBuffersGraphFactory(null, "g2"); //load graph 2

 SimpleNodeLabelComparator snlc = new SimpleNodeLabelComparator(g1, g2);

 SimpleEdgeLabelComparator selc = new SimpleEdgeLabelComparator(g1, g2);

 ExactSubgraphIsomorphism esi = new ExactSubgraphIsomorphism(g1, g2, snlc, selc);

 boolean result = esi.subgraphIsomorphismFinder();

If the result were true, then use esi.getFoundMappings(); to return a
LinkedList<SubgraphMapping> which contains a list of all the found subgraphs.

Behaviour graphs, where time slices are are present, have time edges connecting the nodes
in adjacent generations (see Section 4). To find subgraphs in behaviour graphs, an edge
comparator is used (for example, TimeEdgeComparator) to ensure that time edges match with
only time edges and that non-time edges do not match with time edges.

6.2. Approximate Structure/Behaviour Matching

The approximate subgraph matching algorithm takes a sample of subgraphs from the target
set and compares them with the given pattern graph. The number of enumerated subgraphs
is specified by the user, along with the desired target graph. For each of these enumerated
subgraphs, the exact subgraph isomorphism algorithm is run (see above), with a label
comparator. This comparator may be changed by the user to a custom one written for the
user’s requirements (for example a comparator that ensures a particular edge is a time
edge). Once all subgraphs have been compared, the result are output. The approximate
subgraph isomorphism algorithm can run quicker than the exact version where a node will
have potential matches with a large number of target nodes. The approximate method is
also tuneable by specifying more or fewer sampled subgraphs.

Example code for running the approximate subgraph isomorphism algorithm is below:

 FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1");

 FastGraph g2 = FastGraph.loadBuffersGraphFactory(null, "g2");

 SimpleNodeLabelComparator snlc = new SimpleNodeLabelComparator(g1, g2);

 SimpleEdgeLabelComparator selc = new SimpleEdgeLabelComparator(g1, g2);

 ApproximateSubgraphIsomorphism asi = new ApproximateSubgraphIsomorphism(g1, g2, 4, 1,

snlc, selc);

 int count = asi.subgraphIsomorphismFinder();

As with the exact matching (Section 6.1), when behaviour graphs are the target graph the an
edge comparator such as TimeEdgeComparator can be used to ensure that time edges match
with only time edges and that non-time edges do not match with time edges.

6.3. Exact Motif Finding

Exact motif finding compares the occurrences of a particular motif in the dataset compared
to how often that motif would be expected under normal conditions. To generate a reference
graph for the normal conditions, the existing graph is rewired several times and subgraphs
are enumerated for each rewiring (or the user may specify a reference set). These motifs are
then grouped into particular classes, by using the serialized form defined in Section 5.2,
which distinguishes between topologically equal motifs that have different time slice
structure, so accounting for behaviour graphs. Each class may then contain several buckets,
each bucket holding isomorphic motifs. Once assigned, the only one example of each bucket
is saved along with a statistical analysis of the found motifs. This process repeats for each
required size of motif, and the rewired reference graphs are saved for future use.

Page 23 of 25

The process then repeats using the target graph. It follows a similar manner to the reference
set, in that a large number of motifs are found and classified. Unlike the reference set, the
user may choose to save every motif found and these are saved when discovered and
classified.

Once both the reference and target graphs have been analysed, the system then compares
the statistics for both sets. Motifs are ordered by their z-score, a measure of statistical
significance, and displayed in HTML format. This allows a user to view an example of each
motif type, along with various statistics. If the user requested the saving of all motifs, these
are also displayed in this output.

Nodes Edges Subgraphs
Tested

Size of
Motifs

Time Unique
Results

2,000 10,000 19,000 4 & 5 611s 389

1,500,000 10,000,000 15,000,000 7 & 8 ~15h 349,000

Example code for running the exact motif finder algorithm is as follows:

 FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1");
 int minNum = 4, maxNum = 6; //size of motifs

 ExactMotifFinder emf = new ExactMotifFinder(g1, new MotifTaskDummy(), false);

 emf.findMotifsReferenceSet(10,minNum,maxNum); //reference set

 emf.findMotifsRealSet(minNum,maxNum); //real set

 emf.compareMotifDatas(minNum,maxNum); //comparison

6.4. Approximate Motif Finding

The approximate motif finding algorithm using the k-medoids algorithm using an
approximation of graph edit distance as described in Section 5.6. A number of subgraphs
are enumerated for the various sizes of motifs required. These are then clustered by k-
medoids into groups. The groups are then output in HTML format, with every example of
motif in each group displayed. The runtime of this method can be compared to the exact
motif finder. While this approximate algorithm runs ten times faster, it assigns the motifs into
much broader groups. For behaviour graphs, the graph edit distance approximation is
modified as described in Section 5.5.

Nodes Edges Subgraphs
Tested

Size of
Motifs

Time Groups

2,000 10,000 19,000 4 & 5 67s 4

Example code for the running of the approximate motif finder algorithm is as follows:

 FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1");

 int minSize = 4, maxSize = 6;

 int numOfClusters = 4, iterations = 2;

 int subsPerNode = 5, attempts = 20;

 KMedoids km = new KMedoids(g1, numOfClusters, iterations);
 EnumerateSubgraphNeighbourhood esn = new EnumerateSubgraphNeighbourhood(g1);

 HashSet<FastGraph> subs = new HashSet<FastGraph>();

 for(int i = minSize; i <= maxSize; i++) {//build a list of potential subgraphs

 subs.addAll(esn.enumerateSubgraphs(i, subsPerNode, attempts));

 }

 ArrayList<FastGraph> subgraphs = new ArrayList<FastGraph>(subs);

 ArrayList<ArrayList<FastGraph>> clusters = km.cluster(subgraphs);

 km.saveClusters(clusters);

Page 24 of 25

7. Future Work

We note that an alternative ByteBuffer representation, where each item attribute is stored in
a separate ByteBuffer would increase the current limit on the number edges by a factor of
around 10, making billion edge graphs feasible. This might be considered a more flexible
and extendable representation, providing a mechanism to add new attributes by adding
further ByteBuffers. The downside of this representation is the need to manage a large
number of ByteBuffers. For further scalability, it would be entirely feasible to store attributes
across multiple ByteBuffers, perhaps by using a long integer identifier for items. Further
sophistication could make dynamic behaviour feasible, by e.g. modelling storage on
database heap files. At this point, one might make a strong engineering case to move to a
dedicated database storage mechanism. A simple database such as a key-value store (e.g.
redis) maps well to the current implementation. An Entity Relational database such as Gaffer
naturally stores graphs. Standard relational databases could be used, but we regard the
mapping from graph to tables as not particularly intuitive. We note that use of an external
database system would mean Dover was no longer a pure Java system, which may reduce
portability and adversely impact ease of integration with other systems. A reduction in
memory requirements may be achieved by efficient behaviour graph storage. At the moment
repeated nodes and edges are duplicated through multiple generations. Where the
behaviour graph does not have much variation between generations, a more compact
representation might be considered. This, however, has a significant impact on the algorithm
design.

Whilst it might be possible to convert to external systems for some of the functionality
discussed in this section, it would also be possible to extend the current system with
functionality. Extending the current system might be required where algorithms on large
graphs are being applied. Here the algorithms would be implemented within Dover for
greatest efficiency. However, for implementation speed, Dover could have integration
modules added to connect with other graph analysis, data extraction and visualisation tools,
such as Mamba,. This would allow the system to be combined with other products to
harness the benefits and specialities of each.

The isomorphism, sampling and graph edit distance algorithms are limited by the time
available for implementation and have been tuned to the particular applications. More
efficient and general algorithms are certainly possible and many variations are given in the
literature, such as for motifs: [SFS03], and for subgraph isomorphism: [FPV14]. A relatively
low cost improvement is to modify the current algorithms for directed graphs. Given the
underlying data representation already supports directed graphs, this would not be overly
problematic.

Significant work on network analytics for security in large network graphs has been
performed, looking, at, for example, malware detection in the cloud [CNW10]. It would be
possible to integrate such metrics, along with other graph characteristics such as graph
width, articulation points and measure of dynamic behaviour. In addition, the current Dover
system would have more effective analysis capability if greater graph querying were added,
for instance matching restrictions on number and type of neighbours and how they change
over time, definition of matching paths and path lengths, including discovery of connectivity
between nodes. Whilst these functions are present in other software systems. The benefit of
integration into Dover is that they would perform quickly in an environment that can be easily
installed on a secure, standalone machine.

Page 25 of 25

8. Conclusions

We have described open source Java graph mining software for motif finding and structure
discovery in graphs to fulfil Lot 5 of Data Analytics FY16/17. The work scales well beyond
the current state of the art in both of these tasks and we can demonstrate both motif finding
and structure discovery in graphs beyond the required minimum of 1 million nodes and 10
million edges. The project was exploratory in nature and the initial work here has the
potential to be built on further, as current software can be expanded, as well as integrated
with other systems. More details on the project and code can be found at:
https://www.cs.kent.ac.uk/projects/dover/

References

[ARR15] Z. Abu-Aisheh, R. Raveaux, J.Y. Ramel and P. Martineau. An Exact Graph Edit Distance Algorithm for
Solving Pattern Recognition Problems. In 4th International Conference on Pattern Recognition Applications and
Methods 2015.

[Bai09]. T.L. Bailey et. al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Research May
2009 doi: 10.1093/nar/gkp335

[CHC12] D. O'Callaghan, M. Harrigan, J. Carthy and P. Cunningham. Network analysis of Recurring YouYube
Spam Campaigns. arXiv preprint arXiv:1201.3783. 2012.

[CNW10] D.H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos, C. Polonium: Tera-scale Graph
Mining for Malware Detection. In 16

th
 ACM SIGKDD Conference on Knowledge Discovery and Data Mining.,

2010, July

[Coc10] https://www.biostars.org/p/1779/. Visited 2 September 2016.

[DM15] T. Davies, E. Marchione. Event Networks and the Identification of Crime Pattern Motifs. PLoS ONE
10(11): e0143638. doi:10.1371/journal.pone.0143638. 2015.

[FPV14] Pasquale Foggia, Gennaro Percannella, and Mario Vento. Graph matching and learning in pattern
recognition in the last 10 years. International Journal of Pattern Recognition and Artificial Intelligence 28(01).
2014.

[Fan12] W. Fan. Graph pattern matching revised for social network analysis. In Proceedings of the 15
th
 ACM

International Conference on Database Theory, pp. 8-21..

[SNA16] Stanford Large Graph Database. https://snap.stanford.edu/data/. Visited 1st September 2016.

[SFS03] M. De Santo, P. Foggia, C. Sansone and M. Vento, A Large Database of Graphs and its use for
Benchmarking Graph Isomorphism Algorithms, Pattern Recognition Letters, 24(8): 1067-1079, May 2003.
doi:10.1016/S0167-8655(02)00253-2.

 [WR06] S. Wernick and F. Rasche. FANMOD: a tool for fast network motif detection. Bioinformatics, 22(9):1152–
1153, 2006.

