
Kent Modelling Framework Version – Tutorial

www.ukc.ac.uk/kmf

Stuart Kent and Octavian Patrascoiu,
Computing Laboratory,

University of Kent, Canterbury, UK.

Draft, 6th December 2002

Contents

1 About KMF 2
1.1 About ToolGen . 2
1.2 About OCL4Java . 2
1.3 About XMI . 3

2 ToolGen 4
2.1 Getting Started . 4
2.2 Input Metamodel . 5

2.2.1 Class Diagram . 5
2.2.2 Constraints . 6

2.3 Generating Code . 6
2.4 Generated Tool . 6

2.4.1 Code Structure . 6
2.4.2 Using the Tool . 6
2.4.3 Customizing the Tool . 6

2.5 Known Issues . 6

3 OCL4Java 7
3.1 Using the Library . 7
3.2 Known Issues . 7

1

Chapter 1

About KMF

The Kent Modelling Framework (KMF) is being developed to provide a set of
tools to support model driven software development. At the core of KMF is
ToolGen, a tool to generate modelling tools from the definition of modelling
languages expressed as metamodels. ToolGen is supported by OCL4Java, a
Java library which allows dynamic evaluation of OCL constraints; and XMI, a
java implementation of the XMI standard. Tools generated using ToolGen use
OCL4Java to provide built in support for checking well-formedness of models,
amongst other things; they use XMI to write and read models in XMI format.
XMI is also used by ToolGen to read in metamodels in standard UML 1.3. XMI
1.0 format. As KMF develops, we will be making available specific modelling
tools built with the help of ToolGen.

Our vision is a set of tools that generate quality modelling tools from lan-
guage definitions. There are many measures of quality. We prioritize usability,
reliability and capability. Our focus is on providing capabilities not provided
by other tools, such as well-formedness checking, simulation of partial models,
learning models from examples and two-way model transformation.

There is still much to do.

1.1 About ToolGen

ToolGen generates a modelling tool from a modelling language. The gener-
ated tool provides some basic functionality, driven through a GUI, including:
exploring populations; creation, viewing and editing of populations; evaluation
of OCL constraints derived from the input metamodel; evaluation of any OCL
expression over particular objects; output of populations as XMI and HUTN
(Human Readable Text Notation).

The generated tool can be customized by writing Java to the generated API.

1.2 About OCL4Java

OCL4Java is a Java library that supports dynamic parsing and evaluation of
OCL expressions. That is, you can provide an OCL expression as a String
argument to an OCL evaluation method, together with a reference to a (Java)
object that is to provide the context for that evaluation, and the method will

2

CHAPTER 1. ABOUT KMF 3

then parse and evaluate that expression, returning an object representing the
results of the evaluation.

OCL4Java is used in tools generated by ToolGen to check constraints in the
metamodel over populations in the Tool, and to support dynamic evaluation of
OCL expressions entered by the user through the GUI.

1.3 About XMI

XMI is a Java library that implements the XMI standard. Currently it supports
XMI 1.0, but future versions will be updated to support XMI 1.x and XMI 2.0.

XMI is used in tools generated by ToolGen to write and read models in XMI
format. XMI is also used by ToolGen to read in metamodels in standard UML
1.3. XMI 1.0 format.

Chapter 2

ToolGen

2.1 Getting Started

We assume that you have installed KMF as explained in readme.txt, in the zip
archive downloaded.

An example metamodel is provided in the VSML (Very Simple Modelling
Language) subdirectory of the examples directory. Two xmi files are provided,
one generated Rational Rose and one from the Poseidon UML tool from Gen-
tleware (download a free version from www.gentleware.com). They are called
vsmlFromRose.xmi and vsmlFromPoseidon.xmi, respectively. The Rose and
Poseidon sources are in vsml.mdl and vsml.zargo, respectively. The xmi was
extracted from Rose 2000 Enterprise Edition using the Unysis xmi add-in for
Rose. vsmlFromPoseidon.xmi was taken directly out of vsml.zargo, which is
actually just a .zip archive.

Invoke ToolGen as described in the readme.txt that comes with the instal-
lation, or in Section 2.3 on page 6 in this document.

A window will appear. Click on the Choose input file button and select one
either of .xmi files from the examples/vsml/src folder. Click on the Generate
Code button. You’ll see some information appearing in the main body of the
window. There should be no errors.

In the same directory as the .xmi files you will find a directory called vsml.
This contains the generated java code. Vsml is the top level package. Compile
the code using examples/vsml/src as the root source folder. This will en-
sure that you also include packages startup and lifecycle in the compilation.
You will need to add the following files to the classpath: lib/javaClass.jar,
lib/OCL4Java.jar, lib/xmlParserAPIs.jar, xercesImpl.jar and lib/XMI.jar.

If you use the Eclipse development environment (www.eclipse.org) then you
can just import the project from examples/vsml – we have left the .classpath
and .project files there for this purpose.

Once compiled, launch startup.LittleLibrary in Java, remembering to
include the files identified above in the classpath.

A window will appear, with a model in VSML preloaded. The model is, of
course, a simple class model for a library system. There are three panes in the
Window. The left hand pane has two tabs: in the Elements tab you can browse
model elements categorized by metaclass in the metamodel; the Lifecycle tab

4

CHAPTER 2. TOOLGEN 5

gives you access to methods to e.g. construct new instances of metaclasses –
this is beyond the scope of Getting Started. The right-hand pane has four tabs:
we’ll only consider the View tab in this section. The bottom pane is a console,
where errors and results of OCL constraint checking are reported.

Select an element in the explorer tree under the Elements tab. Goto the edit
menu and select View Properties option. A window for viewing the properties
of the selected element will appear under the views tab (make sure it is in focus)
in the right hand pane. All should be reasonably obvious.

At the bottom of this window is an area for evaluation of OCL expressions in
the context of the object being viewed. Type in an appropriate OCL expression
(e.g. self.name or self.X for any X that is a property of the model element)
in the area above the Evaluate button, and see the result appear in the area
below.

You can check all the OCL constraints defined on the metamodel for the
model stored in the tool. Select Evaluate All from the Tools menu and watch
the results appear in the console pane. Or, if you prefer, select one or more
model elements in the element explorer and choose the Evaluate option; only
the constraints for the selected elements will be evaluated.

You may like to try making some changes to the metamodel in Posei-
don, and regenerating the code. This may require changes to the code in
startup and lifecycle packages, to reflect the changes in the metamodel.
startup.LittleLibrary can also be modified to pre-load a different popula-
tion when the generated tool is launched.

If you want to use the tool without preloading a model, then it can be
launched using Vsml.startup.implementation.VsmlStartup. You can load
LittleLibrary.xmi (in examples/vsml) using the menu option File | Open,
to populate it with the example that is preloaded by startup.LittleLibrary,
or you can populate it yourself using lifecycle operations: click on Lifecycle tab
in left pane, select an operation for one or more of the metaclasses, choose Edit
| Build Element and a window will appear under the Lifecycle tab in the right
hand pane which will allow you to create new model elements.

A fuller explanation of the features of the generated tool is provided in Sec-
tion 2.4.2 on page 6. These include: editing; invocation of lifecycle operations,
such as creation of new model elements; saving and loading populations to/from
xmi; saving populations to HUTN (Human Usable Text Notation) format.

2.2 Input Metamodel

ToolGen is used to generate a tool from a metamodel. ToolGen currently accepts
the metamodel in UML 1.3 XMI 1.0 format. We have tested ToolGen using xmi
extracted from the Poseidon and Rose tools, as explained in Section 2.1.

2.2.1 Class Diagram

The generator recognizes class diagrams as normal; association ends are mapped
like attributes. In addition, constraints are generated from multiplicities, and a
bidirectionality constraint is generated from two-way associations.

CHAPTER 2. TOOLGEN 6

2.2.2 Constraints

Constraints can be represented in two ways. For tools that support them directly
(like Poseidon) constraints are represented as constraints owned by classes, and
are entered as strings using standard OCL syntax (though there are one or
two features that are not supported). Query operations may be referred to in
constraints, and themselves given a body in OCL syntax. This will be evaluated
in the generated code. If you look in the xmi from Poseidon, you will see that the
body is represented as the body of the method associated with the operation.

For tools that don’t support them directly (like Rational Rose) constraints
may be represented in the specification of an operation with the stereotype
<<inv>>. Query operations can be represented as operations with the stereotype
<<spec>>; the body of the operation should appear in the specification part.

2.3 Generating Code

If you are using a Windows platform, invoke ToolGen using startToolGen.bat in
the bin directory. Otherwise invoke uk.ac.ukc.cs.kmf.toolgen.Main adding
the following files to the classpath: javaClass.jar, OCL4Java.jar, ToolGen.jar,
UMLModel.jar, xerces.jar, XMIFramework.jar, all in the lib directory.

Once launched you will be presented with a single window. You must pro-
vide an input file; and may optionally provide license information, which is a
simple xml file, and/or a package root (e.g. uk.ac.ukc.cs.kmf) for the generated
code. The license information is used to populate the About window in the
generated tool. Click on the appropriate buttons to locate the input file and
license information file,and fill in the package root. Then click on the Generate
Code button.

2.4 Generated Tool

2.4.1 Code Structure

2.4.2 Using the Tool

2.4.3 Customizing the Tool

2.5 Known Issues

Chapter 3

OCL4Java

3.1 Using the Library

3.2 Known Issues

7

