
Types in MDA

EWMDA-2 Workshop

September 8, 2004



People

● Jim Steel
● Ed Willink,
● Andrew Watson
● Laurie Tratt
● Rasmus Fogh
● Girish Maskeri
● Marcus Alanen
● Val Jones



What's the Problem?

● MDA says a lot about languages, but not 
very much about their type systems

● So:

● What do we want to type?
● What is a type?
● How do we know when one type will do in 

the place of another?

● Motivating example: How do we know if the 
output of one transformation is acceptable as 
input to another?



The Solution?

● Generally, type systems consist of:
● What is a type?
● What is the substitutability relationship 

between 2 types?

● Further things like type induction

● There is a perceived gap between 
mathematical type theory and “real” 
programming languages



What is a type?

● “Domain of interesting instances”
● Extensional versus intensional definition

– Simplifying/limiting closed-world assumption
● “suitability for some purpose”
● Typing at a structural level – generic 

approaches
– Inheritance-based, structural conformance, etc

● Typing based on semantic domains
– Is one process definition substitable for another



Typing models for transformations

● What is a model? Its a graph of objects, or is 
there an entrypoint?

● Constraints as types – very general
● Patterns as types – very popular
● Classes as types – very usable
● Additional information:

– Minimum, maximum numbers of objects
– Additional constraints

● Also, typing transformation implementations
– Are they incremental?
– Are they reversable?

● “No match” versus “something is wrong”



Getting meta

● Mixed type systems
● What type system is appropriate?
● Do we need to reason about target platform 

type systems?
● Example, in numerical analysis, does the 

type system of a target platform provide 
adequate numerical precision, etc?

● Types of type systems? Substitutability
● Can we model type systems using MOF 

now? If not, how?



Future work

● All of the above!
● Modelling type systems?


