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Algorithms for  the Comparison of Graphs

• Graph Isomorphism

• Graph Edit Distance

• Various Others

• Used in Data Mining

• Motif finding

• Pattern matching by finding similar subgraphs

• This project implemented and profiled a number of algorithms



Dover

• The Dover software system is designed for implementing 

performance graph algorithms

• Analysis of the order of 1M nodes and 10M edges and beyond

• Changes in this project to deal with directed, labelled graphs.

• Open Source (was GPL, now Apache)

• Pure Java for portability

https://www.cs.kent.ac.uk/projects/dover/

https://github.com/peterrodgers/dover



Algorithm A: Exact Graph Isomorphism

• Graph isomorphism describes the equality of graphs.

• Algorithms for exact isomorphism are exponential in the worst case

• but a number of optimizations means that many non-isomorphic 

graphs can be found in polynomial time

• And there is much pruning that can be done in the exponential case

• In terms of similarity, isomorphism gives a binary similarity result in 

that graphs are either the same or not

• Exact Isomorphism on directed, node labelled graphs added to 

Dover



Graph Edit Distance

• Graph Edit Distance (GED) is by far the most common graph 

similarity measure.

• Edit operations are each given a cost

• The GED of two graphs is the sum of the cost of the edits required 

in one graph to turn it into an isomorphism of the other
• We would like the minimum cost



GED Example

Relabel n2 to “C” – cost 4

Remove edge e1 – cost 3

Add node with label “C” – cost 5

Add edge from n3 to new node – cost 3

Add edge from n1 to new node – cost 3

Total GED cost between graphs = 16

n1

n2

n3

e1

e2

e3



Algorithm B: Node degree profile

• This highly simplistic, but scalable, graph difference 

algorithm has been modified to deal with directed graphs.

• As previously, it takes the degree profiles of the two graphs 

and sums the difference in node count of each degree

• New, the directed graphs case where it considers the in 

degree and out degree separately



Algorithm C: Exact Graph Edit Distance

• A brute force test that applies each graph edit operation in turn

• A* algorithm adding edits to the cheapest edit list first

• Pruning known non-minimal branches (e.g. double node relabels)

• Highly exponential

• Around 7 edit operation limit



Algorithm D: Simple Approximate GED

• Applies a mapping between nodes based on node degree

• Takes account of the directed case

• Does not consider labels in initial mapping

• Random swaps between mapped nodes followed by a test of edit cost

• Simulated annealing, takes some bad swaps early on

• Edit cost includes node labels

• Good at finding exact edit distance in small cases

• Will scale, but accuracy drops off rapidly

• Developed for the project, no prior work



Algorithm E: Bipartite Approximate GED

• Forms an estimated cost matrix

• g1 nodes on rows and g2 nodes on columns

• Local node costs found between nodes in g1 and g2 based on comparing node labels 

and connecting edges

• Then runs an assignment algorithm to map rows to columns

• Various assignment algorithms tested

• Volgenant-Jonker proved to be the fastest

Fankhauser S, Riesen K, Bunke H. Speeding up graph edit distance computation through fast bipartite 
matching. Graph-based representations in pattern recognition. 2011:102-11



Algorithm F: Hausdorff Distance GED
• Lower bound method

• Takes a local approach to discovering the smallest possible edits for 
each node and edge

• Issues
• Poor results and unimpressive performance

• Perhaps because of lack of a reference implementation

Fischer, A., Suen, C. Y., Frinken, V., Riesen, K., and Bunke, H. (2015). Approximation of graph edit 
distance based on Hausdorff matching. Pattern Recognition, 48(2), 331-343.

• A simple lower bounds method was also implemented, counting 
edges, and number of node labels that need to change



Algorithm G: Iterative Neighbourhood Graph 
Similarity

• Uses the structural similarity of local neighbourhoods
• Results in values between 0 and 1, with 0 similar, 1 dissimilar

• Issues
• Lack of symmetry

• Similarity(g1,g2) != Similarity(g2,g1)

• Tends to 1 for most random graphs in the directed version

• Poor performance, unfeasible beyond around 1000 nodes

L. Zager, G. Verghese, Graph similarity scoring and matching, Applied Mathematics Letters 21 (2008) 
86-94



Algorithm H: Belief Propagation Graph Similarity

• This needs a node mapping between the two graphs to work

• So seems to be less useful than other methods

• But may have use in testing differences between changes in large graphs

• We use a node mapping method similar to that used for the Simple GED code

• Issues

• It works only on simple, not self-sourcing graphs

• It does not consider node labels

• Calculates difference with adjacency matrices so a directed version is not feasible

• As the graph size increases, it tends to 1

Danai Koutra, Joshua T. Vogelstein, and Christos Faloutsos. Deltacon: A principled massive-graph 

similarity function. SIAM International Conference on Data Mining. 2013.



Algorithm I: Random Trail Graph Similarity

• From each node in g1, take t random trails of length k nodes

• A trail is a route through a graph using edges only once, but potentially visiting a node multiple times

• For each node in g2, find the longest matching trail using breadth first search.

• Exact matches score 0, the shorter the trails, the closer the score is to 1

• This produces an affinity score between each node

• Pick the node mapping that minimizes overall affinity

• Issues

• Highly dependent on choices for t and k

• Lacks symmetry

• O(n2) time complexity, but with a big constant

• However it is a good approximation to graph isomorphism

• Developed for the project, no prior work



Scaling Data Summary

1,200,000 Nodes – 12,000,000 Edges

GED 

simple 

cost:

GED 

bipartite 

cost:

GED 

hausdorff 

cost:

GED lower 

cost:

belief 

simple 

cost:

neighbour

hood cost:

degree 

difference 

cost:

random 

trail cost:

102813.4 103395.6 125.125 1402.3 0.998031 0.999593 185.1 0.112399

GED 

simple 

time:

GED 

bipartite 

time:

GED 

hausdorff 

time:

GED lower 

time:

belief 

simple 

time:

neighbour

hood time:

degree 

difference 

time:

random 

trail time:

1.0158 0.142 0.1764 0 1.6222 155.612 0 1.5771

Randomly Generated, unlabelled, undirected, simple graphs. Timing in seconds. GED simple t=1, k=3

GED 

simple 

time:

GED lower 

time:

degree 

difference 

time:

592.8334 0.0001 0.0277

GED 

simple 

cost:

GED lower 

cost:

degree 

difference 

cost:

1.17E+08 1349439 157636.9

GED 

simple 

time:

GED 

hausdorff

time:

GED lower 

time:

degree 

difference 

time:

2.9656 330.1511 0 0.0032

900 Nodes - 9,000 Edges

40,000 Nodes – 400,000 Edges
GED 

simple 

cost:

GED 

hausdorff

cost:

GED lower 

cost:

degree 

difference 

cost:

3954985 6156.6 35352 3327.4

GED 

simple 

time:

GED 

bipartite 

time:

GED 

hausdorff 

time:

GED lower 

time:

degree 

difference 

time:

1.1797 55.6051 21.5357 0 0.0016

GED 

simple 

cost:

GED 

bipartite 

cost:

GED 

hausdorff 

cost:

GED lower 

cost:

degree 

difference 

cost:

1113962 1114088 1506.9 15722.1 1489.9

10,000 Nodes – 100,000 Edges

(memory error for bipartite)

GED 

simple 

time:

GED 

bipartite 

time:

GED 

hausdorff 

time:

GED lower 

time:

degree 

difference 

time:

random 

trail time:

1.1545 43.7068 17.7142 0 0 219.5

9,000 Nodes - 90,000 Edges GED 

simple 

cost:

GED 

bipartite 

cost:

GED 

hausdorff 

cost:

GED lower 

cost:

degree 

difference 

cost:

random 

trail cost:

960064.1 960058.4 1259 13507.8 1459 0.078996

4,000 Nodes – 40,000 Edges
GED 

simple 

cost:

GED 

bipartite 

cost:

GED 

hausdorff 

cost:

GED lower 

cost:

belief 

simple 

cost:

degree 

difference 

cost:

random 

trail cost:

498942.3 498934.5 763.3 7833.5 0.999193 574.3 0.07166

GED 

simple 

time:

GED 

bipartite 

time:

GED 

hausdorff 

time:

GED lower 

time:

belief 

simple 

time:

degree 

difference 

time:

random 

trail time:

1.0376 5.0748 3.4314 0 188.0526 0 33.6019



Isomorphism Data

GED simple GED bipartite random trail exact isomorphism

isomorphic 0 0 106 0

non-isomorphic 4000 4000 3894 4000

minor rewiring in g2 compared to g1

g1 and g2 isomorphic

GED simple GED bipartite random trail exact isomorphism

isomorphic 51 22 4000 4000

non-isomorphic 3949 3978 0 0

20 to 1000 nodes, 5x edges, variety of labelled/unlabelled, directed/undirected, simple/nonsimple

Largest graphs approx 2 mins for the exact isomorphism, 10 seconds for random trail, t=3, k=4



Varying GED between g1 and g2
Directed Labelled Non-simple, 100 runs each, all edit costs = 1. GED simple t=3, k=4

edits

GED 

simple 

cost:

GED 

bipartite 

cost:

random 

trail cost:

1 1621.99 699.78 0.03445

2 1624.48 706.36 0.067385

3 1622.85 710.24 0.096878

4 1622.69 717.4 0.127452

5 1625.8 723.58 0.156464

6 1623.88 729.52 0.184635

7 1622.72 733.49 0.210832

8 1626.87 742.65 0.23697

9 1623.42 748.37 0.260726

10 1624.93 750.49 0.282923

100 Nodes 1000 Edges

edits

GED simple 

cost:

GED 

bipartite 

cost:

random trail 

cost:

1 4.72 25.52 0.144417

2 4.67 27.22 0.249031

3 11.99 29.49 0.336084

4 10.33 31.61 0.410321

5 10.5 33.59 0.472403

6 15.95 35.77 0.529533

7 19.42 38.15 0.575857

8 15.42 40.48 0.614709

9 17.46 42.32 0.634673

10 21.3 43.45 0.657355

20 Nodes 30 Edges



Conclusions

• We have developed a number of graph similarity measures.

• The immediate conclusions of this work are that, unless there are very specific 

needs, graph edit distance remains the most effective non-binary similarity 

measure.

• Exact GED is not feasible, except in very small cases, so approximate methods, as 

implemented in this project must be used.

• Graph isomorphism can be effectively approximated up to graphs of several 

thousand

• More details on the project and code can be found at: 

https://www.cs.kent.ac.uk/projects/dover/


