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Abstract    
 

In this paper we report on some of the research 
activities at the Sodius Company in the domain of 
model-based system engineering. We start from 
the idea that even if Systems Engineering and 
Software Engineering, it is possible to create 
bridges at the highest level of abstraction and thus 
create correspondence at lower levels. The main 
message of this paper is that it is possible to con-
sider software engineering and system engineer-
ing as two similarly organized areas, based on 
different metametamodels (M3-level). Conse-
quently building bridges between these spaces at 
the M3-level seems to offer some significant ad-
vantages that will be discussed in the paper. We 
illustrate the space of system engineering with the 
well established CORE set of standards. 

1 Introduction 
Model engineering (or MDE for Model Driven 
Engineering) is being considered as an important 
departure from traditional techniques in such ar-
eas as software engineering, system engineering 
and data engineering. In software engineering, the 
MDA™ approach proposed by OMG in Novem-
ber 2000 allows separation of platform dependent 
from platform independent aspects in software 
construction and maintenance. More generally 
MDE is proposing to use models to capture spe-
cific aspects of a system under construction or 
maintenance, not only the business and platform 
aspects. 

In the system engineering domain, a similar 
organization has been used for the last twenty 
years, mainly based on the TRW standard. How-

                                                 
 

ever the overall organization was more implicit 
than explicit. 

This paper describes one ongoing project at 
the Sodius Company in Nantes. The goal is to 
define a generic experimental advanced model 
management platform for system engineering. 
The idea is to consider that we have similarly or-
ganized technical spaces (MDA, CORE, 
Step/Express, Grammarware, XML, DBMS, 
XML, etc.). For each of these we have an implicit 
or explicit so-called M3-level. The MOF notation 
for MDA or the EBNF notation for grammarware 
play this role of defining, with different precision, 
the representation system for the entire technical 
space. In addition to this general M3-level organi-
zation, each space offers, at the M2-level, a rich 
set of specific domain specific languages (DSLs). 
These DSLs may be called grammars, metamod-
els, ontologies, DTDs, XML schemas, etc. Since 
these DSLs are used to capture specific aspects of 
systems, their relations or combinations is pres-
ently an important research concern. Transforma-
tion of programs written in various DSLs is one 
current very active research activity.    

In this paper we propose the idea that it 
should be possible to establish generic coordina-
tion between different technical spaces by making 
explicit the M3-level properties and providing 
domain-independent transformation facilities at 
this level. This would be more efficient than pro-
viding ad-hoc, case by case transformation be-
tween various DSLs belonging to the same or 
different technical spaces. 

This paper is thus organized as follows. In 
section 2 we introduce some general considera-
tions on the three layer conjecture. Section 3 pre-
sents the domain of system engineering and the 
CORE set of standard. In Section 4, we show how 
the idea of defining bridges between these spaces 
at the M3-level may bring a lot of significant 
economies and other advantages. Finally we con-
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clude by summarizing the project goals and 
sketching possible extension paths. 

2 The 3-Layer Conjecture 
In this section we recall the main characteristics 
of the three layer conjecture and we introduce one 
important technical space, namely the software 
engineering (MDA).  

2.1 The OMG MDA Space 
Each technical space is organized on a 
metametamodel (explicit or implicit) and a collec-
tion of metamodels. For the OMG/MDA the MOF 
and the collection of standard metamodels and 
UML profiles play this role. 
In November 2000 the OMG proposed a new ap-
proach to interoperability named MDA™ (Model-
Driven Architecture) [8]. MDA is one example of 
a much broader approach known as Model Driven 
Engineering encompassing many popular research 
trends like generative programming, domain spe-
cific languages, model-integrated computing, 
model management and much more. 

The basic assumption in MDE is the consid-
eration of models as first class entities. A model is 
an artifact that conforms to a metamodel and that 
represents a given aspect of a system. These rela-
tions of conformance and representation are cen-
tral to model engineering [1]. A model is 
composed of model elements and conforms to a 
unique metamodel. This metamodel describes the 
various kinds of contained model elements and 
the way they are arranged, related and constrained. 
A language intended to define metamodels and 
models is called a metametamodel. 

The OMG/MDA proposes the MOF (Meta 
Object Facility) as such a language. The Eclipse 
metametamodel is part of EMF and is compatible 
with MOF 2.0. This language has the power of 
UML class diagrams complemented by the OCL 
assertion and navigation language. 

2.2 Technical spaces 
There are other representation systems that 

may also offer, outside the MDA strict boundaries, 
similar model engineering facilities. We call them 
technical spaces [7]. They are often based on a 
three level organization like the metametamodel, 
metamodel and model of the MDA. One example 
is grammarware [7] with EBNF, grammars and 

programs but we could also consider XML docu-
ments, Semantic Web, DBMS, ontology engineer-
ing, etc. A Java program may be considered as a 
model conforming to the Java grammar. As a con-
sequence we may consider strict (MDA)-models, 
i.e. MOF-based like a UML model but also more 
general models like a source Java program, an 
XML document, a relational DBMS schema, etc. 

The main role of the M3-level is to define the 
representation system for underlying levels. The 
MOF for example is based on some kind of non-
directed graphs where nodes are model elements 
and links are associations. The notion of associa-
tion end plays an important role in this representa-
tion system. Within the grammarware space we 
have the specific representation of abstract syntax 
trees while within the XML document space we 
have also trees, but with very different set of con-
straints. 

Associated to the basic representation system, 
there is a need to offer a navigation language. For 
MDA the language that plays this role is OCL, 
based on the specific nature of MDA models and 
metamodels. OCL for example know how to han-
dle association ends. For the XML document 
space, the corresponding notation is XPath that 
takes into account the specific nature of XML 
trees. As a matter of fact OCL is more than a 
navigation language and also serves as an asser-
tion language and even as a side-effect fee pro-
gramming language for making requests on 
models and metamodels. 

At the M3-level when the representation sys-
tem and corresponding navigation and assertion 
notations are defined, there are also several other 
domain-independent facilities that need to be pro-
vided. In MDA for example generic conversion 
bridges and protocols are defined for communica-
tion with other technical spaces: 
• XMI (XML Model Interchange) for bridging 

with the XML space 
• JMI (Java Model Interchange) for bridging 

with the Java space  
• CMI (Corba Model Interchange) for bridging 

with the Corba space  
 Obviously these facilities may evolve and 

provide more capabilities to the MDA technical 
space. We may even see many other domain-
independent possibilities being available at the 
M3-level like general repositories for storing and 
retrieving any kind of model or metamodel, with 
different access modes and protocol (streamed, by 
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element navigation, event-based, transaction 
based, with versioning, etc.).    

3 System engineering 
The system engineering technical space will be 
illustrated here by the CORE set of standards. 

We provide in this section a metametamodel 
of this space and describe some specific DSLs by 
metamodels based on this CORE M3-level facility. 

First assumption is that Systems Engineering 
gets very specific challenges in comparison to 
Software Engineering. 
The role of the Laws of World: Systems are ruled 
by laws of Physics and Sociology. The influence 
of the System on its own context has to be taken 
into account. 
The multiplicity of the disciplines and cultures: 
Systems involve lots of different actors who can 
have different interpretations of the same notions 
(e.g. Interface, Function). 
The stake of the design vs integration: It is nearly 
impossible to test Systems at implementation 
level, for various physical, social or political rea-
sons. Systems have to be validated at design level, 
before implementation. 
The management at the Life Cycle level: The sys-
tem desing shall take into account the evolution 
and the future ruptures and transitions within the 
life cycle. 

Assuming these fundamental differences in 
terms of challenges, M2 level languages are also 
completely different. However, it is possible to 
identify for each of these sets of languages some 
common properties allowing to specify a compli-
ant meta-meta-model. The comparison between 
M3-level language of Systems Engineering and 
Software Engineering shows similarities and thus 
bridgeability. 

It is thus possible to define mapping rules be-
tween meta-meta-models in order to make meta-
models transformation automatic. 

The idea of metamodel agnostic systems has 
been accepted. We suggest here the idea that 
metametamodel agnostic systems are not much 
more difficult to handle and that they could bring 
significant advantages. 

Furthermore we are presently convinced that 
the technological level has reached the point 
where it should be feasible to build a common 
open model engineering platform capable of han-
dling artifacts based on different meta-meta-
models. 

3.1 CORE meta-meta-model 
(M3) 

See Appendix A for a UML diagram of CORE 
meta-meta-model 
 
CORE is based on the entity-relation-attribute 
approach and thus provides a number of meta-
meta-model elements: 
• The Schema is the enclosing element of 

CORE meta-meta-model. A Schema instance 
represents the meta-model itself. 

• The ModelElement entity represents the basic 
element of a given CORE Schema. It is an 
abstract supertype containing common fields 
of all meta-model elements, like “name” or 
“creator”. 

• A Facility instance represents a group of 
Class instances. A given Class instance can 
be owned by multiple Facility instances. 

• The AttributedElement entity is an abstract 
supertype representing the ability to own At-
tributes (see thereafter). 

• A Class instance represents a given concept 
in a meta-model. 

• A Relation instance represents a link between 
two Class instances. Each Relation instance 
has a complement, which is the reverse Rela-
tion. 

• An Attribute instance represents a property of 
a given AttributedElement instance. 

• A PossibleValue instance represents a certain 
value that can be taken to given Attribute in-
stance. 

• A Target instance comes with a Relation in-
stance and gives every Class instance reach-
able through this relation from a given Class 
instance. 

3.2 CORE meta-model (M2) 
The basic CORE Schema is based on the meta-
model TRW and provides a broad set of elements 
usable in modeling systems. This Schema can be 
further enriched by adding, modifying or deleting 
elements – classes, possible values, relations… – 
specific to a given domain. Such an enriched 
Schema can then be considered as a DSL and as a 
specific meta-model. 
For instance, specific metamodels exist for C4ISR 
(Control Command Communication Computer 
Intelligence Surveillance Reconnaissance) and 
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DODAF (Department of Defense Architecture 
Framework). 
As a DSL, a specific CORE meta-model can own 
a large number of elements spread between “es-
sential” – elements common to every meta-model 
and undeletable – and “non-essential” ones. Es-
sential elements cover classes necessary to any 
meta-model, such as the “System” whose instance 
would represent the real system which is modeled. 

4 Bridging spaces 
We describe here how the previous infrastructure 
may be used to define generic bridging facilities 
between these spaces. 

4.1 M3 to M3 mapping 
A Schema instance represents the meta-model 
itself and thus can be mapped in UML by a Model 
instance. Indeed, we should keep in mind that a 
meta-model can be considered as a model ex-
pressed in a meta-model that would be the meta-
meta-model. 
There is a correspondence between the notions of 
CORE ModelElement and UML ModelElement. 
Similarly, there is a correspondence respectively 
between notions of CORE Attribute and UML 
Attribute and between notions of CORE Class and 
UML Class. 
 

 
4.1.1. Schema of direct correspondences 
 
Some of the links between and fields of these ele-
ments get their equivalent in UML representation: 
• CORE Class “parent” link becomes a UML 

Generalization. 
• CORE Attribute “initialValue” field becomes 

a UML Expression linked to the correspond-
ing UML Attribute through the “initialValue” 
link. 

• CORE ModelElement “abstract” field data is 
stored in the equivalent UML ModelElement 
“isAbstract” field. 

• CORE ModelElement “schema” link which 
links each ModelElement instance to the top-
level Schema is mapped by a “namespace” 

link between the corresponding UML Mod-
elElement and the top-level UML Model. 

A CORE Facility can be mapped with a UML 
Package. UML Classes corresponding to this Fa-
cility’s CORE Classes are nested in this Facility 
through a UML Dependency. 
Mapping a Relation involves to take into account 
the CORE Relation itself and its complement. 
Each of this relation is mapped by a super-class of 
all Classes sources of this relation, and another 
super-class of all Classes source of the comple-
ment. The link between super-classes and UML 
Classes is done through a UML Generalization. 
Depending on whether the couple relation-
complement owns Attributes or not, the mapping 
is a direct UML Association between the two su-
per-classes or an intermediary UML Class owning 
the UML Attributes 
 

 
4.1.2. Schema of Relations mapping 
 
Properties of CORE AttributedElement are trans-
ferred to corresponding UML Classes and attrib-
uted Relations. The relation “owner-attributes” is 
mapped by a UML Association “owner-feature”. 
 
CORE PossibleValues are mapped with UML 
EnumerationLiterals. These literals are attached 
to an Enumeration typing the Attribute. 

Relation 1 Relation 2 

complement 

Class 2.1 

Class 2.2 Class 1.1 

Class 1.2 

source 
source 

source source 

Is mapped by 

Superclass 1 Superclass 2 

Class 1.1 Class 1.2 Class 2.1 Class 2.2 

association 

Or is mapped by 

Superclass 1 Superclass 2 

Class 1.1 Class 1.2 Class 2.1 Class 2.2 

Class 

Attribute 1 
Attribute 2 

association association 

ModelElement 

Class 

Attribute 

attributes 

ModelElement 

Class 

Attribute 

feature 
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4.1.3. Schema of Possible Values mapping 
 
CORE elements fields that do not get their 
equivalent in UML are stored in UML Tagged-
Value attached to these CORE elements equiva-
lent in UML. For example, CORE ModelElement 
“alias” field will be stored in a UML Tagged-
Value named “alias” tagged to the corresponding 
UML ModelElement. 

4.2 Applications of M3 to M3 
mapping 

Mapping CORE M3 Infrastructure with MOF M3 
corresponding level allows a broad field of appli-
cations. The main purpose is the capacity of auto-
matic meta-model translation by allowing 
definition of translation rules from one meta-
meta-model to the other. This means significant 
economies in terms of time, making M2-level 
manual mapping useless. This also means signifi-
cant gains in terms of quality of the resulting 
meta-model, thanks to automatic translation. 
This allows then to work with automatically gen-
erated M2-level meta-models and, possibly, 
automatically generated M2-level mapping be-
tween both meta-models, with corresponding M1-
level transformation tools. 
Example of this M2 level transformation would 
be automatic transformation of CORE Compo-
nents and attached CORE Functions through a 

link of “allocated to” in stereotyped UML Classes 
with attached UML Operations. 

 
4.2.1. Schema of M2-level mapping for Compo-
nent and Functions 
 
As seen is the precedent section, working at M3-
level allows to write clear and simple transforma-
tion rules thanks to the high level of abstraction 
and the fewer types of elements. 

4.3 Benefits 
Discussed mapping and applications offer a num-
ber of benefits: 
• Seamless system to software process-

communication 
• Increase traceability and reliability. 
• Direct interface model and code generation, 

since the interface definition belongs to the 
system level. 

5 Conclusions 
We have presented here some work in the applica-
tion of MDE ideas to the domain of system engi-
neering. MDA is probably now the most advanced 
and visible technical space of MDE in software 
engiennerin, with practical tools like Eclipse EMF 
being defined and becoming widely available. We 
believe it is possible to conciliate the best of both 
worlds (software engineering and system engi-
neering) by a clear and regular framework based 
on the idea of technical spaces. Building generic 
bridges at the representation level (i.e. the M3-
level) seems a very promising engineering prac-
tice. We have provided some illustrations in sup-
port of this hypothesis. There is still much work to 
be done in this area. However if the general 
framework is shown feasible in these areas of 
system and software engineering, it may probably 
also be applied to many other areas as well. 

Component A Component B 

Function A Function B 

allocated to allocated to 

built in 

Is mapped by 

Component A 

Function A() 

Component B 

Function B() 

Attribute 

Enumeration 

PossibleValue 1 

PossibleValue 2 

type 

literal 

literal 

PossibleValue 1 

PossibleValue 1 

attribute 

attribute 

Attribute 

Is mapped by 
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Appendix A: UML Diagram of Core meta-meta-model 
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