Enterprise Change Methodology with MDA

Tony Mallia
Principal Consultant

CIBER Inc. Federal
7900 Westpark Drive, Suite AS15
McLean, VA 22102, USA
e-mail amallia@ciber.com

Abstract. This paper describes the practical application of MDA and UML tools in the development of large multi-
system projects or system of systems involving multiple development organizations, platforms and tools. A change
engineering architectural framework is described with its three view dimensions and how it relates to enterprise
architecture. The roles of models at both the change management and methodology views and the separation and use
of CIM, PIM and PSM are described in relation to the establishing of integration contracts during the life cycle
process. Particular attention is focused on the political reality of multi-organizational development and the delegation
of technical decisions. A focus on specifications in the methodology view covers the CIM models (both Ontology
and Business Process) and how they transform into PIM Message Templates (Sometimes called a document model)
and Component models. Then these PIM models are transformed into PSM component contracts. This paper does not
cover PIM and PSM to executable code transformation which is widely covered by current papers. These concepts
are illustrated in the implementation of a US Federal Health project which is in operation and in current work being
implemented with an XML Schema Factory which shows current off the shelf tools performing transformations.

Introduction

In a large multi-system environment, selection of a single application development tool for all application
development is unlikely due to the diversity of language and communications platform technologies and the preference

and experience of the various development teams involved.

Successful techniques to produce a coherent implementation across the environment rely on delegation and de-
coupling approaches such that the effort can be spread across the teams but that when the parts are assembled together
there is high probability of successful integration. Not only will the development be successful but the organization can
respond to changes in a routine way maximizing systems development agility.

Change Engineering Architectural Framework

A change engineering framework
proposed here has three view dimensions:

Perspectives, Focus and Transformation. Transformation
As shown in figure 1, they provide a space Perspec‘l‘ive
in which to describe the degrees of Change Engineering
Transformation: Change Method%)logy System
1. Operational system Ope gggg%f é\;[]asl?ea}%ement System
2. Change management system
3. Change methodology system
4. Change engineering Focus
These transformation views are applied
to the Perspective and Focus dimensions. Fig. 1.

Transformation Views

In effect, the organization must look to a Change Management System to make the activities and procedures for
change well understood and managed. The Change Management System produces the required Operational System
which is used in the Enterprise in day to day activities and is equivalent to the Functioning Enterprise in the Zachman
Framework. The development and maintenance of a Change Management System is by a Change Methodology System.
MDA provides techniques and tooling to be used by a Change Methodology System to implement the Change
Management System.

A system implemented at one transformation view is specified by the model in the higher view. Thus the Operational
System is specified by the Change Management Model and the Change Management System is specified by the Change
Methodology Model.

Perspective Business

A number of approaches have defined the perspectives which
are targeted towards different players in the organization. A set of
4 perspectives have been found to work in the large multi-system
environment. They are shown as the colors in Figure 2.

e The Business perspective defines the environment for the
system and contains the manual and computer assisted
activities of the operations and their degrees of transformation. P

e The Enterprise System Perspective, sometimes called the
superordinate system, is the enveloping harness which applies
end to end integration around the application systems.

e The Application Systems Perspective, subordinate or
subsystems, are the components either bought or built which
provide the functionality. Fio 2

e The Technology Perspective is the language or transport
platform on which the application systems and enterprise integration run.

Enterprise System

Integration

- o

While these perspectives are not exactly the same as the CIM, PIM, PSM and Platform views of MDA, they provide
a better alignment with the organization of the enterprise and the responsibilities for managing large complex systems.

Focus

Focus has been derived from the Zachman Framework but is different in a fundamental way. Where the Zachman
framework separates the specification of the system (to be) into the different focus categories, the Enterprise
Architecture in this paper defines the focus to be actual instance parts of the system at the appropriate transformation
view. The specification is in the model (“What” focus) of the higher transformation view. Thus the Models in the
Change Management View describe the 6 focus categories in the Operations View but are not necessarily organized in
these categories. The “How” of the Change Management View are the actual activities to produce the Models which
describe the Operations View.

The “What” focus defines artifacts or work products which are produced or consumed by the system activities (the
“How”). The Where, Who, When and Why define location, participants, schedule and reason for the activities. Thus the
Enterprise Change System row describes the project plan and execution of the Enterprise System Change.

Transformation and Focus for Enterprise System Perspective

Enterprise System Perspective

~_Enterprise nterprise nterprise nterprise nterprise nterprise

Eintl‘:lr::: System System System System System System
sg o g ineering ing ineering Change Engineering Change
Y Models Change Location Engineer Schedule Reason

Change Methodology Laye
Nllndlvldual?
and Role

nterprise
System Methodology
Change Change
Models

SDLC
Change Management Layer

Enterprise M
Methodology

System

M gy
Change
Schedule

gy
Change
Reason

M
Management
Location

nterprise

N Enterprise Change Change System
Chgrrlmer;"z:em System i:;cige Management Individuals gx:‘:': Change
ge Sy Models ty Location and Roles 9 Reason

Sehadile

Transformation Views

Project Plan
Operation Layer

Enterprise Com:::ents Useaﬁ:ses Syste!'ns Enterprise Dseycsi:sai:'n
Syzten | Messages Collaboration Locatier Reason

Fig. 3.

Figure 3 extracts a horizontal slice
through the Enterprise Architecture for
the Enterprise System perspective layer
showing the Transformation and Focus
dimension Views. The Enterprise
Change System is described by the
Enterprise System Change Models
commonly known as Software
Development Life Cycle (SDLC) for
the Enterprise System.

Execution of the Change
Methodology System results in a
definition and deployment of the
Enterprise Change System and
execution of the Enterprise Change
Management System results in the
Enterprise System Models and the
implementation of the required
Enterprise System.

Models of the SDLC can be defined
in UML using techniques out of the
Systems Engineering Models such as
the UML SPEM Profile. The Change
Management System is the actual

instances and actions of the change process which results in the operational system. Thus a horizontal line of cells

represents a system realization.

MDA and Change Management

The
Change Management View and Models

Change
Activity

Business
Change
Transformation

Models Management

Location

ndividuals
and Roles

Change
Schedule

Change

where

Enterprise Enterprise Change Change [D erprise

roles of models at the change

management system and the coherence of CIM,
Change Changs Business] Business PIM and PSM allow the bridging between the

! S perspectives. This allows coexistence between
MDA and Component Based Architecture

the contracts between Application

Systems must be taken to the PSM level to

Change System System : 14 3
Systel Systel . M. nt Individual:
| Sysem Systom A prasement | s] Chonee Shange]e;rrlis(lilgrieng interoperability ~ without platform

Application
ge

P
Technology
Change

Change Management Perspectives

By providing the Enterprise System Contracts at both the
PIM and PSM levels to the Application Systems developers,
integration can be facilitated. Some of the PIM model Fig 4.
instances from the Enterprise System can be reused in the

In the Change Management View which is
now a vertical slice of the Architecture
Framework as shown in Figure 4, model
instances of the systems at each perspective are
so far disconnected. Coherence between the
Business models, Enterprise System Models
and Applications System Models would ensure
that there is alignment between the Business
and the systems implementation and between
the Application Systems and the Enterprise
Integration Contracts.

Application Systems development and some examples to show the models which are reusable.

Although the details of the organization are not discussed here, it is assumed that there is a central architecture group
which is able to develop and govern the Enterprise System and its models. Distributed Applications Systems
development groups would work with the Enterprise Systems development group to facilitate reuse of models and
negotiate integration contracts.

In the same way, Technology Systems need to be selected and integrated in a coordinated fashion whether single
technologies are selected or multiple technologies must be bridged. It has been found that it is not necessary to generate
code in the Application Systems to provide a high degree of Application Systems independence from the Transport
Technology rather a binding layer of the Enterprise System can provide interfaces to the Application System where the
nature of the Transport Technology is transparent.

Perspectives and MDA

Using MDA in the Methodology

Model
CiM jBusiness Models
The MDA CIM, PIM and PSM model types g
are aligned to the Business, Enterprise and g
Application System perspectives as shown in >3~
Figure 5. The CIM maps to the Business Enterprise System Model
perspective and the Models contain concepts PIM

which exist without a computer system. The
PIM maps to both the Enterprise and
Application System Models as does the PSM.
Since the focus of this paper is the Enterprise PSM
System Methodology and the development of
the integration contracts to allow successful
collaboration between Application Systems,
the role of the Enterprise System Models used
in development will be explored.

The CIM model type as defined in the Methodology System Model is separated into an Information View and a
Behavioral View. Both can be defined in
UML. Table 1 shows the models involved in Fig. 5.
the Enterprise System Methodology.

Platform

Information View Behavioral View
(What in Operations) (How in Operations)
CIM Business Business Domain Model Business Process Model

(Ontology)

PIM Enterprise Message Template Model Component Model and

Collaborations
. Message Payload Schema Component Interfaces and
PSM Enterprise (e.g. XML) Methods
Table 1.

The CIM Information View Domain Model defines the concepts and relationships of the Business. In this sense it is
a lower level ontology and can be governed by a middle level ontology as a UML Profile. An example of a CIM
Domain Profile (also in the Methodology System Models) might contain Entity, Role, Act and Identity stereotypes.
These stereotypes can be used to mark classes which can be use to transform the Domain model to the Component
Model — an Act class might generate a “Process Component”. However no tool has been investigated which can do this
but it might be possible with user defined transformation languages to achieve this.

Typically the Domain model will contain packages for Subject areas as well as Datatypes and Terminologies. The
Domain Model requires careful construction because elements will find their way transformed to the PSM of the
Integration Contract. The contents of the model are the concepts that exist in the business which are independent of the
computers systems.

The Business Process model contains Activities and Object Flows representing the actions caused by business
events. Some of these activities can be Enterprise Systems Use Cases where an actor is interacting with the external
boundary to initiate or respond to an Enterprise System event. The effect of the system on the business environment can
be modeled and a superficial message identification as an Object Flow can be defined. The more fine grained actions in
the Use Case are added when showing the interaction of the actor to the system boundary and their linkage to the
Component Model Collaborations.

At the Enterprise PIM level again the models are separated into an Information View Message Template model and a
Behavioral View Component Model.

The Message Template model represents the payloads of messages being exchanged over the integration transport. A
number of techniques have been tried to represent the structure and scope of the payload and the most effective has been
found to be a UML class diagram showing a message root class associated with the first content class from the CIM
Domain model and limiting the scope through the visibility of elements in the diagram. If the element is not visible then
it will not be in the scope of the message.

The Component Model shows both the subsystems which will collaborate along with the collaborations which will
realize the Use Cases on the system boundary. Since the Enterprise System is superordinate, it provides the behavioral
roadmap for the subsystems interactions. Subsystems are considered as black boxes with external interfaces and
behavior — their internal structure or behavior is hidden.

At the Enterprise PSM level the Information View Message Payload is defined in the transport platform’s language
such as an XML Schema and the Behavioral View is expressed in UML as the specific interfaces and methods which
will be used such as Home and Remote Interfaces in the J2EE platform.

Model Transformations

Transformations discussed here in this example Methodology include Domain models and how they transform into
PIM Message Templates (Sometimes called a document model) and how the Message Templates transform into the
Message Schemas. This paper does not cover PIM and PSM to executable code transformation which is widely covered
by current papers.

Business Domain to Message Template Transformation

The transformation from Business Domain to Message template is a selection and restriction process which is
performed by hand in the UML tool. The restriction is that any concept or relationship introduced in the message
template must have existed in the Domain model. No new concepts other than the type of message can be introduced in
the Message template and all structures must be referenced in a Domain package.

Message Template Model to Message Payload

A number of ways of performing the transformation from the Message template to the Payload schema have been
tried which include custom scripts to process the content of the model including the generation of CORBA IDL and
dictionary descriptions to feed into message transformation bridges.

A commercial tool has been used to convert marked UML Enterprise Message Template and Domain models into
XML schemas. This will be described more fully in the XML Schema factory example.

CIM Instance Example

These concepts are illustrated in the implementation of the US Federal Health Information Exchange project which is
in operation. The project involves an integration server which exchanges health records between two US Federal

FHIE Person Domain Model 1 <<Entity ID>> PersonName
Version 1.05 - 4/24/2001 Organization prefix : PlainText PlainText
codedI D : CodedElement givenName : PlainText +degree|value : string
+ompioy a0 . PlainText 07| <<Optional>> language : QualifiedCode
familyName : PlainText
suffix : PlainText
nickName : PlainText CodsdElement
dateRange : TimeSpan
<<Role>> e DR a_qualified_code : QualifiedCode
<<Optional>> preferred_text : String
deaNumber : PlainText 0.1 T vtegaiName
fralias
0.1 +as_practitioner
+ocallD +primary CareManager +player
0.n t
+riballD <<Entity ID>>

@

local_n:

authority_id : Authority ID

7

ame : LocalName [S;tar erticense

Co.

hip>>

<<Role>> 0.1

Patient

Personldentity
birthDateTime : DateTime

<<entity>>

Military Service

branch : CodedElement
military Status : CodedElement

“miltary Servjce

category : C = Rerson PostalAddress
dctornafiD gendor 9 O Tiine1 - PlainText
deceasedDateTime : DateTi Ies ot
haslivingWil ; Bolean TohPiace T]lines PlainText
040/ o, e LR +homeAddress . |city : PlainText
isVip : Boolean ks A
Patienl (Gl —<rol i 3@ +other - |country : C
ole. 2
id - QualifiedName ! Ty sOht postalCode : PlainText
state : PlainText (CLJtem 8 (Gl =Tl 0-Neommunity : PlainText
+player/] 1 county : PlainText
+homePhoneYoi
0.1 o E\E{m
+sponsorSocifiSecurity +nextOfKin ere_ oy
- Telephone
0.1 E
3 Gountry Code : PlainText
Sponsorldentity <<Role>> 0..1areaCode : PlainText
- — NextOfKin number : PlainText
id : QualifiedName o PlainText
¢ G :
2@ :
ety X / composite : PlainText
Fig. 6.

Agencies. The records are
normalized into standard
structures controlled by

Message Templates which are
derived from the Business
Domain model.

An example of a Domain
package is shown in Figure 6.
The package contains concepts
about Person and their roles as
Patient and Practitioner as
required by the scope of the
project.

The relationships show the

semantic paths which are
permitted.
Message Template

The Message Template
example in Figure 7 shows a
fragment of the Patient
Encounter message template

where the diagram includes only
the classes and relationships

which are included in the message. The Message root is at the lower left of the figure and is associated with a single
instance of PatientEncounter class. The Patient Encounter can have an appointment, admission, discharge and
procedures. If you walk all the semantic paths from the message root you get all the semantic concepts which can be

codedComments : CodedElen...,
dateTime : DateTime
textComments : PlainText

id : PlainText

<<hAct>>
ClinicalEventAct

<<ac>
Request

i

S gy e
\/ +admitting +;&§i r

locallD

dateRange : Time
motherMaidenNan

01 QualifiedName

lauthority_id : Authority ID
local_name : LocalName

<<Act>>
ClinicalEvent

<<hct>
Cancellation

<<Act>>
Admission

<<hct>>

<<hct>>

/ isAmended : boolean
reason : CodedElement
comments : PlainText

reasonComment : PlainT.. |

<<hct>>
Discharge Performance Verification
type : CodedElement
¥l
i - T
0.1 +performlan -
+request /discharge f Q%er!orms& sverification
schedulds fequest
<<Evont>>
+procedure ObservationEvent
0.* ha icObserved: CodedEl
| <<Event>> observationStatus : CodedBement
<<order> PballentEncounter SR sensitiv ity _Nc.medaemem
number : : i
plannedDate : DateTime e G type - CodedElement sequence : NumericValie
+patientEncounter 0.1 Freport +observ atignResult

Fig. 7.

+report

[ObservationReport |

.
[observationResult

fullText : PlainText

TextObserv ation
textResut : PlainText

CodedObser
codedResult : Coc

included in the message.

In this project the platform was
Java and the transport uses
serialized Java objects as graphs
to convey the PatientEncounter
message and the model is used to
generate the well formed graph at
run time. In this case the run-time
bridge reads the model to
understand how to construct the
graph and transformation is
therefore by interpretation.

XML Schema Factory

The second example is current work being implemented with an XML Schema Factory which uses commercial off
the shelf tools performing transformations. Figure 8 shows part of the life cycle with the UML editor on the left, the

UML Editor

Editor Model : Model

——>(Develop Domain Model)

Export Domain Model

Model Transformer

,,,,,,,,,,,,,,,,,,,,,,,,, : XMI Document
Import XMI Model

‘ Transformer Model : XMI Document ‘

Generate XML Schemas

\ Package Schemas : XML Schema }

Midlleware Development

[Brror]

Validate Generated Schemas ~va

Import Package Schemas)

[Error]

‘ Development Schemas ; XML Schema

Validate

Fig.

8.

D)

Valid]

DevelopMaps . i

Transformer tool in the middle and the
target middleware IDE on the right.

The UML editor exports the Domain and
Message template models together as a
single XMI document which is imported
into the Transformer tool. The Transformer
tool has preset defaults but can read the
marked elements to condition the
transformation.

The XML schemas corresponding to
packages are generated along with all their

external references, namespaces and
include statements and can be validated.
They are then exported into the

middleware development tool which can
use them as the backbone schemas for
mapping against other incoming or
outgoing schemas and can generate sample
documents. The total round trip time is less
than a minute.

Figure 9 shows a fragment of the
Domain model — in this case part of the
Datatypes package and illustrates some
simple problems such as defining
predetermined string lengths and a Number

Datatype which will be generated as a restriction derivation of the XML decimal. The marks appear as stereotypes on

classes and attributes as well as a few tagged values.

<<XSDsimpleType>>
String10
(DataTypes01)

<<XSDfacet>>+minLength = 1
<<XSDfacet>>+max_ength = 10

<<XSDsimpleType>>
String15
(DataTypes01)

QualifiedName
(DataTypes01)

+value : String30 [1]
+namer : AuthorityType [1]

<<XSDfacet>>+minLength = 1
<<XSDfacet>>+max_ength = 15

<<enumeration>>
‘YNBoolean
(DataTypes01)

Y
N

PostalAddress
(DataTypes01)

<<XSDsimpleType>>
String30
(DataTypes01)

<<XSDfacet>>+minLength = 1
<<XSDfacet>>+max_.ength = 30

<<XSDsimpleType>>
String50
(DataTypes01)

<<XSDfacet>>+minLength = 1
<<XSDfacet>>+max_.ength =50

<<XSDsimpleType>>
String150
(DataTypes01)

<<XSDfacet>>+minLength = 1
<<XSDfacet>>+max_.ength = 150

+addr_Line1 : String30 [1]
+addr_Line2 : String30 [0..1]
+addr_Line3 : String30 [0..1]
+addr_Line4 : String30 [0..1]
+city : String30 [1]

+territory : TerritoryCode [1]
+postal_Code : String15 [0..1]
+country : ExternalCode [0..1]

<<enumeration>>
AuthorityType
(Terminology01)

+H

+DNS

+DB
+ECLIPSE1
+LAWSON

Code
(DataTypes01)

+value : String15 [1]
+description : String50 [0..1]

The style of schemas produced have
very high re-use of common elements
and cannot determine exactly the scope
for an individual message. The
Message template diagram must be

ExternalCode
(DataTypes01)

used in conjunction with the XML
schemas for the Application System

+code_Scheme : QualifiedName [0..1]

developer to understand the payload.

<<XSDcomplexType>>
Money
(DataTypes01)
{derivation=restriction}
+currency : CurrencyCode [1]
+amount : Number [1]

PersonName

+prefix: String30 [0..1]
+irst_Name : String150 [0..1]
+middle_Name : String50 [0..1]
+last_Name : String150 [0..1]
+suffix: String30 [0..1]

iitle : String50 [0..1]
+academic_Title : String30 [0..1]

+altemate : String240 [0..1]

+previous_Last_Name : String150 [0..1]

decimal
{id=decimal}

- = collapseffixed, id=decimal.whiteSpace}

|

<<XSDsimpleType>>

Fig. 9.

<<XSDsimpleType>>
Number
(DataTypes01)
{derivation=restriction}

Some investigation is continuing into
the possibility of the tool developing
XML schemas based on the Message
Template diagram itself. However this
will have to wait for standard diagram
exchange in XMI to be implemented
by the tool vendors.

The XML factory is going into its
first production project and has already
demonstrated the strength to build well
formed XML schemas and apply the
governance needed for successful
Enterprise integration. Notice in the
generated sample below that all the
documentation from the domain model
is carried into the XML schemas.

<l-- >

<I-- Class: PersonName -->
<l-- -—>

<xs: el enent nanme="personNane" type="dt0l: PersonNane"/ >
<xs: conpl exType nane="Per sonNane" >
<XS:sequence>
<xs:el enent name="prefix" type="dtO01l: String30" m nCccurs="0">
<xs:annot ati on>
<xs: docunentati on>Sal utary introduction, such as M. or Herr
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs: el ement >
<xs: el enent nanme="first_Name" type="dtOl: Stringl50" nmi nCccurs="0">
<xs:annot ati on>
<xs: docunent ati on>Fi rst nane of the person
</ xs: docunent ati on>
</ xs: annot ati on>
</ xs: el ement >

Conclusion

Implementation experience has shown the need to clearly define an Architectural Framework which must be aligned
with the development process and organizational structure within an enterprise. A new Change Management
Architectural Framework has been explored which allows the allocation of Systems Change to various teams and where
MDA and transformation or alignment between models provides a coherence between views whether they are between
the Business and the Implemented systems or between systems implemented with contracts in a Component Based
Architecture.

This framework declares the relationship between the methodology system and the change system which it defines.

