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Abstract 

The Dover project addresses two related variants of graph mining. One is to look for 
subgraphs (or behaviours of interest) present in a target graph, which corresponds to the 
subgraph isomorphism problem. The other is to find motifs (over-represented subgraphs) in 
large graphs, which involves a number of algorithms, including graph isomorphism. The time 
complexity of algorithms to perform these isomorphisms means that exact solutions are 
infeasible in the general case. Hence, we provide algorithms to solve exact and approximate 
solutions to both of these variants. 

Subgraph isomorphism (finding pattern graphs in larger target graphs) finds significant 
practical application in pattern recognition where searching for matching subgraphs is used 
for Machine Learning. Various applications of motifs have been proposed, however the 
widest use is found in Bioinformatics where frequent graph searching algorithms look for 
occurrences of subgraphs that are greater than might be expected from chance. 

A principle focus of this work has been on scalability. The work targets graphs in excess of 
one million nodes and ten million edges. The implementation emphasises efficiency and we 
provide sample performance indicators for the implemented algorithms on both synthetic and 
real-world graphs. Dover is implemented in pure Java for ease of integration with other 
systems. 

 

1. Introduction 

This technical report is the final deliverable from the Dstl tender for Lot 5 of Data Analytics 
FY16/17, which ran October 2016 to April 2017. The bid document was titled “Scalable 
Subgraph Isomorphism” and the project completed by teams at the University of Kent and 
Roke Manor Research Limited. The result of the work is open source software and data, 
which we call “Dover”. The project tackled two related but separate tasks in Graph Mining: 
firstly, finding motifs in graphs and secondly finding structures of interest in graphs. The 
principle challenge was in the size of data, with a specified minimum 1 million nodes and 10 
million edges. This is significantly larger than addressed by previous systems [Coc10]. Our 
solution to this scaling problem is efficient implementation of approximate solutions, so that 
by restricting search we can get some, but not all structures of interest and by sampling the 
graph we can get a representative indication of motifs. As we discuss below, we show 
capability significantly beyond the required size. Another aspect to the project was that of 
dealing with behaviour graphs, that is graphs that show change over time. Our methods 
were firstly implemented over standard graphs, then behaviour graph functionality was 
added. 

Subgraph isomorphism finds significant practical application in pattern recognition [FPV14] 
where searching for matching subgraphs is used for Machine Learning and image 
recognition. Motif finding is most often found in analysis of bioinformatics data [Bai09] where 
frequent graph mining is the process of discovering motifs, or occurrences of subgraphs that 
are overrepresented in the graph. Motifs have been applied to crime pattern analysis 
[DM15], YouTube spamming [CHC12] and social networks [Fan12]. 

This document includes sample profiling data, all such data was run on Java 8, jre 1.8.0_91 
on Windows 10. The hardware was a Dell XPS i7 6700HQ with 32GB RAM and a 1TB SSD. 

Throughout this document we outline code snippets and examples to ease use, further 
integration and development. Section 2 describes the software system and installation 
details. Section 3 gives a user guide to both the graphical interface and command line 
functions. Section 4 details the underlying data structures used. Section 5 describes the 
fundamental algorithms implemented. The description of how these are used in various 
graph mining methods is given in Section 5. 
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2. Software Access and Installation 

The software is implemented in Java 8, jre 1.8.0_91, compiled using Eclipse Neon.1a (4.6.1) 
on Windows 10. Whilst we expect the code to be portable, no rigorous testing beyond these 
specifications has been performed. All code written for this project is released under GPL 3. 
All external libraries and code is under GPL or less restrictive open source licence. 

Git repository: https://github.com/peterrodgers/dover.git 

Get a copy of the code via:  

git clone https://github.com/peterrodgers/dover.git 

The DisplayGraph source code is packaged with the dover code. The following libraries are 
included in the repository and their jars should be added in Eclipse via Project Properties 
-> Java Build Path -> Libraries: 

• commons-cli 

• Jama 

• jsoup 

Sample data can be downloaded from https://www.cs.kent.ac.uk/projects/dover/ 

Create a jar file via: buildjar.bat found in the top level directory. 

Create the javadocs via: document.bat found in the top level directory. 

 

3. User Guide 

To install Dover, download dover.jar. There are two interfaces to the system, command line 
and GUI. 

 

3.1. Command Line 

There is a command line interface to Dover. It does not provide as much visual feedback as 
the GUI, but still allows most of the functionality to be performed. 

It is strongly recommended that you allow the JVM to have access more RAM when running 
Dover. For example, if you are running on a 16GB RAM we recommend a command of the 
type: java -Xmx14g -jar dover.jar. This amount will vary depending on the amount of RAM 
available to you. As the -Xmx value is system dependent, it is not shown in the below 
examples. 

It is also possible to view a manual page: java -jar dover.jar -h. Specifying no Dover 
parameters will instead load the GUI, e.g. java -Xmx14g -jar dover.jar. This is a useful 
way to load the GUI with specific JVM options. 

3.1.1. Exact Subgraph Isomorphism 

To run the exact subgraph isomorphism algorithm, use the following parameters: 

-s <arg> Runs the subgraph isomorphism algorithm. Specifies the location of the 

target graph. 

-p <arg> Specifies the location of the pattern graph. 

For example: java -jar dover.jar -s targetgraph -p patterngraph 
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3.1.2. Approximate Subgraph Isomorphism 

To run the approximate subgraph isomorphism algorithm, use the following parameters: 

-S <arg> Runs the approximate subgraph isomorphism algorithm. Specifies the 

location of the target graph. 

-p <arg> Specifies the location of the pattern graph. 

-n <arg> Specifies the number of nodes in the enumerated subgraphs. A larger 

number will allow more matches, but increases the runtime. 

--subspernode <arg> 

 Specifies the number of subgraphs enumerated per node. This will 

define the number of subgraphs tested based on the number of nodes in 

the target graph. 

For example: java -jar dover.jar -S targetgraph -p patterngraph -n 5 --subspernode 5 

 

3.1.3. Exact Motif Finding 

To run the exact motif finder, use the following parameters: 

-m <arg> Runs the exact motif finding algorithm. Specifies the location 

of the target graph. 

--minsize <arg> Specifies the minimum size of motifs to be found. 

--maxsize <arg> Specifies the maximum size of motifs to be found. 

--saveall Optional. Specifies is every example of a motif is to be 

found. Warning: This can take considerable time and disk 

space. 

For example: java -jar dover.jar -m targetgraph --minsize 4 --maxsize 5 or java -jar 
dover.jar -m targetgraph --minsize 4 --maxsize 5 --saveall 

 

3.1.4. Approximate Motif Finding 

To run the approximate motif finder, use the following parameters: 

-M <arg> Runs the approximate motif finding algorithm. Specifies the 

location of the target graph. 

--minsize <arg> Specifies the minimum size of motifs to be found. 

--maxsize <arg> Specifies the maximum size of motifs to be found. 

--subspernode <arg> Specifies the number of subgraphs enumerated per node. This 

will define the number of subgraphs tested based on the number 

of nodes in the target graph. 

--attempts <arg> Specifies the number of attempts to enumerate a subgraph. 20 

is normally sensible for subgraphs of size < 8. 

--clusters <arg> Specifies the number of clusters to group motifs into. 

--iterations <arg> Specifies the number of iterations to run kMedoids for. 

Increasing this number will increase the runtime. 

For example: java -jar dover.jar -M targetgraph --minsize 4 --maxsize 5 --
subspernode 5 --attempts 20 --clusters 5 --iterations 2 

3.1.5. Adjacency List to Dover Converter 

To run the converter, use the following parameters: 

-c <arg> Runs the converter. Specifies the location of the adjacency list. 

-n <arg> Specifies the number of nodes in the graph. 

-e <arg> Specified the number of edges in the graph 

-d Optional. Indicates if the graph is directed. 

For example: java -jar dover.jar -c adjlist.adj -n 30 -e 40 
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3.2. Graphical User Interface 

 

3.2.1. Selecting a Target Graph 

Select a target graph by clicking Open File in the target graph panel. This will allow a 
directory to be selected contain the various buffers and .info file. This graph can be cleared 
by clicking Clear Selection. 

It is possible to Create and Edit a target graph. Editing a graph is inadvisable if the graph 
contains more than around 30 nodes. Creating and editing a graph uses the Graph Editor. 
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3.2.2. Graph Editor 

The graph editor allows the modification or creation of graphs. Double click to create a node, 
and right-click and drag to create an edge between nodes. Double left clicking on a node or 
edge will display an editor box - this can be used to specify a label of a node or edge, along 
with an age. It is also possible to change the type of an edge to timeEdge if you wish to 
perform analysis on behaviour graphs. 

Under the File menu, there is an option to save this graph, as well as two variations of a 
spring embedder to automatically draw the graph (one is animated, the other is not). This 
layout method aims to display the various time slices (if relevant) in a sensible manner. 
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3.2.3. Exact Subgraph Isomorphism 

To run the exact subgraph isomorphism algorithm, navigate to the Exact Subgraph tab. 
Here, use the Open File button to select a pattern graph. As with the target graph, it is 
possible to Create or Edit a pattern graph. Once complete, click Find subgraphs and the 
algorithm will run. When complete, a message will be displayed to the user. 
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3.2.4. Approximate Subgraph Isomorphism 

To run the approximate subgraph isomorphism algorithm, navigate to the Approx Subgraph 
tab. Here, use the Open File button to select a pattern graph. As with the target graph, it is 
possible to Create or Edit a pattern graph. 

There are a number of tuning parameters for this algorithm. 

• The Number of Nodes in Subgraphs parameter specifies the number of nodes in the 

enumerated subgraphs. A larger number will potentially allow more matches, but increases 

the runtime. This must be a positive integer. 

• The Number of Subgraphs per Nodes parameter specifies the number of subgraphs 

enumerated per node. This will define the number of subgraphs tested based on the number 

of nodes in the target graph. 

Once complete, click Find subgraphs and the algorithm will run. When complete, a 
message will be displayed to the user. 
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3.2.5. Exact Motif Finder 

To run the exact motif finder algorithm, navigate to the Exact Motif tab. 

There are a number of tuning parameters for this algorithm: 

• The Min Size and Max Size parameters specify the sizes of the motifs to find - these 

numbers are inclusive. 

• The Save all motifs options allows the user to save every example of the found motifs. 

Beware that this adds considerable time to the running of the algorithm (especially when 

not using an SSD) and can occupy large amounts of disk space. 

• It is also possible to specify a particular reference set to use in comparison the the target 

graph. This can be set using the Open File button, and is optional. If the user does not 

specify a reference set, the target graph will be rewired several times to use instead. 

Finally, when all parameters have been set, the Find Motifs button will run the algorithm. 
This process can take a considerable amount of time, so two progress bars provide updates 
to the user. Once complete, a message will be displayed and (if supported) a web browser 
will be opened displaying the results. 
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3.2.6. Approximate Motif Finder 

To run the approximate motif finder algorithm, navigate to the Approx Motif tab. 

There are a number of tuning parameters for this algorithm: 

• The Min Size and Max Size parameters specify the sizes of the motifs to find - these 

numbers are inclusive. 

• The Clusters parameter specifies how many groups the found motifs will be assigned to. The 

more groups, the increased likelihood that wildly differing graphs will be stored separately. 

However, a number of these groups may be empty.  

• The Iterations parameter specifies the number of times the reassignment of motifs will be 

completed. It is advisable to use a number greater than 1, but each increasing the number of 

iterations will increase the runtime of the algorithm. 

• The Number of Subgraphs per Nodes parameter specifies the number of subgraphs 

enumerated per node. This will define the number of subgraphs tested based on the number 

of nodes in the target graph. 

• The Attempts to find subgraphs parameter has a default value of 20. This determines how 

many attempts will be run to enumerate a particular subgraph. If the number of subgraphs 

enumerated is considerably less than Number of Subgraphs per Nodes * Number of 

Nodes, then increasing this number may be of value. 

Finally, when all parameters have been set, the Find Motifs button will run the algorithm. 
Once complete, a message will be displayed and (if supported) a web browser will be 
opened displaying the results. 
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3.2.7. Adjacency List to Dover Converter 

It is also possible to convert a graph from an adjacency list to the Dover format. Here, use 
the Open File button to select an adjacency list. Parameters are: 

• Number of Nodes and Number of Edges specify the number of nodes and edge in the 

adjacency list. 

• Selecting Undirected or Directed specifies if the graph has directed or undirected edges. 

Finally, when all parameters have been set, the Convert button will build the graph in Dover 

format. 
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3.2.8. Random Graph 

The GUI allows the creation of a random graph. This can be useful when testing the system. 
Use the Open File button to select a location to save the graph. The Number of Nodes and 
Number of Edges parameters specify the number of nodes and edge in the new graph. 
Checking the Simple Graph parameter will not create any parallel edges in the graph, while 
checking Directed will create directed edges. Finally, when all parameters have been set, 
the Create Random Graph button will build the random graph. 

 

 

4. Underlying Data Structures 

Standard object-oriented graph storage models cannot manage the size of data required in 
this project. Informal testing of existing data structures (using the DisplayGraph package 
integrated into this project) showed performance limited to less than 1,000,000 edges.  

Hence, a more efficient storage mechanism is required. Java provides the ByteBuffer data 
structure. Here, the number of bytes stored is specified by the programmer, and the can be 
bytes directly accessed as various basic data types, such as bytes, chars, integers or longs. 
Access to data is fast and the ByteBuffers can be stored and loaded from hard disk at high 
speed. To store items such as nodes and edges, the items must be serialized and items 
stored one after the other in the buffer. The disadvantages to ByteBuffers are two-fold: firstly, 
time for implementation is greater as the representation of items in the ByteBuffers needs to 
be carefully defined and access must be coded at a low level; secondly removing and 
changing is difficult when using this serial representation. 

We use 5 ByteBuffers to store information (Figure 1, below). These are for: nodes, edges, 
node labels, edge labels, and connections. For Nodes and Edges, we interleave item 
attributes through the ByteBuffer. Hence, each node takes 28 bytes, and each edge takes 
20 bytes. ByteBuffers are limited in size to MAX_INT bytes, which is 2,147,483,647, This 
indicates a top limit of approximately 76 million nodes and 100 million edges. We have not 
explored this limit due to RAM limitations. 

Whilst node and edges are fixed length, labels and connectivity information are variable 
length. 
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Node attributes are: 

• The start of label information in the node label buffer and the number of chars 

present 

• Four attributes for connection information for nodes. This is also stored in edges, see 

below. The redundancy here speeds up algorithms, as it means it is constant time 

complexity to find a neighbour of a node. The connection buffer stores pairs: each 

pair is the connecting edge index and the node at the other end of the edge: both are 

stored for speed reasons. The connections into this node are stored first where this 

node is node2 in an edge, followed by the connections out (where this node is node1 

in an edge). To allow access to both of these lists separately, the node has a two 

connection start attributes, and two degree attributes: in degree and out degree. Self-

sourcing edges appear in both lists. 

• Weight, a user definable attribute 

• Type, a user definable attribute 

• Age, which has a particular use in behaviour graphs 

Edge Attributes are 

• Two nodes: node1 and node2, specifying the nodes at either end of the edge by their 

indexes. We note that having node1 and node2 specified means the graph can be 

seen as directed. 

• The start of label information in the node label buffer and the number of chars 

present 

• Weight, a user definable attribute 

• Type, a user definable attribute 

• Age, which has a particular use in behaviour graphs 

Creating the FastGraphs is via factory methods that create new graphs. The constructors 
should not be used by application programmers. Use of the data structures is via accessor 
methods, so no direct access to ByteBuffers by application programmers is required. Nodes 
and edges are identified by integers, and getters are provided all attributes including labels. 
Some editing of attributes by setters is provided, but this is limited to fixed length attributes. 
To edit labels, nodes and edges, a new FastGraph must be created from the existing one, 
which can be an expensive operation, hence if multiple edits are required, we advise 
performing as many as possible at the same time. See the javadocs for the various methods 
provided. 
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Here is a code snippet to create a graph consisting of a triangle with 3 nodes and 3 edges, 
and perform some simple operations: 

 

  // define the nodes that will appear in the new graph 
  LinkedList<NodeStructure> addNodes = new LinkedList<NodeStructure>(); 

  NodeStructure ns0 = new NodeStructure(0,"ns0", 1, (byte)1, (byte)0); 

  NodeStructure ns1 = new NodeStructure(1,"ns1", 1, (byte)1, (byte)0); 

  NodeStructure ns2 = new NodeStructure(2,"ns2", 1, (byte)0, (byte)0); 

  addNodes.add(ns0); 
  addNodes.add(ns1); 

  addNodes.add(ns2); 

   

  // define the edges that will appear in the new graph 

  // the nodes must be defined first, as the last two arguments give the node indexes 

  LinkedList<EdgeStructure> addEdges = new LinkedList<EdgeStructure>(); 
  EdgeStructure es0 = new EdgeStructure(0,"es0", 1, (byte)0, (byte)0, 0, 1); 

  EdgeStructure es1 = new EdgeStructure(1,"es1", 2, (byte)0, (byte)0, 0, 2); 

  EdgeStructure es2 = new EdgeStructure(2,"es2", 2, (byte)0, (byte)0, 1, 2); 

  addEdges.add(es0); 

  addEdges.add(es1); 
  addEdges.add(es2); 

   

  // use a factory to create the new graph 

  FastGraph g = FastGraph.structureFactory("new graph",(byte)0,addNodes,addEdges,false); 

 

  // iterate through all the nodes, and output the labels of those with type 1 
  for(int n = 0; n < g.getNumberOfNodes(); n++) { 

   if(g.getNodeType(n) == 1) { 

    System.out.println(g.getNodeLabel(n)); 

   } 

  } 
 

  // iterate through all the edges, and output the labels of those with weight 2 

  for(int e = 0; e < g.getNumberOfEdges(); e++) { 

   if(g.getEdgeWeight(e) == 2) { 

    System.out.println(g.getEdgeLabel(e)); 

   } 
  } 

 

The DisplayGraph package is included in the distribution. It allows visualization of small 
graphs. The limit for comprehensible visualization is around 30 nodes. This command 
creates a DisplayGraph: 

  // visualize the graph. This creates a new DisplayGraph and window to show it in 

  g.displayFastGraph(); 

 

Graphs can be saved and loaded. The default directory is data/ under the current working 
directory, although other locations can be specified: 

  // this will create a new directory if it does not already exist 

  // It contains the ByteBuffers and information about the graph 

  g.saveBuffers(null, "test"); 

   

  // This creates a new graph from the saved data 

  FastGraph loadGraph = FastGraph.loadBuffersGraphFactory(null, "test"); 
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Figure 1: ByteBuffer Structure 

 

Behaviour graphs, which model changes in data over time are implemented by the use of 
the “age” attribute of nodes and edges and the introduction of time edges. Age 0 is assumed 
to be the earliest generation, and age 0 is always the first generation in a behaviour graph. 
To model nodes that persist into the next generation, they are connected to the 
corresponding node in the previous generation by a “time edge”. These are edges with a 
reserved type TIME, currently assigned 127. These edges are treated differently to normal 
edges in the algorithms, as explained later. Each node and edge in the time slice is given an 
age one greater than the previous – all nodes and edges in a time slice have the same age 
attribute. Note that this is a misuse of the term age as the oldest items have age 0, and 
those in later time slices have greater ages. 

 

5. Fundamental Algorithms 

These algorithms are utilized in the Graph Mining methods given in Section 6. All algorithms 
assume an undirected graph. 
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5.1. Graph Isomorphism 

Graph Isomorphism is the topological equality of graphs. We implement a version that 
requires the input graphs to be connected. The method first tests cheap inequality measures 
in the graphs. If these pass then a brute force comparison is executed to see if there is a 
mapping between all nodes. 

The cheap tests initially performed (in order) are: 

1. Node count – the number of nodes must be equal 

2. Edge count – the number of edges must be equal 

3. Node degree profile – the number of nodes with particular degree must be equal 

4. Eigenvalue – the eigenvalues of the graphs must be equal 

In terms of performance, for randomly generated graphs with equal nodes and edges, the 
node degree profile filters most non-isomorphic graphs. The below table shows the number 
of non-exponential tests carried out (nodes and edges were equal by generation, so are not 
listed). Here “Isomorphic” (when the two graphs are equal) and “Fail by Brute Force” added 
up form the number of times the exponential brute force algorithm is applied. The low 
number for “Fail by Brute Force” is typical, as well over 99% of non-isomorphic graphs are 
caught by the cheap tests in nearly all normal circumstances. 

Nodes Edges Isomorphic Fail by 
Degree 
Profile 

Fail by 
Eigenvalue 

Fail by 
Brute 
Force 

Average 
time per 
test 

4 3 61.7% 38.3% 0% 0% 9.4E-6s 

5 6 26.3% 71% 2.6% 0% 1.85E-5s 

6 9 7.9% 81.4% 10.7% 0% 2.32E-5s 

7 12 1.2% 89.2% 9.6% 0% 2.69E-5s 

8 16 0.07% 94.5% 5.4% 0% 3.17E-5s 

 

The brute force method initially calculates the possible matches in the second graph for each 
node in the first graph. This is the set of nodes in the second graph with the same degree as 
the node in the first graph. An exponential time (on the number of nodes in the graph) 
backtracking search is then performed, taking a node n1 from the first graph and attempting 
to find a match from its matching set of nodes. For each node in the second graph, n2, the 
neighbours of n1 and n2 must correspond. That is, if a node is a neighbour of n1 and it has 
an assigned match in the other graph, the matching node must be a neighbour of n2. 
Similarly for neighbours of n2. If a match is found, the next node in the first graph is checked 
for possible matches. If no matches can be found for n1, backtracking occurs, and the last 
previously matched node in the first graph is checked for other matches. The process ends 
successfully when all nodes are assigned a match. A failure to find a solution occurs when 
all possible node matches have been tried without success. 

An example of use of the isomorphism algorithm is: 

   FastGraph g1 = FastGraph.randomGraphFactory(10,20,1,true,false); 

   FastGraph g2 = FastGraph.randomGraphFactory(10,20,2,true,false); 

   ExactIsomorphism ei = new ExactIsomorphism(g1); 

   boolean result = ei.isomorphic(g2); 

 

Note that the ExactIsomorphism class is created with one of the graphs to be tested as a 
parameter to the constructor. The class stores profiling information for this graph. Hence, if 
one graph (g1) is to be tested against a number of other graphs, then there is a performance 



Page 17 of 25 
 

increase if an instance of the class is created once with g1 and the isomorphic(gX) method 
called on the graphs to be tested against. The matching nodes can be found with 
getLastMatch() which should only be called after isomorphic(gX) has been called. This 
returns an integer array where the index are the nodes in the first graph and the value at a 
index is the matching node in the second graph. 

 

Subgraphs can be classified using a serialized form. The serialized forms are one way of 
performing all of the cheap isomorphism tests given above as two serialized forms can be 
directly compared. If they are different then the two graphs are not isomorphic. However, 
note that if the serialized forms are the same, the two graphs may not necessarily be 
isomorphic and a brute force check is still needed.  

The serialized form is structured in the following way: 

Nodes, Edges, Node Degree Profile, Eigenvalue, Relative Time Profile 

For example, the graph above would be represented as: 

4,3[0, 3, 0, 1][-1.732051, 0.0, 0.0, 1.732051][1,3] 

In this case, the graph has 4 nodes, 3 edges and 0 nodes with 0 degree, 3 nodes with 1 
degree, and so on. Then follows the eigenvalues for this graph, before the relative time 
profile. In this case, there is 1 node at the lowest age value, with 3 nodes at the next one. 
This allows graphs which span, say, ages 0 and 1, to have the same key as one that spans 
2 and 3. 

 

5.2. Subgraph Isomorphism 

Subgraph isomorphism is the process of finding instances of a pattern graph in a target 
graph. The algorithm is used for graph and behaviour matching, see Sections 6.1 and 6.2. It 
is an NP-Complete problem, and so worst case solutions have exponential time complexity. 

The method we use applies a brute force backtracking search to find all possible matches of 
the pattern in the target. Initially, potential target node matches in the pattern graph are 
identified. A node in the pattern graph is a potential match with a node in the target graph if 
the pattern node has the same or less degree than the target node. A backtracking search is 
then performed, taking a node np from the pattern and attempting to find a match from its 
matching set of target nodes. For each node in the target, nt, the neighbours of np and nt 
must correspond. That is, if a node is a neighbour of np and it has an assigned match in the 
other graph, the matching node must be a neighbour of nt. Similarly for neighbours of nt. If a 
match is found, the next node in the first graph is checked for possible matches. If no 
matches can be found for np, backtracking occurs, and the last previously matched node in 
the first graph is checked for other matches. If all nodes in the target are matched, the 
matching nodes are stored and the process continues. The process ends when all nodes 
have been tested. 
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An example of use of the isomorphism algorithm where a pure topological search is made, 
so that the nodes and edges are not restricted from matching any others in the target except 
for topological matching is: 

 FastGraph target = FastGraph.randomGraphFactory(40, 200, 999, true, false); 

 FastGraph pattern = FastGraph.randomGraphFactory(10, 20, 1, true, false); 

 ExactSubgraphIsomorphism esi = new ExactSubgraphIsomorphism(target,pattern,null, null); 
 boolean result = esi.subgraphIsomorphismFinder(); 

 LinkedList<SubgraphMapping> mappings = esi.getFoundMappings(); 

  

Where SubgraphMapping is a class that holds single mapping from the target to the pattern. 
getFoundMappings() should only be called after subgraphIsomorphismFinder() has been run. 

Some timing information for randomly generated graphs for such unrestricted node and edge 
matches is shown in the table below: 

Pattern 
Nodes 

Pattern 
Edges 

Target 
Nodes 

Target 
Edges 

Matches 
Found 

Total Time 

8 11 30 104 59654 1.31s 

8 11 38 168 165882 18.8s 

10 18 30 104 44 4.23s 

10 18 38 168 1920 0.868s 

12 21 30 104 10 0.03s 

12 21 38 168 16004 3.05s 

14 27 30 104 0 0.677s 

14 27 38 168 5125 0.728s 

 

The subgraph isomorphism constructor, ExactSubgraphIsomorphism, can be given node and 
edge comparators. In the above the default comparators are used to allow nodes and edges 
of any type and label to be matches (via null in the last two arguments). However, use of 
comparators can greatly reduce the search required in the graph, permitting subgraph 
isomorphisms to be found in very large graphs. If, for example, nodes are restricted to 
matching nodes with the same label, using the SimpleNodeLabelComparator and similarly 
SimpleNodeLabelComparator, then searching large graphs is feasible. Here we have a 
particular pattern involving two named nodes. Where there are labels in the pattern, these 
node and edge comparators only consider nodes and edges in the target with the same 
name. Pattern nodes and edges without labels are free to match any node and edge in the 
target. 

 

Applying this to the 1.5 million node, 10 million edge graph derived from SNAP data [SNA16] 
gives these results: 

 

Pattern 
Nodes 

Pattern 
Edges 

Target 
Nodes 

Target 
Edges 

Matches 
Found 

Total Time 

5 5 1500000 10000000 24 13.95s 
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5.3. Graph Rewiring 

Motif finding (Sections 6.3 and 6.4) requires a reference graph to test the data graph against. 
The reference graph can be provided by the user, but in many cases such a reference graph 
is not available. Hence a random graph needs to be generated. This is usually based on the 
data graph. Typical approaches [WR06] attempt to keep similar characteristics of the data 
graph whilst randomising the connectivity. We adapt this approach by rewriting the graph but 
keeping the degree profile of the node set as it was in the original data graph. Rewiring is the 
process of taking one end of an edge and assigning it to a different node. If another edge of 
the newly assigned node is then removed to be reassigned elsewhere, the degree of the 
node is maintained, whilst changing the connectivity of the graph. In one iteration, all edges 
are rewired using this process, with the last rewiring move being to attach an edge to the first 
node from which an edge was removed. The effect is to change the connectivity of the graph 
radically, whilst maintaining the same number of nodes with a particular degree in the newly 
rewired graph. We restrict an edge’s end point to moving just once in an iteration. The typical 
effect is to change over 99% of the edge connectivity in the graph on a single iteration. 

A reference graph for behaviour graphs is created by taking the zero generation of the data 
graph, rewiring it, then creating new generations through a random node and edge 
deletion/creation mechanism. 

 

5.4. Graph Sampling 

There are numerous methods for sampling subgraphs from a larger graph and many have 
bias towards particular subgraphs. The method used is a neighbourhood sampling method 
which randomly builds a subgraph in a combined depth and breadth approach. 

The user must first define how many subgraphs per node are to be generated and the 
number of attempts the system may take to build a subgraph. 

The method takes each node in turn. From the node, a random neighbour is chosen and 
added to the subgraph along with the starting node. From then, one of the nodes in the 
subgraph is chosen at random and one of the neighbours of this node is chosen at random. 
If there are no neighbours, or the chosen neighbour is already in the subgraph, then another 
node and neighbour is picked at random instead. If the system continues to pick invalid 
nodes, up to the limit defined by the user, then the subgraph is abandoned. 

Once the required number of nodes have been added to the subgraph, then any edges 
connecting these nodes are induced. This subgraph is now complete and stored for further 
use. 

Nodes Edges Subgraph 
Size 

Subgraphs 
Per Node 

Attempts Completion 
Time (s) 

Number of 
subgraphs 

1,500,000 10,000,000 4 5 10 56 7,500,000 

1,500,000 10,000,000 8 5 10 123 7,499,353 

 

5.5. Graph Edit Distance Approximation 

Graph edit distance algorithms calculate the minimum number of changes required to one 
graph so that it is isomorphic to the second. As the basis of an approximate motif finding 
method, graph edit distance is suitable because it makes no assumptions about the 
properties of the graphs. Whilst exact graph edit distance has an exponential time [ARR15] 
complexity in the number of graph nodes, making it infeasible for larger graphs, inexact 
graph edit distance sacrifices accuracy for speed, so is a viable option. 

Alternative measures, such as Graph Hashing and Eigenvalues were rejected because the 
output of these measures is not necessarily similar for similar graphs. Node and edge label 
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comparison was considered too simplistic. Random walks and subtree matching were 
examined, but they only have an indirect relevance to graph isomorphism and so their 
conversion to a graph similarity measure for this project would have been too time 
consuming. 

Our approximation of graph edit distance is used to cluster motifs in the approximate motif 
finder. The clustering method is described in Section 5.6. To determine the difference 
between two graphs, one can use Graph Edit Distance. For performance reasons, in this 
system, an approximation to that calculation is performed. The difference in node degree 
profiles are compared to determine how “distant” one graph is to another. The node degree 
profile is a count of the number of nodes with a particular degree.  

             

In the above example, the node profiles are shown in the table below. These two graphs 
have a difference of 6, and therefore unlikely to be assigned the same group. 

Nodes with Degree 0 1 2 3 

Graph 1 0 3 2 0 

Graph 2 0 0 3 2 

Difference 0 3 1 2 Total: 6 

 

             

In another example, two graphs appear isomorphic, except one is connected by time edges. 
This would be represented as follows: 

Age 0 1 

Nodes with Degree 0 1 2 0 1 2 

Graph 1 0 0 4 0 0 0 

Graph 2 0 2 0 0 2 0 

Difference 0 2 4 0 2 0 Total: 8 

 

For a 4-node subgraph, this approximation can complete just over 2million comparisons per 
second. 

A previous implementation of approximate graph edit distance, developed by integrating 
code in the Graph Matching Toolkit was discarded as too slow for the size of data in this 
project. 

Sample code for running the comparison score is as follows: 

  FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1"); 

  FastGraph g2 = FastGraph.loadBuffersGraphFactory(null, "g2"); 
  KMedoids km = new KMedoids(g1, 1, 1);  

  double result = km.comparisonScore(g1, g2); //compare graphs 

The result of the comparison is stored in result. 
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If the graphs being compared have time edges dividing generations, then (a) the time edges 
are not considered in the degree calculations and (b) the degree profiles are split into 
generation degree profiles, rather than aggregated over the whole graph. 

 

5.6. kkkk-medoids 

k-medoids is a clustering method which assigns points to various groups based upon the 
centre of that cluster. It is distinguished from many other clustering methods by not being 
reliant on the data points having a position in metric space. Rather, it uses a distance 
measure being applied to pairs of data points. When applied to the approximate motif 
finding, the algorithm will determine which motifs belong into which clusters based on their 
graph edit distance to the existing “central” motif (mediod). This process is iterative, with 
group assignment followed by mediod discovery (where the most central motif in a group is 
potentially re-assigned) repeated a number of times (specified by the user). For this project 
the distance measure applied was the graph edit distance approximation described in 
Section 5.5. 

 

6. Graph Mining Methods 

In this section we bring together the methods described in Section 5 into practical graph 
mining techniques usable on large graphs. We describe both exact and approximate 
variations of both graph matching and motif finding. We also show how these methods are 
adapted for behaviour graphs, which represent changes to the data over time, as described 
in Section 4. 

 

6.1. Exact Structure/Behaviour Matching 

The exact subgraph isomorphism algorithm determines all the subgraphs that exist with the 
target graph that are isomorphic to the pattern graph, using the specified comparators. The 
algorithm determines which nodes and edges are contained with the target graph and 
returns a list of node mapping – i.e. which nodes in the target graph match to which nodes in 
the pattern graph. From this, a subgraph can be built. Full details of the isomorphic algorithm 
are in Section 5.2. The user may specify a comparator by labelling a node or edge, or by 
writing a specific one for the user’s needs. This algorithm is efficient at discovering all 
subgraphs where nodes are labelled, otherwise it can potentially return a large number of 
matching subgraphs. In the example below, a 3-node 2-edge graph is designed with the end 
nodes being Sean Dixon and Josie Abernathy. All 5 examples of this subgraph are found in 
7 seconds, with one being shown below. 

 

 

Nodes Edges Subgraphs Size Time (s) Results 

2,700,000 11,200,000 3 nodes, 2 edges 7 5 
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Example code for running the exact subgraph isomorphism algorithm is as follows: 

  FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1"); //load graph 1 

  FastGraph g2 = FastGraph.loadBuffersGraphFactory(null, "g2"); //load graph 2 

  SimpleNodeLabelComparator snlc = new SimpleNodeLabelComparator(g1, g2); 

  SimpleEdgeLabelComparator selc = new SimpleEdgeLabelComparator(g1, g2); 
   

  ExactSubgraphIsomorphism esi = new ExactSubgraphIsomorphism(g1, g2, snlc, selc); 

   

  boolean result = esi.subgraphIsomorphismFinder(); 

If the result were true, then use esi.getFoundMappings(); to return a 
LinkedList<SubgraphMapping> which contains a list of all the found subgraphs. 

 

Behaviour graphs, where time slices are are present, have time edges connecting the nodes 
in adjacent generations (see Section 4). To find subgraphs in behaviour graphs, an edge 
comparator is used (for example, TimeEdgeComparator) to ensure that time edges match with 
only time edges and that non-time edges do not match with time edges. 

 

6.2. Approximate Structure/Behaviour Matching 

The approximate subgraph matching algorithm takes a sample of subgraphs from the target 
set and compares them with the given pattern graph. The number of enumerated subgraphs 
is specified by the user, along with the desired target graph. For each of these enumerated 
subgraphs, the exact subgraph isomorphism algorithm is run (see above), with a label 
comparator. This comparator may be changed by the user to a custom one written for the 
user’s requirements (for example a comparator that ensures a particular edge is a time 
edge). Once all subgraphs have been compared, the result are output. The approximate 
subgraph isomorphism algorithm can run quicker than the exact version where a node will 
have potential matches with a large number of target nodes. The approximate method is 
also tuneable by specifying more or fewer sampled subgraphs. 

Example code for running the approximate subgraph isomorphism algorithm is below: 

  FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1"); 

  FastGraph g2 = FastGraph.loadBuffersGraphFactory(null, "g2"); 

  SimpleNodeLabelComparator snlc = new SimpleNodeLabelComparator(g1, g2); 

  SimpleEdgeLabelComparator selc = new SimpleEdgeLabelComparator(g1, g2); 
     

  ApproximateSubgraphIsomorphism asi = new ApproximateSubgraphIsomorphism(g1, g2, 4, 1, 

snlc, selc); 

  int count = asi.subgraphIsomorphismFinder(); 

As with the exact matching (Section 6.1), when behaviour graphs are the target graph the an 
edge comparator such as TimeEdgeComparator can be used to ensure that time edges match 
with only time edges and that non-time edges do not match with time edges. 

 

6.3. Exact Motif Finding 

Exact motif finding compares the occurrences of a particular motif in the dataset compared 
to how often that motif would be expected under normal conditions. To generate a reference 
graph for the normal conditions, the existing graph is rewired several times and subgraphs 
are enumerated for each rewiring (or the user may specify a reference set). These motifs are 
then grouped into particular classes, by using the serialized form defined in Section 5.2, 
which distinguishes between topologically equal motifs that have different time slice 
structure, so accounting for behaviour graphs. Each class may then contain several buckets, 
each bucket holding isomorphic motifs. Once assigned, the only one example of each bucket 
is saved along with a statistical analysis of the found motifs. This process repeats for each 
required size of motif, and the rewired reference graphs are saved for future use. 
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The process then repeats using the target graph. It follows a similar manner to the reference 
set, in that a large number of motifs are found and classified. Unlike the reference set, the 
user may choose to save every motif found and these are saved when discovered and 
classified. 

Once both the reference and target graphs have been analysed, the system then compares 
the statistics for both sets. Motifs are ordered by their z-score, a measure of statistical 
significance, and displayed in HTML format. This allows a user to view an example of each 
motif type, along with various statistics. If the user requested the saving of all motifs, these 
are also displayed in this output. 

Nodes Edges Subgraphs 
Tested 

Size of 
Motifs 

Time Unique 
Results 

2,000 10,000 19,000 4 & 5 611s 389 

1,500,000 10,000,000 15,000,000 7 & 8 ~15h 349,000 

 

Example code for running the exact motif finder algorithm is as follows: 

  FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1"); 
  int minNum = 4, maxNum = 6; //size of motifs 

  ExactMotifFinder emf = new ExactMotifFinder(g1, new MotifTaskDummy(), false); 

  emf.findMotifsReferenceSet(10,minNum,maxNum); //reference set 

  emf.findMotifsRealSet(minNum,maxNum); //real set 

  emf.compareMotifDatas(minNum,maxNum); //comparison 

 

6.4. Approximate Motif Finding 

The approximate motif finding algorithm using the k-medoids algorithm using an 
approximation of graph edit distance as described in Section 5.6. A number of subgraphs 
are enumerated for the various sizes of motifs required. These are then clustered by k-
medoids into groups. The groups are then output in HTML format, with every example of 
motif in each group displayed. The runtime of this method can be compared to the exact 
motif finder. While this approximate algorithm runs ten times faster, it assigns the motifs into 
much broader groups. For behaviour graphs, the graph edit distance approximation is 
modified as described in Section 5.5. 

Nodes Edges Subgraphs 
Tested 

Size of 
Motifs 

Time Groups 

2,000 10,000 19,000 4 & 5 67s 4 

 

Example code for the running of the approximate motif finder algorithm is as follows: 

  FastGraph g1 = FastGraph.loadBuffersGraphFactory(null, "g1"); 

  int minSize = 4, maxSize = 6; 

  int numOfClusters = 4, iterations = 2; 

  int subsPerNode = 5, attempts = 20; 

  KMedoids km = new KMedoids(g1, numOfClusters, iterations); 
  EnumerateSubgraphNeighbourhood esn = new EnumerateSubgraphNeighbourhood(g1); 

  HashSet<FastGraph> subs = new HashSet<FastGraph>(); 

  for(int i = minSize; i <= maxSize; i++) {//build a list of potential subgraphs 

   subs.addAll(esn.enumerateSubgraphs(i, subsPerNode, attempts)); 

  } 

   
  ArrayList<FastGraph> subgraphs = new ArrayList<FastGraph>(subs); 

  ArrayList<ArrayList<FastGraph>> clusters = km.cluster(subgraphs); 

 

  km.saveClusters(clusters);  
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7. Future Work 

We note that an alternative ByteBuffer representation, where each item attribute is stored in 
a separate ByteBuffer would increase the current limit on the number edges by a factor of 
around 10, making billion edge graphs feasible. This might be considered a more flexible 
and extendable representation, providing a mechanism to add new attributes by adding 
further ByteBuffers. The downside of this representation is the need to manage a large 
number of ByteBuffers. For further scalability, it would be entirely feasible to store attributes 
across multiple ByteBuffers, perhaps by using a long integer identifier for items. Further 
sophistication could make dynamic behaviour feasible, by e.g. modelling storage on 
database heap files. At this point, one might make a strong engineering case to move to a 
dedicated database storage mechanism. A simple database such as a key-value store (e.g. 
redis) maps well to the current implementation. An Entity Relational database such as Gaffer 
naturally stores graphs. Standard relational databases could be used, but we regard the 
mapping from graph to tables as not particularly intuitive. We note that use of an external 
database system would mean Dover was no longer a pure Java system, which may reduce 
portability and adversely impact ease of integration with other systems. A reduction in 
memory requirements may be achieved by efficient behaviour graph storage. At the moment 
repeated nodes and edges are duplicated through multiple generations. Where the 
behaviour graph does not have much variation between generations, a more compact 
representation might be considered. This, however, has a significant impact on the algorithm 
design. 

Whilst it might be possible to convert to external systems for some of the functionality 
discussed in this section, it would also be possible to extend the current system with 
functionality. Extending the current system might be required where algorithms on large 
graphs are being applied. Here the algorithms would be implemented within Dover for 
greatest efficiency. However, for implementation speed, Dover could have integration 
modules added to connect with other graph analysis, data extraction and visualisation tools, 
such as Mamba,. This would allow the system to be combined with other products to 
harness the benefits and specialities of each. 

The isomorphism, sampling and graph edit distance algorithms are limited by the time 
available for implementation and have been tuned to the particular applications. More 
efficient and general algorithms are certainly possible and many variations are given in the 
literature, such as for motifs: [SFS03], and for subgraph isomorphism: [FPV14]. A relatively 
low cost improvement is to modify the current algorithms for directed graphs. Given the 
underlying data representation already supports directed graphs, this would not be overly 
problematic. 

Significant work on network analytics for security in large network graphs has been 
performed, looking, at, for example, malware detection in the cloud [CNW10]. It would be 
possible to integrate such metrics, along with other graph characteristics such as graph 
width, articulation points and measure of dynamic behaviour. In addition, the current Dover 
system would have more effective analysis capability if greater graph querying were added, 
for instance matching restrictions on number and type of neighbours and how they change 
over time, definition of matching paths and path lengths, including discovery of connectivity 
between nodes. Whilst these functions are present in other software systems. The benefit of 
integration into Dover is that they would perform quickly in an environment that can be easily 
installed on a secure, standalone machine. 
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8. Conclusions 

We have described open source Java graph mining software for motif finding and structure 
discovery in graphs to fulfil Lot 5 of Data Analytics FY16/17. The work scales well beyond 
the current state of the art in both of these tasks and we can demonstrate both motif finding 
and structure discovery in graphs beyond the required minimum of 1 million nodes and 10 
million edges. The project was exploratory in nature and the initial work here has the 
potential to be built on further, as current software can be expanded, as well as integrated 
with other systems. More details on the project and code can be found at: 
https://www.cs.kent.ac.uk/projects/dover/ 
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