

New Roles in Model-Driven Development

Jan Øyvind Aagedal and Ida Solheim

SINTEF Information and Communication Technology, Forskningsvn 1, N-0314 Oslo, Norway
{jan.aagedal|ida.solheim}@sintef.no

Abstract. In this paper we outline a set of roles that are needed in model-driven
development (MDD). The set of roles are based on state-of-the-art component-
based methodologies, and we add new roles to accommodate the new activities
of meta-modelling, transformation specification and method engineering.
Finally, we list a set of tools to support the proposed roles.

1 Introduction

Model-driven development (MDD) has been advocated by academia and industry for
many years. Today, most of the popular and widely used software engineering (SE)
methodologies use models as the primary tool to develop software, and can thus claim
to follow a model-driven approach (e.g., [1, 2]). This trend has increased as a
consequence of the Model Driven Architecture initiative (MDA®) [3] launched by
the Object Management Group (OMG). During its relatively short lifetime, MDA has
gained a lot of attention by SE researchers, practitioners, tool vendors and others.
MDA promises an integrated framework for model-driven software development.
Since the Unified Modeling Language (UML™), the Meta Object Facility (MOF™)
and the Common Warehouse Metamodel (CWM™) are in the core of the MDA, the
models are the core artefacts of an MDA-based development process. An important
part of the MDA vision is to equip developers with fully integrated tools to support
the development of system models as well as executable code. These tools should
provide synchronization of code and models, cope with different model views and
abstraction levels, and provide utilities for model transformation and code generation.

General adoption of such advanced tools implies a new practise in systems
development. In addition to the activities and responsibilities defined in current
model-based methodologies, someone must be responsible for 1) specifying the meta-
models of the chosen PIM and PSM levels, 2) defining appropriate transformations
between the PIMs and the PSMs, and 3) checking the consistency between models,
both on different levels of abstraction and between viewpoints on the same level of
abstraction. The new responsibilities call for new roles to be included in an MDA
process. In the following, we outline the responsibilities of these new roles and
specify their contributions to the systems development process.

2 Additional MDD Roles

2.1 Background

From the MDA Guide [3], one gets the strong impression that OMG’s current vision
of model-driven architecture is still open for some interpretation. Indeed, in relevant
forums, much effort is used to discuss the meaning of central concepts such as
"platform", "independent", "transformation" and "architecture". Despite these
sometimes philosophical discussions, practical tools and techniques are emerging
which assist software developers moving towards the MDD vision. When these tools
are introduced into an organisation, one soon discovers that they assume new ways of
working that requires new skills in the organisation. These skills build upon, but are
not similar to, existing skills that one needs in traditional model-based development.
The MDD community assumes that the investments an organisation has to make in
order to get these new skills are outweighed by the returns in software productivity,
maintenance and flexibility.

In the MDA Guide and elsewhere, it is explicitly stated that the OMG will not
propose any standard methodology or process; it will only provide standardised
building blocks for making domain- or organisation-specific methodologies. In [4],
the assumption is that MDA will fit with most state-of-the-art methodologies,
including agile software development, extreme programming and more heavy-weight
processes like the Rational Unified Process. In the EU project MODA-TEL [5],
efforts have been made to define a MDD methodology, the results of which are
summarised in [6]. This is a general methodology that spans the identified phases of
project management, preliminary preparation, detailed preparation, infrastructure
setup, and project execution. However, in this paper we focus on the additional skills
that are needed in an MDD project, and that may for instance be positioned in the
methodology outlined in [6].

2.2 The meta team

We have grouped a number of skills into what we call "the meta team". These skills
are needed to define modelling languages, domain and platform concepts, and to
customise tools. In the following we detail these skills. Note that we use the term
"platform" to denote any coherent and agreed-upon set of concepts, not limited to a
computing platform such as J2EE or .Net. A PIM is independent of the concepts in
the platform, whereas a PSM is dependent on them. Note also that when we refer to
"the PIM level" or "the PSM level", we do not indicate that there is only one such
level. Indeed, we appreciate the recursive structure of "PIMness"; a PSM may be a
PIM with respect to another platform.

2.2.1 The domain expert

Domain experts are necessary irrespective of how the software is developed. The
domain expert is a person with detailed understanding of the application domain and
who is able to abstract and categorise the required concepts and their relationships in
the domain. In MDD, the domain expert should also to be able to capture this
knowledge in a domain model that can be used as a baseline for the PIM meta-model.
In [7], this skill is referred to as ontological meta-modelling since it focuses on the
meaning of things instead of the form, which linguistic meta-modelling does.

2.2.2 The platform expert

This expertise is also necessary irrespective of software development techniques and
processes. Detailed knowledge about the platforms is needed in order to produce
quality software that utilises the features of the platforms. In MDD, platform experts
need to be able to specify the essential platform properties in a platform model that
can be used as a baseline for the PSM meta-model. Again, this is an ontological
meta-model, with the subject matter being the platform.

2.2.3 The language engineer

The language engineer creates customised modelling languages suited for a purpose.
This may be to identify a UML subset or to design a new domain-specific language.
In any case, in MDD, the language engineer needs to use a meta-meta-modelling
framework, such as the MOF from the OMG or the Ecore in Eclipse, to define the
language(s) in a uniform manner if the concepts in each language are to be related in a
transformation process. The language engineer performs linguistic meta-modelling,
creating languages that are able to express the concepts from the platform model(s)
and the domain model(s). Thus, the language engineer creates the PIM and PSM
meta-models. In addition, the language engineer may create mapping languages, i.e.,
languages used to annotate PIMs so that they can be the source of transformations to
PSMs. The language engineer needs to have expert knowledge in language design to
define the abstract syntax of the languages, and needs knowledge in semiotics to
create the concrete syntax of the languages, especially if they are diagrammatic. If a
language is related to, or a subset of, another language (such as the UML), the
language engineer also needs intimate knowledge of that language definition.

Note that we assume existing modelling languages can be used without the
involvement of a language engineer. This is especially important for special-purpose
modelling languages that are designed to support different kinds of model analysis.
For instance, a real-time modelling language may support schedulability analysis for
an organisation without the involvement of a language engineer, unless this modelling
language should be tailored to specific needs.

2.2.4 The transformation specifier

From the crucial role of model transformations in MDD, it follows that the skills of
the transformation specifier are extremely vital for an MDD organisation. It is the
responsibility of the transformation specifier to define the relationships between PIMs
and PSMs. This can be done at the model level or at the meta-model level by relating
the PIM meta-model to the PSM meta-model. In any case, the transformation
specifier needs to know both source and target of the transformation, and needs to
know the transformation language (e.g., the language which is emerging from the
QVT-Merge proposal [8]). In addition to creating the transformation, the
transformation specifier also defines what should be recorded from the transformation.
These records are essential to support traceability and round-trip engineering. The
transformation specifier is the one to bridge the worlds of the domain expert and
platform expert, and must as such understand both worlds in sufficient depth to be
able to relate the concepts. It is absolutely essential that the transformation utilises
the features of the platform, which may be hard to obtain without intimate knowledge
of the platform. Therefore, in many cases one person will play the roles of both the
transformation specifier and the platform expert.

A transformation may not only be to take one PIM and turn that into a PSM. In
many cases, several models are weaved together on the PIM level and then turned into
a PSM. The ability to weave together models requires insight into the different
domains of the models so that consistency criteria can be defined. In the terms of
IEEE 1471 [9] that is used in the MDA Guide, model weaving may be regarded as
view integration. This can be done at the meta-model level by defining consistency
criteria between the different meta-models, or, in IEEE 1471 terms, between the
different viewpoints. It remains to be seen whether the result of the QVT process is
suitable to also address the issue of model weaving and viewpoint consistency.
However, the transformation specifier needs to handle this issue irrespective of
whether standardised mechanisms exist.

2.2.5 The method engineer

The final skill needed in the "meta group" is that of the method engineer. The
responsibility of the method engineer is to identify and orchestrate the activities
needed in the MDD software development project. The method engineer needs to
identify the modelling artefacts that should be produced during the project, and relate
them with appropriate transformations. Furthermore, the method engineer should
customise the tools to support the individual tasks in the software development.
Finally, the method engineer should organise the activities into a process and possibly
customise a process support tool to support the enactment of the process. In [10], the
authors define the notion of MDA Component as a collection of know-how about the
individual tasks in a MDD process. Using this term, the responsibility of the method
engineer is to identify and organise the MDA Components available in an
organisation.

2.3 The project team

The project team does the application development. They base their work on the
foundations of the meta team, and applies the MDD tools and techniques in each
project. Their skills do not differ substantially from a regular development team; they
need to use state-of-the-art tools to solve complex problems. In the following we
briefly outline the skills that are pertinent to MDD.

2.3.1 The application designer

We group all aspects of application construction under this role. Requirements
capture, architectural design, detailed design, coding and testing are all activities
performed by the application designer. The difference in an MDD setting is that the
designer should use the modelling languages provided by the language engineer when
performing their activities. Moreover, the application designer should use the
transformations provided by the transformation specifier instead of performing the
transformations manually as in the traditional approaches. The application designer
needs to understand the transformations that are used during application construction
so that the consequences of different design choices are known. The use of (semi-)
automatic transformations also assumes that the application designer uses one or more
marking languages to mark the PIMs to become transformable.

2.3.2 The system analyser

Again, this role is part of traditional application development. System analysis may
include analysis of the system's real-time behaviour, scaleability, maintainability, etc.
The distinguishing feature in MDD is that the models are the primary artifacts, not the
code, so system analysis can be done at the model level instead of at the system level.
This means that the system analyser needs to be able to instrument the models in
order to get them analysable.

2.3.3 The system tester

The system tester is the final role that requires additional skills in an MDD approach.
As opposed to the traditional approaches, the models can also be tested in an MDD
approach since model transformation steps are made explicit and can be verified.
Note the difference between testing the models and generating tests that can be used
for testing the system. Model-based test generation is already part of state-of-the-art
approaches, whereas model testing is still largely unexplored. Model simulation is a
technique to support model testing. Some modelling languages have accompanying
simulation tools, but this is not the case for the UML. The skills needed for model
testing is largely those needed for testing in general. The difference is that one tests
the models, and for this the system tester needs to interpret the testing results in terms
of modelling concepts instead of as system concepts. However, most of this should

be supported by tools and most good traditional testers should be able to become good
model testers.

3 MDD Tools

To support the activities outlined in the previous section, a number of useful tools can
be identified. Below we list and briefly characterise the tools we have identified.

• Model editor. The obvious tool in a MDD approach is a model editor that
supports creation and manipulation of models. The model editor should not
care whether the models are application models or meta-models, a model is a
model as far as the model editor is concerned. However, the model editor
should perform conformance checks so that the modeller only can produce
models that are according to the relevant meta-model. Preferably, a model
editor should be able to be customised to support any modelling language that
the language engineer produces.

• Model repository. The models need to be stored and managed; this is the
responsibility of the model repository. The model repository should support
management of models in any modelling language according to the meta-
meta-modelling approach that is chosen, in addition to traditional repository
services such as persistence and browsing.

• Model transformers. The model transformations should be encoded in a tool
so that the transformations can be as automatic as possible. Note that total
automation is in many cases not achievable or desired, human intervention is
often needed in each case to decide some of the issues that the transformation
addresses.

• Model analysis tools. Many kinds of analysis can be performed, and existing
analysis tools can in most cases be used, perhaps tailored to deal with the
chosen modelling approach.

• Model simulator. Finally, a model simulator is useful for certain tests. Many
modelling languages already have simulator tools that can be used, but for
UML this is still not available.

4 Conclusions

 In this paper we have identified and discussed the different skills needed in MDD.
We have also outlined some necessary tools needed to support the roles that an MDD
approach prescribes.

If a manager in a software developing organisation reads this list, some concerns
may arise, especially with respect to the meta team. Most software developing
organisations look at method engineering as unproductive work that preferably
someone else should do for them, and they should be able to pick up an appropriate
methodology from a book or a course. In MDD, this is in general not the case since
one of the basic ideas is to have specific tools and techniques (hereunder languages

and transformations) for each application domain. However, most software
developing organisations are not alone in their problem domain, and one can foresee
standardised (de facto or more formal) techniques that are useful for many kinds of
software development organisations.

Large organisations, however, may want to use a proprietary language to protect
their investments from being directly transferable to competitors. Such organisations
may want to have all roles in the meta team filled by internal resources.

Acknowledgements. The work reported in this paper is carried out in the context
of MODELWARE, an EU IP-project in FP62003/IST/2.3.2.3.

References

1. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Object Technology Series, ed. G. Booch, I. Jacobsen,
and J. Rumbaugh. 1999: Addison-Wesley. 463.

2. Atkinson, C., et al., Component-based Product Line Engineering with UML.
Component Software Series, ed. C. Szyperski. 2002: Addison-Wesley. 506.

3. Miller, J. and J. Mukerji, eds. MDA Guide Version 1.0.1. 2003, Object
Management Group: Needham.

4. Kleppe, A., J. Warmer, and W. Bast, MDA Explained. Object Technology
Series, ed. G. Booch, I. Jacobson, and J. Rumbaugh. 2003: Addison-Wesley.
170.

5. MODATEL, www.modatel.org.
6. Gavras, A., et al. Towards an MDA-based development methodology. in

First European Workshop on Software Architecture (EWSA 2004). 2004. St
Andrews, Scotland: Springer Verlag.

7. Atkinson, C. and T. Kühne, Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 2003. 20(5): p. 36-41.

8. QVT-Merge Group, Revised submission for MOF 2.0
Query/Views/Transformations RFP. 2004, Object Management Group.

9. IEEE, Std 1471-2000, Recommended Practice for Architectural Description
of Software-Intensive Systems. 2000. p. 23.

10. Bézivin, J., et al. MDA Components: Challenges and Opportunities. in First
International Workshop on Metamodelling for MDA. 2003. York, UK.

