Types in MDA

EWMDA-2 Workshop
September 8, 2004

I People

e Jim Steel

I . Ed Willink,
e Andrew Watson
e Laurie Tratt
e Rasmus Fogh
e Girish Maskeri
e Marcus Alanen
e Val Jones

I What's the Problem?

« MDA says a lot about languages, but not
I very much about their type systems

e So:

 What do we want to type?

e What is a type?

 How do we know when one type will do in
the place of another?

e Motivating example: How do we know if the
output of one transformation is acceptable as
input to another?

I The Solution?

» Generally, type systems consist of:

e What is a type?

 What is the substitutability relationship
between 2 types?

e Further things like type induction
e There is a perceived gap between

mathematical type theory and “real”
programming languages

What Is a type?

e “Domain of interesting instances”

o Extensional versus intensional definition
- Simplifying/limiting closed-world assumption

e “suitability for some purpose”

e Typing at a structural level — generic

approaches
— Inheritance-based, structural conformance, etc

e Typing based on semantic domains
- Is one process definition substitable for another

I Typing models for transformations

 What is a model? Its a graph of objects, or is
I there an entrypoint?

e Constraints as types — very general

e Patterns as types — very popular

» Classes as types — very usable

e Additional information:
— Minimum, maximum numbers of objects
— Additional constraints
e Also, typing transformation implementations
— Are they incremental?
- Are they reversable?

 “No match” versus “something is wrong”

Getting meta

 Mixed type systems

 What type system is appropriate?

Do we need to reason about target platform
type systems?

 Example, in numerical analysis, does the
type system of a target platform provide
adequate numerical precision, etc?

o Types of type systems? Substitutability

e Can we model type systems using MOF
now? If not, how?

I Future work

e All of the above!
I Modelling type systems?

