
1

A M3-Neutral Infrastructure for System Engineering

Olivier le Merdy (olivier.lemerdy@free.fr)

Sodius SAS (Nantes, www.sodius.com) and Ecole des Mines de Nantes (www.emn.fr)

Abstract

In this paper we report on some of the research
activities at the Sodius Company in the domain of
model-based system engineering. We start from
the idea that even if Systems Engineering and
Software Engineering, it is possible to create
bridges at the highest level of abstraction and thus
create correspondence at lower levels. The main
message of this paper is that it is possible to con-
sider software engineering and system engineer-
ing as two similarly organized areas, based on
different metametamodels (M3-level). Conse-
quently building bridges between these spaces at
the M3-level seems to offer some significant ad-
vantages that will be discussed in the paper. We
illustrate the space of system engineering with the
well established CORE set of standards.

1 Introduction
Model engineering (or MDE for Model Driven
Engineering) is being considered as an important
departure from traditional techniques in such ar-
eas as software engineering, system engineering
and data engineering. In software engineering, the
MDA™ approach proposed by OMG in Novem-
ber 2000 allows separation of platform dependent
from platform independent aspects in software
construction and maintenance. More generally
MDE is proposing to use models to capture spe-
cific aspects of a system under construction or
maintenance, not only the business and platform
aspects.

In the system engineering domain, a similar
organization has been used for the last twenty
years, mainly based on the TRW standard. How-

ever the overall organization was more implicit
than explicit.

This paper describes one ongoing project at
the Sodius Company in Nantes. The goal is to
define a generic experimental advanced model
management platform for system engineering.
The idea is to consider that we have similarly or-
ganized technical spaces (MDA, CORE,
Step/Express, Grammarware, XML, DBMS,
XML, etc.). For each of these we have an implicit
or explicit so-called M3-level. The MOF notation
for MDA or the EBNF notation for grammarware
play this role of defining, with different precision,
the representation system for the entire technical
space. In addition to this general M3-level organi-
zation, each space offers, at the M2-level, a rich
set of specific domain specific languages (DSLs).
These DSLs may be called grammars, metamod-
els, ontologies, DTDs, XML schemas, etc. Since
these DSLs are used to capture specific aspects of
systems, their relations or combinations is pres-
ently an important research concern. Transforma-
tion of programs written in various DSLs is one
current very active research activity.

In this paper we propose the idea that it
should be possible to establish generic coordina-
tion between different technical spaces by making
explicit the M3-level properties and providing
domain-independent transformation facilities at
this level. This would be more efficient than pro-
viding ad-hoc, case by case transformation be-
tween various DSLs belonging to the same or
different technical spaces.

This paper is thus organized as follows. In
section 2 we introduce some general considera-
tions on the three layer conjecture. Section 3 pre-
sents the domain of system engineering and the
CORE set of standard. In Section 4, we show how
the idea of defining bridges between these spaces
at the M3-level may bring a lot of significant
economies and other advantages. Finally we con-

2

clude by summarizing the project goals and
sketching possible extension paths.

2 The 3-Layer Conjecture
In this section we recall the main characteristics
of the three layer conjecture and we introduce one
important technical space, namely the software
engineering (MDA).

2.1 The OMG MDA Space
Each technical space is organized on a
metametamodel (explicit or implicit) and a collec-
tion of metamodels. For the OMG/MDA the MOF
and the collection of standard metamodels and
UML profiles play this role.
In November 2000 the OMG proposed a new ap-
proach to interoperability named MDA™ (Model-
Driven Architecture) [8]. MDA is one example of
a much broader approach known as Model Driven
Engineering encompassing many popular research
trends like generative programming, domain spe-
cific languages, model-integrated computing,
model management and much more.

The basic assumption in MDE is the consid-
eration of models as first class entities. A model is
an artifact that conforms to a metamodel and that
represents a given aspect of a system. These rela-
tions of conformance and representation are cen-
tral to model engineering [1]. A model is
composed of model elements and conforms to a
unique metamodel. This metamodel describes the
various kinds of contained model elements and
the way they are arranged, related and constrained.
A language intended to define metamodels and
models is called a metametamodel.

The OMG/MDA proposes the MOF (Meta
Object Facility) as such a language. The Eclipse
metametamodel is part of EMF and is compatible
with MOF 2.0. This language has the power of
UML class diagrams complemented by the OCL
assertion and navigation language.

2.2 Technical spaces
There are other representation systems that

may also offer, outside the MDA strict boundaries,
similar model engineering facilities. We call them
technical spaces [7]. They are often based on a
three level organization like the metametamodel,
metamodel and model of the MDA. One example
is grammarware [7] with EBNF, grammars and

programs but we could also consider XML docu-
ments, Semantic Web, DBMS, ontology engineer-
ing, etc. A Java program may be considered as a
model conforming to the Java grammar. As a con-
sequence we may consider strict (MDA)-models,
i.e. MOF-based like a UML model but also more
general models like a source Java program, an
XML document, a relational DBMS schema, etc.

The main role of the M3-level is to define the
representation system for underlying levels. The
MOF for example is based on some kind of non-
directed graphs where nodes are model elements
and links are associations. The notion of associa-
tion end plays an important role in this representa-
tion system. Within the grammarware space we
have the specific representation of abstract syntax
trees while within the XML document space we
have also trees, but with very different set of con-
straints.

Associated to the basic representation system,
there is a need to offer a navigation language. For
MDA the language that plays this role is OCL,
based on the specific nature of MDA models and
metamodels. OCL for example know how to han-
dle association ends. For the XML document
space, the corresponding notation is XPath that
takes into account the specific nature of XML
trees. As a matter of fact OCL is more than a
navigation language and also serves as an asser-
tion language and even as a side-effect fee pro-
gramming language for making requests on
models and metamodels.

At the M3-level when the representation sys-
tem and corresponding navigation and assertion
notations are defined, there are also several other
domain-independent facilities that need to be pro-
vided. In MDA for example generic conversion
bridges and protocols are defined for communica-
tion with other technical spaces:
• XMI (XML Model Interchange) for bridging

with the XML space
• JMI (Java Model Interchange) for bridging

with the Java space
• CMI (Corba Model Interchange) for bridging

with the Corba space
 Obviously these facilities may evolve and

provide more capabilities to the MDA technical
space. We may even see many other domain-
independent possibilities being available at the
M3-level like general repositories for storing and
retrieving any kind of model or metamodel, with
different access modes and protocol (streamed, by

3

element navigation, event-based, transaction
based, with versioning, etc.).

3 System engineering
The system engineering technical space will be
illustrated here by the CORE set of standards.

We provide in this section a metametamodel
of this space and describe some specific DSLs by
metamodels based on this CORE M3-level facility.

First assumption is that Systems Engineering
gets very specific challenges in comparison to
Software Engineering.
The role of the Laws of World: Systems are ruled
by laws of Physics and Sociology. The influence
of the System on its own context has to be taken
into account.
The multiplicity of the disciplines and cultures:
Systems involve lots of different actors who can
have different interpretations of the same notions
(e.g. Interface, Function).
The stake of the design vs integration: It is nearly
impossible to test Systems at implementation
level, for various physical, social or political rea-
sons. Systems have to be validated at design level,
before implementation.
The management at the Life Cycle level: The sys-
tem desing shall take into account the evolution
and the future ruptures and transitions within the
life cycle.

Assuming these fundamental differences in
terms of challenges, M2 level languages are also
completely different. However, it is possible to
identify for each of these sets of languages some
common properties allowing to specify a compli-
ant meta-meta-model. The comparison between
M3-level language of Systems Engineering and
Software Engineering shows similarities and thus
bridgeability.

It is thus possible to define mapping rules be-
tween meta-meta-models in order to make meta-
models transformation automatic.

The idea of metamodel agnostic systems has
been accepted. We suggest here the idea that
metametamodel agnostic systems are not much
more difficult to handle and that they could bring
significant advantages.

Furthermore we are presently convinced that
the technological level has reached the point
where it should be feasible to build a common
open model engineering platform capable of han-
dling artifacts based on different meta-meta-
models.

3.1 CORE meta-meta-model
(M3)

See Appendix A for a UML diagram of CORE
meta-meta-model

CORE is based on the entity-relation-attribute
approach and thus provides a number of meta-
meta-model elements:
• The Schema is the enclosing element of

CORE meta-meta-model. A Schema instance
represents the meta-model itself.

• The ModelElement entity represents the basic
element of a given CORE Schema. It is an
abstract supertype containing common fields
of all meta-model elements, like “name” or
“creator”.

• A Facility instance represents a group of
Class instances. A given Class instance can
be owned by multiple Facility instances.

• The AttributedElement entity is an abstract
supertype representing the ability to own At-
tributes (see thereafter).

• A Class instance represents a given concept
in a meta-model.

• A Relation instance represents a link between
two Class instances. Each Relation instance
has a complement, which is the reverse Rela-
tion.

• An Attribute instance represents a property of
a given AttributedElement instance.

• A PossibleValue instance represents a certain
value that can be taken to given Attribute in-
stance.

• A Target instance comes with a Relation in-
stance and gives every Class instance reach-
able through this relation from a given Class
instance.

3.2 CORE meta-model (M2)
The basic CORE Schema is based on the meta-
model TRW and provides a broad set of elements
usable in modeling systems. This Schema can be
further enriched by adding, modifying or deleting
elements – classes, possible values, relations… –
specific to a given domain. Such an enriched
Schema can then be considered as a DSL and as a
specific meta-model.
For instance, specific metamodels exist for C4ISR
(Control Command Communication Computer
Intelligence Surveillance Reconnaissance) and

4

DODAF (Department of Defense Architecture
Framework).
As a DSL, a specific CORE meta-model can own
a large number of elements spread between “es-
sential” – elements common to every meta-model
and undeletable – and “non-essential” ones. Es-
sential elements cover classes necessary to any
meta-model, such as the “System” whose instance
would represent the real system which is modeled.

4 Bridging spaces
We describe here how the previous infrastructure
may be used to define generic bridging facilities
between these spaces.

4.1 M3 to M3 mapping
A Schema instance represents the meta-model
itself and thus can be mapped in UML by a Model
instance. Indeed, we should keep in mind that a
meta-model can be considered as a model ex-
pressed in a meta-model that would be the meta-
meta-model.
There is a correspondence between the notions of
CORE ModelElement and UML ModelElement.
Similarly, there is a correspondence respectively
between notions of CORE Attribute and UML
Attribute and between notions of CORE Class and
UML Class.

4.1.1. Schema of direct correspondences

Some of the links between and fields of these ele-
ments get their equivalent in UML representation:
• CORE Class “parent” link becomes a UML

Generalization.
• CORE Attribute “initialValue” field becomes

a UML Expression linked to the correspond-
ing UML Attribute through the “initialValue”
link.

• CORE ModelElement “abstract” field data is
stored in the equivalent UML ModelElement
“isAbstract” field.

• CORE ModelElement “schema” link which
links each ModelElement instance to the top-
level Schema is mapped by a “namespace”

link between the corresponding UML Mod-
elElement and the top-level UML Model.

A CORE Facility can be mapped with a UML
Package. UML Classes corresponding to this Fa-
cility’s CORE Classes are nested in this Facility
through a UML Dependency.
Mapping a Relation involves to take into account
the CORE Relation itself and its complement.
Each of this relation is mapped by a super-class of
all Classes sources of this relation, and another
super-class of all Classes source of the comple-
ment. The link between super-classes and UML
Classes is done through a UML Generalization.
Depending on whether the couple relation-
complement owns Attributes or not, the mapping
is a direct UML Association between the two su-
per-classes or an intermediary UML Class owning
the UML Attributes

4.1.2. Schema of Relations mapping

Properties of CORE AttributedElement are trans-
ferred to corresponding UML Classes and attrib-
uted Relations. The relation “owner-attributes” is
mapped by a UML Association “owner-feature”.

CORE PossibleValues are mapped with UML
EnumerationLiterals. These literals are attached
to an Enumeration typing the Attribute.

Relation 1 Relation 2

complement

Class 2.1

Class 2.2 Class 1.1

Class 1.2

source
source

source source

Is mapped by

Superclass 1 Superclass 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

association

Or is mapped by

Superclass 1 Superclass 2

Class 1.1 Class 1.2 Class 2.1 Class 2.2

Class

Attribute 1
Attribute 2

association association

ModelElement

Class

Attribute

attributes

ModelElement

Class

Attribute

feature

5

4.1.3. Schema of Possible Values mapping

CORE elements fields that do not get their
equivalent in UML are stored in UML Tagged-
Value attached to these CORE elements equiva-
lent in UML. For example, CORE ModelElement
“alias” field will be stored in a UML Tagged-
Value named “alias” tagged to the corresponding
UML ModelElement.

4.2 Applications of M3 to M3
mapping

Mapping CORE M3 Infrastructure with MOF M3
corresponding level allows a broad field of appli-
cations. The main purpose is the capacity of auto-
matic meta-model translation by allowing
definition of translation rules from one meta-
meta-model to the other. This means significant
economies in terms of time, making M2-level
manual mapping useless. This also means signifi-
cant gains in terms of quality of the resulting
meta-model, thanks to automatic translation.
This allows then to work with automatically gen-
erated M2-level meta-models and, possibly,
automatically generated M2-level mapping be-
tween both meta-models, with corresponding M1-
level transformation tools.
Example of this M2 level transformation would
be automatic transformation of CORE Compo-
nents and attached CORE Functions through a

link of “allocated to” in stereotyped UML Classes
with attached UML Operations.

4.2.1. Schema of M2-level mapping for Compo-
nent and Functions

As seen is the precedent section, working at M3-
level allows to write clear and simple transforma-
tion rules thanks to the high level of abstraction
and the fewer types of elements.

4.3 Benefits
Discussed mapping and applications offer a num-
ber of benefits:
• Seamless system to software process-

communication
• Increase traceability and reliability.
• Direct interface model and code generation,

since the interface definition belongs to the
system level.

5 Conclusions
We have presented here some work in the applica-
tion of MDE ideas to the domain of system engi-
neering. MDA is probably now the most advanced
and visible technical space of MDE in software
engiennerin, with practical tools like Eclipse EMF
being defined and becoming widely available. We
believe it is possible to conciliate the best of both
worlds (software engineering and system engi-
neering) by a clear and regular framework based
on the idea of technical spaces. Building generic
bridges at the representation level (i.e. the M3-
level) seems a very promising engineering prac-
tice. We have provided some illustrations in sup-
port of this hypothesis. There is still much work to
be done in this area. However if the general
framework is shown feasible in these areas of
system and software engineering, it may probably
also be applied to many other areas as well.

Component A Component B

Function A Function B

allocated to allocated to

built in

Is mapped by

Component A

Function A()

Component B

Function B()

Attribute

Enumeration

PossibleValue 1

PossibleValue 2

type

literal

literal

PossibleValue 1

PossibleValue 1

attribute

attribute

Attribute

Is mapped by

6

Acknowledgements

This work has been benefited from the constant
support and encouragements of Jean-Philippe
Lerat, head of the Sodius Company and of other
staff of the company.

About the Authors

Olivier le Merdy is a student at the Ecole des
Mines de Nantes. He has been working for several
months at the Sodius Company.

References

[1] Sodius. Available from www.sodius.com

[2] OMG/MOF: Meta Object Facility (MOF)
Specification. OMG Document AD/97-08-14,
September 1997. Available from
www.omg.org

[3] OMG/RFP/QVT: MOF 2.0
Query/Views/Transformations RFP, OMG
document ad/2002-04-10. Available from
www.omg.org

[4] OMG/XMI: XML Model Interchange (XMI)
OMG Document AD/98-10-05, October 1998.
Available from www.omg.org

[5] Bézivin, J.: In search of a Basic Principle for
Model Driven Engineering, Nova-
tica/Upgrade, Vol. V, N°2, (April 2004), pp.
21-24, http://www.upgrade-
cepis.org/issues/2004/2/upgrade-vol-V-
2.html

[6] Booch G., Brown A., Iyengar S., Rumbaugh
J., Selic B.: The IBM MDA Manifesto The
MDA Journal, May 2004,
http://www.bptrends.com/publicationfiles/05-
04%20COL%20IBM%20Manifesto%20-
%20Frankel%20-3.pdf

[7] Kurtev, I., Bézivin, J., Aksit, M.: Techno-
logical Spaces: An Initial Appraisal. Int. Fed-
erated Conf. (DOA, ODBASE, CoopIS),
Industrial track, Irvine, 2002.

[8] Soley, R. & the OMG staff: MDA, Model-
Driven Architecture, (November 2000),
http://www.omg.org/mda/presentations.htm

[9] Vitech Corporation, founder of CORE tools.
Available from www.vtcorp.com

[10] SysML. Available from www.sysml.org

[11] AP233. Available from
http://step.jpl.nasa.gov/AP233/

7

Appendix A: UML Diagram of Core meta-meta-model

ModelElement
name : String
alias : String
creationStamp : String
creator : String
modificationStamp : String
description : String
essential : Boolean
viewerModifiable : Boolean

Boolean

true
false

<<enumeration>>

PossibleValue

value : String

Attribute
type : String
valueType : String
initialValue : String
formula : String
returnVariable : String
readOnly : Boolean

n+possi ble Values n

AttributedElement

n 1

+attributes

n

+owner

1

Facility

Schema

n

1

+facilities
n

+schema1

Target

Relation

internal : Boolean
maximumTargets : String
relationType : String

1
+complem ent

1 n

1

+relations
n

+schema 1

1

n

+relation
1

+targets
n

Class
abstract : Boolean
canBeSubcl assed : Boolea n
canRelateToS elf : Bool ean
abbrevi ation : String
hist ory : String

1

n

+source
1

+target s
n

n

n
+classes
n

+facili ties
nn

1

+classes n

+schema 1

n

n

+targets
n

+sourcesn

0..1

n

+parent
0..1

+children
n

n n

+relations

n

+sources

n

