
Relating MDA and inter-enterprise collaboration management

Lea Kutvonen
Department of Computer Science, University of Helsinki

Lea.Kutvonen@cs.Helsinki.FI

Abstract

The goal of MDA (Model Driven Architecture) approach
is to provide tool chains that support generation of applica-
tion implementations, and interoperability of applications
by ensuring that communication models can be shared by
different components of distributed applications.

This paper discusses the relationship of MDA tools and
components with the inter-enterprise collaboration man-
agement that has become crucial for the success of enter-
prises. The MDA components and tools are seen as lo-
calized, intra-enterprise elements, with structural require-
ments on shared abstract computing platform. That plat-
form is expected to enable inter-enterprise business pro-
cesses to be run, using the MDA provided components as
participants. Essentially, the MDA tools are visioned as fac-
tories taking service descriptions and generating implemen-
tations, metainformation for local management services,
and metainformation used for inter-enterprise collabora-
tion establishment and management.

This relationship between MDA and inter-enterprise col-
laboration middleware induces needs for shared model
and pattern repositories, and ontologies supporting queries
from them. Furthermore, this relationship between MDA
and process-oriented systems reserve MDA techniques on
the (ODP) engineering level solutions, while (ODP) enter-
prise level descriptions are used as metainformation for col-
laboration middleware.

1 Introduction

The OMG MDA (Model Driven Architecture) [1, 2, 6]
aims for tools and solutions that rise expressiveness of pro-
gramming tools and provide interoperability of software
components across platforms. The MDA approach uses a
unified system model by taking the full application network
and capturing it into a single (or composed) model, PIM
(platform independent model). This model is then trans-
formed (stepwise using several refinements and modifica-
tion) into an (partial) implementation. Parts of the unifying

model may be transformed using different set of transforma-
tion rules, giving a solution for a heterogeneous platform.

Looking at the emerging ICT support for inter-enterprise
collaboration, the first necessary step is to the develop-
ment of enterprise systems, and intra-enterprise business
processes within them. For this work, MDA brings a wel-
come and necessary improvement. The three modeling lay-
ers – CIM, PIM and PSM – allow process-aware software
components to be developed and interoperate because they
are developed using the shared CIM model that represents
enterprise operational needs.

However, the second step in enterprise system evolution
is the adjustment to various business networks. New gen-
eration ERP systems, distributed or collaborative workflow
systems, and inter-enterprise business process management
systems require modeling of a "global" collaboration model
within which partners have specific roles to be fulfilled by
their ICT system services.

The inter-enterprise arena is not directly addressed by
MDA. Still, MDA components (component used to refer to
produced software components, MDA tools, transformation
rules etc like in [4]) bring a significant element to the overall
collaboration architecture.

The business networks can be established and managed
in various ways, namely by integration, unification via
shared model, or by federation. Integrated solutions are
what we have seen in EAI and B2Bi solutions [13, 13]. Uni-
fied solutions trust on shared metalevel model for coordina-
tion and interoperability, like in MDA. In an inter-enterprise
setting, MDA tools can be used directly, but only if the
network of enterprises and their collaborative business pro-
cesses can be designed together and participants are willing
to replace their internal process components with new ones
or are able to map new processes on top of existing ser-
vices. Federated solutions require separate facilities to exist
to provide an environment, a breeding environment [5], to
find appropriate process models, negotiate of their use, and
agree on participation on the established network together
with terms and conditions of the operation.

Even in the case of federated solutions, and cases where
the global business process is not used for generating ex-

ecutable elements, but for monitoring conformity, the ac-
tual service components need to be created with some tools.
Here, MDA tools are very applicable, as the metainforma-
tion required by both facilities are of the same type.

Relevant points of design include the platform models
assumed. In the following, the shared abstract computing
platform for inter-enterprise business process management
is briefly commented, and its effects on the structure of
MDA components is discussed. Special attention needs to
be placed for communication, and agreement on communi-
cation contents and context; the ODP viewpoints [8] pro-
vide a method for describing what platform elements and
contractual elements need to be involved.

For the inter-Enterprise processes, choreographs be-
tween independent services are relevant. Therefore, the
question arises on how MDA supports production of service
implementations taking both the platform requirements and
the service description (signature, behavior, NFA features)
into consideration.

2 Idea(l) of shared abstract computing plat-
form

The overall architecture model discussed here is the one
used in web-Pilarcos project [12, 11, 9, 10]. In the model,
a federation contract is formed to define the collaboration
processes and roles between enterprise services. The B2B
middleware carries responsibilities of running the partner
discovery, contract management and behavior monitoring
protocols. The service components are independent from
each other and only required to provide the service denoted
in terms of external behavior and information exchange.
The autonomy of service providers is emphasized; the in-
ternal implementation or deployment aspects are strongly
encapsulated.

In environments where enterprise applications become
members of dynamically established inter-enterprise busi-
ness networks, the following metainformation services are
needed:

� identification of the intended network structure, in-
volving the topology of the network for responsibility
distribution and collaborative business process models;

� discovery of potential partners for the roles in the net-
work;

� static verification of interoperability between commu-
nicating partners; and

� contract management (establishment, monitoring, ex-
ception management, termination).

The key element in the infrastructure is contract and con-
tract management facilities. The business network contract

(federation contract) captures the business process models
involved and maps the roles presented in such a way that
each participant has one and only one combined role in the
network. The roles are populated using discovery service
for suggestions, and by assuring the selected service offers
present an interoperable network.

The essential part of the role requirement is that of pro-
vided set of services and required set of services from peers.
Implementation requirements of the service may call for
requirements on service from the local platform; all "side
effects" of processing towards peers should be visible in
the service. Some integration requirements may however
be present: requirements for binding object support and re-
quirement for the use of integrated repositories need to be
set as specific service properties.

Figure 1 illustrates how these services can be seen as
potentially external infrastructure services between enter-
prises. The requirement for each enterprise is to support in-
terfaces for corresponding metainformation exchange pro-
tocols.

The model repositories (type repository and business
process model repository) are to support static verification
steps during the network population phase and during any
repopulation events later in the network lifetime [17, 14].
Therefore, the MDA components need to be present in
the operational infrastructure services. As the contract is
phrased in platform independent terms, all participants need
to be able to reflect their own solutions relationship to the
abstraction. The repositories need to provide an open, incre-
mentable set of transformation both horizontally and verti-
cally. The existence of horizontal transformations (PIM-
PIM, or PSM-PSM transformations) a) requires an under-
lying (implicit or explicitly stored) unifying model to ex-
ist and b) indicates an interoperability relationship to ex-
ist. The existence of vertical transformations a) support
traversal of the relationship tree for analysis purposes and
b) support code generation and dissemination of best prac-
tices knowledge.

The MDA transformation rules and transformation fil-
ters need to be stored into service, information representa-
tion, process model and NFA definition ontologies for run-
time use. Verification of relationships is resource consum-
ing task, and thus needs to be performed separately.

The network of relationships is built by a set of design-
ers, filter programmers, ontology creators etc. New kind of
infrastructure requires an enhanced set of new "professions"
as described for example in [7]. In addition, standardiza-
tion efforts providing standard collaborative processes (like
RosettaNet PIPs [3] or proprietary supply chains processes)
gain from a shared publication method online and thus eas-
ier adoption cycle.

For business network establishment, each enterprise pro-
vide metainformation via traders about the use of those ser-

trader

populator

type repository

model repository

 binding object

service
interface

provision

workflow
engine

component
implementation

implementation
repository

binding
endpoint

management

conformance
monitoring

service
interface
provision

workflow
engine

component
implementation

implementation
repository

binding
endpoint
management

conformance
monitoring

Figure 1. Architecture

vices they provide. Traders are supported by type repos-
itories for resolution on whether two interfaces are alike,
replaceable by each other, or not compatible. The populator
fills in a business network with interoperable services.

For the runtime communication, the essential element
in the architecture is that of distributed, open binding ob-
ject. The object is constructed according to a binding con-
tract, which declares the selected distribution transparen-
cies, transaction choreographs, QoS agreements, and end-
point characteristics.

For the runtime verification of model conformant busi-
ness process enactment, monitoring services are needed.
Sensors can become standard elements of the alternative
binding architectures. For the development of pervasive
monitoring services, the language concepts for the moni-
tored phenomenon need to be agreed on. This means on-
tologies of various aspects, like NFA features, dependent
on each business process application domain.

3 Deriving requirements on PIMs from the
business network environment

Within the architecture, three modeling points are of spe-
cific interest: the business network models, the external be-
havior models of service interfaces, and the model for the
service realization within the enterprise. Here, the term re-
alization is selected in favor of implementation, as the real-
ization will often span a group of applications, data reposi-
tories etc.

The MDA processes to be used here would produce ser-
vice realizations, starting from a set of models and pro-
ducing appropriate implementation code (frameworks), and
metainformation to be published in the B2B middleware
repositories. The code should not include binding man-

agement, interoperability tests with peers, partner selection
logic, or other elements provided by the B2B middleware.
Instead, only the application logic should be present and
conform to the external behavior model of its service inter-
face type. Implementation must be parameterizable by NFA
alternatives and other contract values.

The MDA road map from OMG describes MDA process
with three model layers, CIM, PIM and PSM, roughly re-
lated to ODP viewpoints. CIM (computation independent
model) relates to the enterprise viewpoint, PIM (platform
independent model) to computational viewpoint, and PSM
(platform specific model) to engineering model. The pro-
cess is started from top, generating PIM models from the
CIM models, with the advise of some transformation rules.
Likewise, more detailed patterns advise the generation of
PSM models from PIM models.

In the inter-organizational setting, the CIM model of fo-
cus describes the enterprise service internal logic that is
externally visible through the provided service interface.
Thus, in the MDA tool, a new CIM model needs to be ver-
ified against a published external service type. The set of
enterprise business processes is more or less consistent and
preplanned for efficient use of computing solutions. Model-
ing the processes and analyzing the processes as a set (BPA,
BPR, etc) is an important goal in itself, especially combined
with the view of inter-enterprise processes.

This CIM model can be further refined to PIMs. At the
PIM level, also other models should appear in the enterprise
model repository, namely those processes that support as-
pects of computing platform properties (security, trust man-
agement, QoS management, authorization, enterprise poli-
cies, service and binding factory management). These mod-
els should be prepared in such a way that aspects of be-
havior that can be negotiated within the inter-enterprise net-

work can be configured either by selecting a suitable service
component or by setting configuration attribute values.

For any enterprise service to be generated starting from
a CIM model, a derivative PIM should be produced us-
ing selected CIM patterns. In addition, a set of PIMs that
represent required computing platform properties should
be joined with that business logic PIM for analysis. For
code generation, the PIMs of computing platform proper-
ties should be dealt with as platform definition, giving the
target concepts to be used by the implementation.

The binding elements should be provided as separate ser-
vice elements. The production of these elements should go
through the same kind of production process as the services
within collaborative business processes.

Information or documents exchanged in the business
processes are not described in all modeling techniques.
However, modeling of information is an essential aspect
that should indeed be modeled explicitly, and as a separate
modeling issue. So, in addition to PIM models, there should
be separate PII models (presentation independent informa-
tion models) that can be mapped down to various represen-
tation formats. Transformations between representations of
the same models could be placed as a responsibility of bind-
ings.

When an enterprise service becomes deployed, it needs
to be made available in the network. This is done by ex-
porting appropriate service offers. For the proper estab-
lishment of dynamic business network contracts, the ser-
vice offers need to capture metainformation that describes
the service from several points of view, capturing the ser-
vice description from ODP enterprise viewpoint and ODP
computational viewpoint in respect of the actual service,
and from ODP engineering viewpoint and ODP information
viewpoint in respect to bindings.

4 Producing new enterprise services

To make the relationship of inter-enterprise collaboration
management and MDA process more concrete, an enter-
prise service production process is briefly sketched. Fig-
ure 2 illustrates the process and the flow of model informa-
tion in the architecture.

For the service elements two sources of model informa-
tion is needed: type repository and realization models. The
type repository is used for retrieving an existing service in-
terface definition with behavioral, syntactic and NFA re-
lated information. Naturally, the MDA process can start by
definition of new service interface type or subtype, and its
publication to the type repository; in the publication phase,
relationships to other existing models can be stated (or gen-
erated) and verified. The realization models should be avail-
able as a repository as well; most likely the repository is em-
bedded into MDA development environment and thus may

be vendor specific although free exchange of models would
be ideal.

The service types can be located either directly browsing
the type repository, or by browsing the business network
models first. When an appropriate business network model
is found, one of the roles can be chosen and service types
associated to it can be picked up. The business network
models can be stored for example as enhanced, abstract
BPEL4WS [16] descriptions, or in a home-brew notation
for ODP enterprise language. Service descriptions can be
stored for example in enhanced WSDL [18].

The service types can then be organized as interfaces,
and several implementation models can be selected to cre-
ate the overall PIM for the service logic. Into this ba-
sic framework, several aspects PIMs can be intertwined
to include for example non-functional property manage-
ment (security, QoS, trust, policy-based protection of ser-
vice abuse). The resulting network of communicating ob-
jects/components/subservices/workflow has to be analyzed
for its viability, and code generated. The platform model
and aspect models need to be available to describe the tar-
get environment onto which code is intended to run. Part of
the platform model form facilities for binding management,
which has to become a standardized, abstract PIM.

When the implementation has been generated and de-
ployed, metainformation has to be provided: service offers
exported to traders describing all service interface proper-
ties, binding requirements, range of nonfunctional proper-
ties that can be adapted to, etc.

5 Conclusion

This paper tries out some initial ideas on how MDA tools
could be used for production of enterprise services that are
autonomous but interoperable within a collaboration envi-
ronment. The environment outline is that of web-Pilarcos
project.

The exercise shows that the MDA process is applicable
when the tools used are able to take several input mod-
els and produce several different kind of output: code and
metainformation for the runtime environment.

Essential for the produced applications is that they use
the abstract services of the collaborative operational envi-
ronment, especially the binding facilities. Other parts of the
computing platform are fairly much isolated.

The federation contract structures that are focal in the
web-Pilarcos architecture capture requirements from all
ODP viewpoint models. Consequently, the MDA stepwise
process running from CIM to PIM and to PSM must pick
up requirements from the contract structures at each step.
Likewise, requirements for information contents and pre-
sentation should follow the same method.

service interface

behaviour model

interface syntax

NFA

business network model

business process model

role interactionrealisation
model alternatives

MDA tool

implementations

deployment rules

service offers
with
binding requirements

populator

binding instances

service enactment

local service
management

platform
model

service
logic

aspect
models

trader

type repository b.n.m. repository

Figure 2. Flow of models.

Using the collaborative business network models as a
source of requirements for the enterprise applications cause
the need of identifying some commonly accepted property,
policy, and behaviour alternatives. The ontologies for these
should be presented within the type and model repositories
of the collaboration infrastructure; this provides a method
for disseminating standard ontologies. It is not plausible to
develop a unified ontology for all services, but instead, it
is probable that certain ontologies can have a business net-
work model or a few business domain as their scope.

6 Acknowledgment

This workshop paper stems from work performed in the
web-Pilarcos project at the Department of Computer Sci-
ence at the University of Helsinki. In web-Pilarcos, active
partners have been VTT, Elisa and SysOpen. The web-
Pilarcos< project is a member in national ELO program (E-
Business Logistics) [15].

References

[1] Model Driven Architecture (MDA). ormsc/01-07-01.
[2] MDA Guide Version 1.01., 2003. omg/2003-06-01.
[3] Rosettanet implementation framework: Core specification

v02.00.00, 2004. http://www.rosettanet.org/.
[4] J. Bezivin, S. Gerard, P.-A. Muller, and L. Rioux. Mda com-

ponents: Challenges and opportunities. In Metamodelling
for MDA, University of York, 2003.

[5] L. M. Camarnha-Matos. Infrastructure for virtual organiza-
tions – where we are. In Proceedings of ETFA’03 - 9th inter-
national conference on Emerging Technologies and Factory
Automation, Lisboa, Portual, Sept. 2003.

[6] D. S. Frankel. Model Driven Architecture - Applying MDA
to Enterprise Computing. OMG Press, 2003.

[7] A. Gavras, M. Belaunde, L. F. Pires, and J. P. A. Almeira.
Towards an mda-based development methodology for dis-
tributed applications. In First European Workshop on Model
Driven Architecture with Emphasis on Industrial Applica-
tion, 2004.

[8] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 3: Architecture, 1996. IS10746-3.

[9] L. Kutvonen. Controlling dynamic ecommunities: Develop-
ing federated interoperability infrastructure. In INTEREST
2004 workshop.

[10] L. Kutvonen. Using business network models in web-
pilarcos. In EMOI 2004 workshop.

[11] L. Kutvonen. Automated management of interorganisational
applciations. In EDOC2002, 2002.

[12] L. Kutvonen. B2b middleware for managing process-aware
ecommunities. In submitted manuscript, 2004.

[13] D. S. Linthicum. B2B Application Integration - eBusiness-
Enable Your Enterprise. 2001.

[14] T. Ruokolainen. Component interoperability. Master’s the-
sis, University of Helsinki, Department of Computer Sci-
ence. In Finnish. Manuscript to be accepted in April 2004.

[15] TEKES. ELO program, 2003.
http://www.tekes.fi/programs/elo.

[16] S. Thatte. Business process execution language for web ser-
vices, version 1.0. Technical report, July 2002. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel/.

[17] M. Vähäaho. Arkkitehtuurikuvauksia hyödyntävä meklaus.
Master’s thesis, Department of Computer Science, Univer-
sity of Helsinki, Dec. 2002. C-2003-NN.

[18] WSDL Specification. Technical report, 2004.

