Graph Similarity for Data Mining Lot 6 of Data Analytics FY17/18

Meeting Presentation

Peter Rodgers

Algorithms for the Comparison of Graphs

- Graph Isomorphism
- Graph Edit Distance
- Various Others
- Used in Data Mining
 - Motif finding
 - Pattern matching by finding similar subgraphs
- This project implemented and profiled a number of algorithms

Dover

- The Dover software system is designed for implementing performance graph algorithms
- Analysis of the order of 1M nodes and 10M edges and beyond
 - Changes in this project to deal with directed, labelled graphs.
- Open Source (was GPL, now Apache)
- Pure Java for portability

https://www.cs.kent.ac.uk/projects/dover/

https://github.com/peterrodgers/dover

Algorithm A: Exact Graph Isomorphism

- Graph isomorphism describes the equality of graphs.
- Algorithms for exact isomorphism are exponential in the worst case
 - but a number of optimizations means that many non-isomorphic graphs can be found in polynomial time
 - And there is much pruning that can be done in the exponential case
- In terms of similarity, isomorphism gives a binary similarity result in that graphs are either the same or not
- Exact Isomorphism on directed, node labelled graphs added to Dover

Graph Edit Distance

- Graph Edit Distance (GED) is by far the most common graph similarity measure.
- Edit operations are each given a cost
- The GED of two graphs is the sum of the cost of the edits required in one graph to turn it into an isomorphism of the other
 - We would like the minimum cost

GED Example

Relabel n2 to "C" – cost 4 Remove edge e1 – cost 3 Add node with label "C" – cost 5 Add edge from n3 to new node – cost 3 Add edge from n1 to new node – cost 3

Total GED cost between graphs = 16

Algorithm B: Node degree profile

- This highly simplistic, but scalable, graph difference algorithm has been modified to deal with directed graphs.
- As previously, it takes the degree profiles of the two graphs and sums the difference in node count of each degree
- New, the directed graphs case where it considers the in degree and out degree separately

Algorithm C: Exact Graph Edit Distance

- A brute force test that applies each graph edit operation in turn
- A* algorithm adding edits to the cheapest edit list first
 - Pruning known non-minimal branches (e.g. double node relabels)
- Highly exponential
 - Around 7 edit operation limit

Algorithm D: Simple Approximate GED

- Applies a mapping between nodes based on node degree
 - Takes account of the directed case
 - Does not consider labels in initial mapping
- Random swaps between mapped nodes followed by a test of edit cost
 - Simulated annealing, takes some bad swaps early on
 - Edit cost includes node labels
- Good at finding exact edit distance in small cases
- Will scale, but accuracy drops off rapidly
- Developed for the project, no prior work

Algorithm E: Bipartite Approximate GED

- Forms an estimated cost matrix
 - g1 nodes on rows and g2 nodes on columns
 - Local node costs found between nodes in g1 and g2 based on comparing node labels and connecting edges
- Then runs an assignment algorithm to map rows to columns
 - Various assignment algorithms tested
 - Volgenant-Jonker proved to be the fastest

Fankhauser S, Riesen K, Bunke H. Speeding up graph edit distance computation through fast bipartite matching. Graph-based representations in pattern recognition. 2011:102-11

Algorithm F: Hausdorff Distance GED

- Lower bound method
- Takes a local approach to discovering the smallest possible edits for each node and edge
- Issues
 - Poor results and unimpressive performance
 - Perhaps because of lack of a reference implementation

Fischer, A., Suen, C. Y., Frinken, V., Riesen, K., and Bunke, H. (2015). Approximation of graph edit distance based on Hausdorff matching. Pattern Recognition, 48(2), 331-343.

• A simple lower bounds method was also implemented, counting edges, and number of node labels that need to change

Algorithm G: Iterative Neighbourhood Graph Similarity

- Uses the structural similarity of local neighbourhoods
 - Results in values between 0 and 1, with 0 similar, 1 dissimilar
- Issues
 - Lack of symmetry
 - Similarity(g1,g2) != Similarity(g2,g1)
 - Tends to 1 for most random graphs in the directed version
 - Poor performance, unfeasible beyond around 1000 nodes

L. Zager, G. Verghese, Graph similarity scoring and matching, Applied Mathematics Letters 21 (2008) 86-94

Algorithm H: Belief Propagation Graph Similarity

- This needs a node mapping between the two graphs to work
 - So seems to be less useful than other methods
 - But may have use in testing differences between changes in large graphs
- We use a node mapping method similar to that used for the Simple GED code
- Issues
 - It works only on simple, not self-sourcing graphs
 - It does not consider node labels
 - Calculates difference with adjacency matrices so a directed version is not feasible
 - As the graph size increases, it tends to 1

Danai Koutra, Joshua T. Vogelstein, and Christos Faloutsos. Deltacon: A principled massive-graph similarity function. SIAM International Conference on Data Mining. 2013.

Algorithm I: Random Trail Graph Similarity

- From each node in g1, take ${f t}$ random trails of length ${f k}$ nodes
 - A trail is a route through a graph using edges only once, but potentially visiting a node multiple times
- For each node in g2, find the longest matching trail using breadth first search.
 - Exact matches score 0, the shorter the trails, the closer the score is to 1
- This produces an affinity score between each node
 - Pick the node mapping that minimizes overall affinity
- Issues
 - Highly dependent on choices for t and k
 - Lacks symmetry
 - O(n²) time complexity, but with a big constant
- However it is a good approximation to graph isomorphism
- Developed for the project, no prior work

Scaling Data Summary

Randomly Generated, unlabelled, undirected, simple graphs. Timing in seconds. GED simple t=1, k=3

900 Nodes - 9,000 Edges

	GED simple cost: 102813.4	GED bipartite cost: 103395.6	GED hausdorff cost: 5 125.125	GED lower cost: 1402.3	belief simple cost: 0.998031	neighbour hood cost: 0.999593	degree difference cost: 3 185.1	random trail cost: 0.112399	GED simple time: 1.0158	GED bipartite time: 3 0.142	GED hausdorff time: 2 0.1764	GED lower time: 0	belief simple time: 1.6222	neighbour hood time: 155.612	degree difference time: 0	random trail time: 1.5771
4,000 Nodes –	40,000	Edges														
,	,	GED simple cost: 498942.3	GED bipartite cost: 498934.5	GED hausdorff cost: 763.3	GED lower cost: 7833.5	belief simple cost: 0.999193	degree difference cost: 3 574.3	random trail cost: 0.07166	GED simple time: 1.0376	GED bipartite time: 5 5.0748	GED hausdorff time: 3 3.4314	GED lower time: 0	belief simple time: 188.0526	degree difference time: C	random trail time: 33.6019	
9,000 Nodes - 9	90,000	Edges	GED simple cost: 960064.1	GED bipartite cost: 960058.4	GED hausdorff cost: 1259	GED lower cost: 13507.8	degree difference cost: 1459	random trail cost: 0.078996	GED simple time: 1.1545	GED bipartite time: 5 43.7068	GED hausdorff time: 3 17.7142	GED lower time: 0	degree difference time: 0	random trail time: 219.5		
10,000 Nodes – (memory error	- 100,00 for bipa	00 Edge artite)	25	GED simple cost: 1113962	GED bipartite cost: 1114088	GED hausdorff cost: 1506.9	GED lower cost: 9 15722.1	degree difference cost: 1489.9	GED simple time: 1.179	GED bipartite time: 7 55.605	GED hausdorff time: 1 21.5357	GED lower time: 7 (degree difference time:) 0.0016	ö		
40,000 Nodes – 400,000 Edges sin			GED simple cost: 3954985	GED hausdorff cost: 6156.6	GED lower cost: 35352	degree difference cost: 3327.4	GED simple time: 2.965	GED hausdorff time: 6 330.151	GED lower time: 1 (degree difference time:) 0.0032	2					
1,200,000 Nodes – 12,000,000 Edges					GED simple cost: 1.17E+08	GED lower cost: 1349439	degree difference cost: 157636.9	GED simple time: 592.833	GED lower time: 4 0.000	degree r difference time: 1 0.0273	7					

Isomorphism Data

20 to 1000 nodes, 5x edges, variety of labelled/unlabelled, directed/undirected, simple/nonsimple

Largest graphs approx 2 mins for the exact isomorphism, 10 seconds for random trail, t=3, k=4

minor rewiring in g2 compared to g1

	GED simple	GED bipartite	random trail	exact isomorphism
isomorphic	0	0	106	0
non-isomorphic	4000	4000	3894	4000

g1 and g2 isomorphic

	GED simple	GED bipartite	random trail	exact isomorphism
isomorphic	51	22	4000	4000
non-isomorphic	3949	3978	0	0

Varying GED between g1 and g2

Directed Labelled Non-simple, 100 runs each, all edit costs = 1. GED simple t=3, k=4

20 Nodes 30 Edges

	GED	
GED simple	bipartite	random trail
cost:	cost:	cost:
4.72	25.52	0.144417
4.67	27.22	0.249031
11.99	29.49	0.336084
10.33	31.61	0.410321
10.5	33.59	0.472403
15.95	35.77	0.529533
19.42	38.15	0.575857
15.42	40.48	0.614709
17.46	42.32	0.634673
21.3	43.45	0.657355
	GED simple cost: 4.72 4.67 11.99 10.33 10.5 15.95 19.42 15.42 15.42 17.46 21.3	GEDGED simplebipartitecost:cost:4.7225.524.6727.2211.9929.4910.3331.6110.533.5915.9535.7719.4238.1515.4240.4817.4642.3221.343.45

100 Nodes 1000 Edges

	GED	GED	
	simple	bipartite	random
edits	cost:	cost:	trail cost:
1	1621.99	699.78	0.03445
2	1624.48	706.36	0.067385
3	1622.85	710.24	0.096878
4	1622.69	717.4	0.127452
5	1625.8	723.58	0.156464
6	1623.88	729.52	0.184635
7	1622.72	733.49	0.210832
8	1626.87	742.65	0.23697
9	1623.42	748.37	0.260726
10	1624.93	750.49	0.282923

Conclusions

- We have developed a number of graph similarity measures.
- The immediate conclusions of this work are that, unless there are very specific needs, graph edit distance remains the most effective non-binary similarity measure.
- Exact GED is not feasible, except in very small cases, so approximate methods, as implemented in this project must be used.
- Graph isomorphism can be effectively approximated up to graphs of several thousand
- More details on the project and code can be found at: <u>https://www.cs.kent.ac.uk/projects/dover/</u>