
OCL 2.0 - UML 2003 Preliminary Version

OCL 2.0 - Implementing the Standard for
Multiple Metamodels

David Akehurst 1

Computing Laboratory
University of Kent
Canterbury, UK

Octavian Patrascoiu 2

Computing Laboratory
University of Kent
Canterbury, UK

Abstract

OCL 2.0 is the newest version of the OMG’s constraint language to accompany their
suit of Object Oriented modelling languages. The use of OCL as an accompanying
constraint and query language to modelling with these languages is essential. As
tools are built to support the modelling languages, it is also necessary to implement
the OCL. This paper reports our experience of implementing OCL based on the
latest version of the OMG’s OCL standard. We provide an efficient LALR grammar
for parsing the language and describe an architecture that enables the language to
be bridged to any OO modelling language. In addition we give feedback on problems
and ambiguities discovered in the standard, with some suggested solutions.

Key words: modelling, language, constraint, grammar,
translator,compiler, interpreter, parser, bridge.

1 Introduction

This paper illustrates how we have implemented an executable version of OCL
in such a manner that we can provide a bridge to a variety of OO metamod-
els. The prime motivation of this work has been to provide a tool to enable
constraints to be checked over populations of a variety of models. Much of
the original work was carried out as part of [1], with the latest versions and

1 Email: D.H.Akehurst@kent.ac.uk
2 Email: O.Patrascoiu@kent.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Please list Your Lastname Here

conformance to OCL version 2.0 being done under the Kent Modelling Frame-
work (KMF) project [5] at the University of Kent, involving both the DSE4DS
[3] and RWD [9] projects.

We propose a structure for the model of the OCL concepts that facilitates
the use of OCL over a number of different metamodels. A carefully specified
set of interfaces can be defined as a bridge, which enables a common library of
OCL parser, analyzer, evaluator and code generator to be used in the context
of a number of different metamodels. We have implemented bridges for three
different metamodels, providing OCL for Java, for KMF and for the Eclipse
Modelling Framework (EMF). Our KMF implementation will be updated to
use UML 2.0 when it is finalised, the architecture proposed here facilitates an
easy update path. This architecture provides a clean and well-defined division
between the OCL model and the metamodel to which it is attached, whilst
still providing the necessary linkage.

The experience of implementing this library has shown us where there
exists ambiguity, errors, and missing parts of the OCL 2.0 specification; we
highlight and discuss these issues, with some suggested options for fixing the
problems.

We have produced an LALR grammar for the syntax, suitable for input to
bottom up parser generators (CUP, YACC, BISON). Such grammars contain
no look-ahead or backtracking. A previous version of the parser was based on
a LL(k) grammar which was derived from the original OCL standard.

2 Implementation Structure

Parser

Semantic
Analyser

Lexical
Analyser

Source
Text

Sequence
Tokens

Abstract
Syntax
Tree

Translator
to Java

Interpreter

Java
Code

Semantic
Model

OCL
values

Error
Manager

User Model

Figure 1 Implementation Structure

2

Please list Your Lastname Here

Our implementation follows the typical structure of a translator, consisting of
4 stages: lexical analysis, parsing, semantic analysis and either code generation
or evaluation. This is shown in Figure 1.

The lexical analyser and parser generate an abstract syntax tree (AST)
from the input text; syntactic errors are reported by these processes. The
next process, Semantic Analysis, requires input of an AST and the user model
to which the OCL expression is attached. Semantic analysis will generate
static semantic errors. Finally, we provide two options for synthesis, either
code generation or evaluation using an interpreter.

We refer to the output of the Semantic Analyser as a Semantic Model, as
this model contains concepts relating to both the syntax of the expression and
the concepts referring to elements from the user model. Each of these stages
has involved different problems relating to the specification contained in the
OCL standard; we discus each stage separately in the following sections.

3 Parsing

The OCL standard does not define a grammar suitable for input to a parser
generator. The grammar specified in the standard is classified as an ”Am-
biguous” grammar. An unambiguous grammar is required if the language is
to be implemented. The attributed grammar specified in the standard is not
suitable as a parser specification as it contains ambiguities such as the rules
for parsing:

A :: B :: C

Is this expression referencing an enumeration literal, or a path name to a type?
The grammar in the standard distinguishes by using contextual information,
which is not available during a purely syntax based analysis (such as pars-
ing). The disambiguating rules depend on information from the environment,
i.e. semantic information from the user model and context of the expression.
However, there is no syntactic difference.

Our grammar is an equivalent grammar to that defined, however we have
had to make changes to enable deterministic parsing. This has generally in-
volved providing a common syntactic construct for the terms differentiated
by disambiguating rules (E.g. enumeration literals and path names or the
different types of property call).

Appendix A contains the EBNF for an LALR grammar we have used in
our implementation. Our grammar is distinct from the one defined in the
standard in that it is unambiguous. The most noticeable difference is the
manner in which we define the rules for the OclExpression non-terminal.

In every programming language operators have an associated precedence.
The compiler uses this attribute to decide in which order are the operators
evaluated. In order to specify the precedence of the operators there are two
choices:

3

Please list Your Lastname Here

• The grammar can be structured on several levels using extra non-terminals,
or

• In the case of LR grammars the precedence can be specified using directives.

We decided to use the second option because it will give us a smaller and
faster parser. This happens because the first approach generates grammars
with more non-terminal symbols and hence more rules. For example, if we
consider an arithmetic expression with + and * the grammar build according
to 1) is

E ::= TX
X ::= λ | ′ +′ TX
T ::= FY
Y ::= λ | ′ ∗′ FY

Using the second approach the following grammar can be defined:

E ::= E ′ ∗′ E
E ::= E ′ +′ E

Thus, instead of breaking down the non-terminal for OclExpression, using
extra levels, we specify a rule for the use of each operator and include a
definition of operators precedence.

The following subsections discuss issues we have discovered with the gram-
mar specification contained in the standard.

3.1 Parsing Types as Arguments

One issue we have discovered is how to parse an expressions of the form :

expr.oclAsTypeOf(Type)

If the Type is a collection or tuple type then the parser will fail as types
are not considered to be valid expressions in their own right. Types that
are referenced as path names are parsed ok and can be disambiguated during
semantic analysis.

A suggested solution is to extend the definition of literal expressions to
include the syntax for collection and tuple types.

3.2 Iterator and Accumulator Variables

Another issue with the grammar is the syntactic construct for iterator and
accumulator variables. These variables have the same syntax and are used in
iterator and iterate expressions. According to [7] an expression like this

Set{1, 2, 3}− > select(x : Integer, y : Integer | x + y = 3)

is an iterator expression, and

Set{1, 2, 3, 4, 5, 6}− > iterate(e : Integer; acc : Integer = 0 | acc + e)

4

Please list Your Lastname Here

is an iterate expression. The first expression contains two iterator variables.
The second contains an iterator variable and an accumulator variable.

The grammar of the language is defined such that the ′|′ symbol, which
provides the syntactic information that a parsed name is an iterator variable
rather than an expression, comes after the definition of the iterator variable.
In itself this is not a problem, the problem is caused by the fact that multi-
ple iterator variables can be defined, separated by commas, with an optional
type definition and (syntactically) optional init expression (although the init
expressions are not allowed from a semantic perspective).

These aspects make it hard for rules to be written that correctly parse the
language; we have solved the problem by separately listing the variation in
number and style of iterator variable definitions. This would be made simpler
if an alternative separator were to be used. A possible alternative could be a
semicolon; such a separator is used within iterate expressions, hence it would
not be inconsistent in the iterator expressions. Without making a change along
these lines the language can not include facility for multiple iterator variables
- more than two - unless the options for all possible numbers are separately
listed. It may also be advantageous to distinguish between a syntactic variable
declaration construct that may have an init expression and one that may not.

4 Semantic Analysis

The parser generates an Abstract Syntax Tree - i.e. a model of the text ex-
pression entered. This is of a form where there is a direct association between
rules in the grammar and nodes in the tree. The AST is purely an abstract
representation of the syntax, modelled as a tree.

Before we can interpret the meaning of the syntax, we must provide a
semantic context for the expression. This context involves two parts: the
UML (or other) user model over which the expression is to be interpreted;
and the entry point into that model - i.e. the type of the self variable.

It is the job of the analyser to map the AST onto a model of the expression
that contains semantic information relating to the context model and to report
’static semantic’ errors e.g. those relating to type inconsistence.

The model defined in the OCL standard and named, incorrectly, Abstract
Syntax Model (ASM), is such a model. We feel that this model is misleadingly
named; it does not contain purely Abstract Syntax information, it contains a
mix of syntax nodes and semantic nodes. A semantic node is a node containing
information relating to the user model and context of the expression. We
suggest that an alternative name be used. As the model contains semantic
information referencing the user defined context model, we refer to this as the
OCL Semantic Model. (Not to be confused with a model of the semantics,
which is something else not addressed in this paper.)

Our analyser performs two jobs: it maps string based path names onto
types, properties and methods in the context model and maps OCL specific

5

Please list Your Lastname Here

operations onto the appropriate semantic model constructs. The mapping to
semantic model constructs is performed in accordance with the disambiguating
rules defined in the standard and the mapping to user model elements is carried
out by the operations defined on the Environment class, also defined in the
standard.

4.1 Semantic Model

The semantic model (or ASM) defined in the standard can be divided into
three sets of classes:

(i) Those that define the OCL concepts.

(ii) Those that refer to concepts from the UML metamodel.

(iii) Those that define the type system for the standard library.

The concepts from (i) we further divide into those relating to the context
of an expression and those dealing with concepts in an expression.

The classes from (ii) are distinguished in the standard by the definition
that they come from various packages in the UML metamodel and they are
additionally coloured white as opposed to grey. We redefine these classes to
be members of a single package named bridge. They keep the same names as
before, but should be considered to map to the classes form the UML model,
rather than directly being classes from the UML model.

Figure 2 Overview of OCL Semantic Model

The classes from (iii) define the type system for the standard library; they
define the types contained in the library and the operations available on those
types. We pull these classes out into a separate package as they do not form
part of the Semantic Model, although they are required by it and do form part
of the defined language semantics of OCL. These sets of classes we divide into
packages as illustrated in Figure 2.

6

Please list Your Lastname Here

To map our OCL library onto different models, it is necessary to provide
different implementations of the bridge classes; many of which can be exten-
sions of provided common implementations.

In the following subsections we show the content of the bridge, contexts,
and type packages as these are additions or variations to the classes described
in the standard. The expressions package contains the classes as defined in the
standard, excepting those relating to ModelPropertyCall expressions, which we
have also altered and show in a following subsection.

4.2 Bridge

Figure 3 Bridge Classes

The classes in the bridge package (Figure 3) are those that must be supported
by any model over which it is wished to interpret OCL expressions. These
classes collectively provide the contextual information that enables an OCL
expression to be evaluated. They easily map to classes from the UML 1.X
metamodel as that is the model for which OCL was originally designed. How-
ever, we have successfully mapped the classes to the metamodel for Java and
to the ECore Metamodel associated with IBM’s Eclipse Modelling Framework.
We see no problems mapping the classes to the UML 2.0 metamodel or MOF

7

Please list Your Lastname Here

metamodels as and when their specifications are finalised.

The operations and properties on the classes are those used within the
disambiguating rules and the definition of the operations on the Environment
class included in the OCL 2.0 standard.

4.3 Types

There are two versions of OCL Type model included in the standard; one that
forms part of the definition of the standard library and one that forms part
of the Semantic Model. These two type models are not entirely consistent.
We have merged the information from the two models to provide something
consistent Figure 4.

Figure 4 OCL Types

The objects defined in the standard library mirror the type hierarchy de-
fined here.

The main changes are:

8

Please list Your Lastname Here

• The inclusion of a type for OclType objects.

• A change to hierarchy structure to provide consistency between this model
and the type hierarchy of the standard library objects.

• Addition OclAnyType.

• Addition of TuplePart to TupleType.

According to OCL 2.0 proposal collection and tuple types are not consid-
ered to be subtypes of OclAny. This means that operations specific to OclAny
cannot be applied to instances of tuple and collection types. We do not find
any reason why collection and tuple types cannot be considered subtypes of
OclAny and in fact we find that it be necessary that they are if we are to
enable them to be type cast. For example, consider a Set of type Animal that
we know to contain only objects of type Dog, we may wish to perform a cast
on the Set, as shown in the following expression:

Set{rover, fido, fluffy}.oclAsType(Set(Dog))

Figure 5 OCL Expression Contexts

Such an expression is not currently accepted syntactically (see above) or
semantically, as the OclAny operations cannot be used on collections. Con-
sidering tuple and collection types as subtypes of OclAny will increase the

9

Please list Your Lastname Here

expressiveness and the usability of OCL. If such a feature is not available in
OCL, the user will have to use other syntactical constructions in order to
obtain the same effect (e.g. iterate over the above collection and cast each
element).

4.4 Context

A concrete syntax for context definitions is given in the standard, but a se-
mantic model for such contexts is not provided. The model in Figure 5 is that
used by our implementation.

4.5 Expressions

Figure 6 Model Call Expressions

The model for expressions is used as defined in the standard except for the
classes surrounding ModelPropertyCall (Figure 6). We see no need from an
OCL semantics perspective to distinguish between attributes and association
ends, we hence combine these into a single class PropertyCall. This class
covers also static attributes, so the expressiveness is not reduced. In addition
the class ModelPropertyCall is defined as a super type for Operations and the
new class PropertyCall ; an operation call is not a property call thus we feel
it should derive directly from CallExp and hence the class ModelPropertyCall
becomes redundant.

There is one other comment regarding classes in the expressions package;
Let expressions are syntactically defined as a sequence of statements, but in
the semantic model are defined as expressions nested inside each other. We
feel that either approach is acceptable, but that they should be consistent.

10

Please list Your Lastname Here

4.6 Environment

The specification (in the standard) of the Environment class is missing a few
things that are used or referred to elsewhere in the standard; some are missing
altogether and some are missing from the class diagram:

• The association from an environment to its parent.

• The operations lookupImplicitSourceForOperation, lookupPathName, and
addEnvironment

We show a more complete specification in Figure 7. We also add a convenience
method addVariableDeclaration; although not necessary as addElement can be
used to add a VariableDeclaration, this operation avoids the need to construct
the VariableDeclaration before adding it to the environment. The specification
of the Environment operations uses various methods on the bridge classes; we
have added these operations to the classes, as shown in the previous section
about the bridge classes.

Figure 7 Specification of the Environment Class

5 Synthesis

The semantics of OCL seem to be well defined and we have had few issues
regarding the implementation of the evaluation and code generation processes.
Both processes are implemented as visitors over the semantic model.

11

Please list Your Lastname Here

6 OCL Standard Library

Our implementation of the OCL standard library is built on top of the basic
types found in the java.lang and java.util packages. We have had few issues
regarding implementation of the standard library classes.

When comparing collections (implementation of ’=’) one must not use the
equals method provided on the java.util collection classes as this does not give
the correct results regarding the comparison of nested collections.

The implementation of the OclAny operations is dependant on the imple-
mentation of the model that supports the bridge package. Our implementation
provides facility to adapt the evaluation of the OclAny operations as applied
to OclModelElements depending on the specific bridge implementation.

There is an issue regarding the implementation of the OclVoid class (and
undefined object); the type hierarchy states that the class extends (in addition
to others) all the collection types. Unfortunately, some of the collection types
have methods with same signature but different return types.

We have no satisfactory solution to this at present, and our implementation
returns java ’null’ values if the semantics require an undefined value. These
null values are mapped to undefined values by the evaluator if necessary.

There is some ambiguity regarding OclType. The standard states in section
3 that the class has been removed and yet it occurs within the definition of
the standard library classes and operations.

We have opted to include the OclType class as it is necessary for operations
such as oclAsType. We have also found that throughout the standard a number
of operations are used on OCL types that do not occur within the definition
of the standard library. For example, the operation tail on Sequence objects.

7 Bridge Implementations

The main purpose of the bridge classes is to provide linkage between the OCL
expressions and the model over which the expression should be evaluated; it
provides type information from the user model. Consequently, depending on
the metamodel that we use to implement the bridge, the implementation of
the bridge classes will vary, as will the issues involved.

The following subsections discuss the issues relative to each of our three
bridge implementations. Each of these bridge implementations provides sup-
port for the Enumeration, Namespace, Operation and Property classes. The
implementation of the other bridge classes is common to each of these three,
and we suspect common to most bridge implementations.

7.1 OCL for KMF

KMF version 2.0 is based on the UML1.4 metamodel. KMF uses a UML 1.4
XMI file to build a model implementation; it is this implementation that we

12

Please list Your Lastname Here

wish to use as the user model for our OCL expressions. In order to get the
correct type information, irrespective of the model implementation details, the
KMF bridge implementation gets all of its information from the same XMI
file used to store the model information and generate the Java code which
implements the model.

The file is use to populate an implementation of the UML 1.4 metamodel,
which is used as the underlying implementation of the bridge classes.

7.2 OCL for EMF

The Eclipse Modelling Framework (EMF) is IBM’s version of a similar tool
to KMF, to quote the overview of EMF:

”EMF is a Java framework and code generation facility for building tools and
other applications based on a structured model. For those of you that have
bought into the idea of object-oriented modeling, EMF helps you rapidly
turn your models into efficient, correct, and easily customizable Java code”.

EMF code generation is based on a metamodel called ECore (Figure 8);
as you can see, there are similarities between this and the UML metamodel.
The java code generated by EMF carries with it all the information from
the defined model (unlike KMF), i.e. it is possible to access an instance of
an ECore class from each object instantiating a user model class. Thus the
implementation of the bridge classes is achieved by forwarding calls to the
appropriate ECore classes.

Figure 8 ECore model (taken from EMF overview)

13

Please list Your Lastname Here

The similarities between the ECore model and the UML metamodel mean
that there are no difficulties in providing a bridge implementation. The only
issue is the use of collection classes. EMF makes use of an EList implemen-
tation and extension of java.util.List for all types of collection. This class has
an isUnique property to enable distinction between collections with Set like
properties and those without. There is no distinct difference made between
Sequences and Bags or between Sets and OrderedSets - all collections are or-
dered; however, this has not proved to cause problems in building the bridge,
but it must be born in mind that one will always get a Sequence or OrderedSet
when getting collection properties from a user model.

7.3 OCL for Java

The most problematic bridge implementation is the one for Java. Java does not
provide an explicit mechanism for creating enumerations; it does not provide
typed collections classes; and its notion of a package does not match the UML
package concept. The reflective capabilities of java have proved essential to
forming our bridge implementation.

Enumerations

We identify an enumeration in one of two ways. Either by looking up
the enumeration in a pre instantiated list of enumerations, or by testing
if the class extends java.util.Enumeration. This is a slight misuse of the
java.util.Enumeration class, but it provides a nice solution to the problem.
Such enumerations are assumed to be implemented with each enumeration
literal being a static member of the enumeration class and an instance of that
class.

Namespaces

The problem with a namespace is that java packages are separately iden-
tified by their full package name. Although appearing to support the notion
of sub-packages, the java reflection features do not hold this sub-package rela-
tionship. Hence, to lookup an owned element of a namespace by name, we first
try and find a java class with the element name plus full path name of the cur-
rent namespace; if that fails, we assume the name is a sub-namespace, create
the appropriate sub-namespace object, and return the sub-namespace. This
is not necessarily the best approach, but seems to work in most situations.

Operations

We simply use reflection to get the java signature of an operation and
convert this to the correct representation as a bridge class.

14

Please list Your Lastname Here

Properties

We assume standard java get/set methods are implemented for each prop-
erty. The bridge implementation simply capitalises the name of the property,
adds a ”get” prefix, and use the same reflexive process as for an operation
with no arguments.

Typed Collections

To construct the correct OCL typed collection type for property types and
operation return types, it is necessary to get extra information about the type
of the collection. Java collections do not carry this information. We provide
two options; one is to pre-instantiate a list mapping properties and operation
names to java classes that are the collection element types; or when a property
or operation has a collection as its return type, a static final field can be added
that is named with the name of the property/operation + ” elementType”
and whose type is the element type of the collection. Reflection operations
are used to look up this field when needed.

8 Related Work

There are many CASE tools supporting drawing of UML diagrams and fea-
tures like code generation and reverse engineering. However, support for OCL
and transformation and mappings between models is rarely found in these
tools. There are several tasks that a CASE tool should offer in order to pro-
vide support for OCL. For example, syntax analysis of OCL construction and
a precise mechanism for reporting syntactical errors, help in writing syntac-
tically correct OCL statements. The next step could be a semantic analyser,
which should report as many errors as possible in order to help the user to
develop solid OCL code. If the tool offers both an interpreter and a compiler,
the user has the possibility to choose the best approach in order to obtain a
high quality software.

Probably the first available tool for OCL was a parser developed by the
OCL authors at IBM, now maintained at Klasse Objecten. The parser uses
the grammar described in [6]. Another toolset was developed at TU Dresden
[4]. A part of this tool has been integrated with the open source CASE tool
Argo [2]. [10] contains a description of an OCL interpreter. It is based partly
on a OCL meta-model describing the abstract syntax of OCL. [8] provides
also a good implementation for OCL.

9 Conclusion

We have been experimenting with implementations of the OCL since it was
first added to the UML. It is our opinion that the language is invaluable as
part of the OMG modelling environment however we feel that it is imperative

15

Please list Your Lastname Here

that the language be implemented as part of the standardization process in
order to avoid the ambiguities and inconsistencies we have discovered.

Our experience has illustrated many areas in which the standard requires
improvement and we have provided ideas to address some of these improve-
ments. In particular we suggest the need for a reference implementation of
language in order to improve the definitions included in the standard.

9.1 Unsupported Concepts

Our implementation currently does not fully support the following constructs:

• hasSent and message Operators (’̂’ and ’ˆˆ ’)

• contexts, other than inv:

• OclState, OclMessage types

• @pre references

References

[1] Akehurst D. H., ”Model Translation: A UML-based specification technique
and active implementation approach”, PhD. thesis, Department of Computing,
University of Kent at Canterbury, Canterbury, 2000.

[2] ArgoUML, A UML design tool with cognitive support, URL:
http://www.argouml.org.

[3] DSE4DS-team, Design Support for Distributed Systems (DSE4DS), URL:
http://www.cs.kent.ac.uk/projects/dse4ds/index.html.

[4] Demuth B., H. Hussman, F. Finger, Modular architecture for a toolset
supporting OCL. In Evans A., S. Kent, and B. Selic, UML 2000 - The Unified
Modeling Language. Advancing the Standard. Third International Conference,
York, UK, October 2000, Proceedings volume 1939 (2000)of LNCS, pages 440-
450, Springer 2000.

[5] KMF-team, Kent Modelling Framework (KMF), URL:
http://www.cs.kent.ac.uk/projects/kmf.

[6] Object Constraint Language Specification. In OMG Unified Modelling
Language Specification, Version 1.3, June 1999 [19], chapter 7.

[7] Object Management Group, The Unified Modelling Language 2.0 - Object
Constraint Language 2.0 Proposal, URL: http://www.omg.org.

[8] Object Contraint Language Evaluator, Research Laboratory for Informatics,
University Babes-Bolyai, Cluj, Romania.

[9] RWD-team, Reasoning with Diagrams (RWD), URL:
http://www.cs.kent.ac.uk/projects/rwd.

16

http://www.argouml.org
http://www.cs.kent.ac.uk/projects/dse4ds/index.html
http://www.cs.kent.ac.uk/projects/kmf
http://www.omg.org
http://www.cs.kent.ac.uk/projects/rwd

Please list Your Lastname Here

[10] Gogolla M., M., Richters M., A metamodel for OCL. In France R. and Rumpe
B. editors. UML’99 - The Unified Modeling Language. Beyond the standard.
Second International Conference, Fort Collins, CO, USA, October 28-30, 1999,
Proceedings, volume 1723 (1999) of LNCS, pages 156-171, Springer 1999.

Annex A

packageDeclaration ::= ’package’ pathname contextDeclList ’endpackage’
packageDeclaration ::= contextDeclList
contextDeclList ::= contextDeclaration*
contextDeclaration ::= propertyContextDecl
contextDeclaration ::= classifierContextDecl
contextDeclaration ::= operationContextDecl
propertyContextDecl ::= ’context’ pathname simpleName ’:’ type
initOrDerValue+
initOrDerValue ::= ’init’ ’:’ oclExpression
initOrDerValue ::= ’derive’ ’:’ oclExpression
classifierContextDecl ::= ’context’ pathname invOrDef+
invOrDef ::= ’inv’ [simpleName] ’:’ oclExpression
invOrDef ::= ’def’ [simpleName] ’:’ defExpression
defExpression ::= simpleName ’:’ type ’=’ oclExpression
defExpression ::= operation ’=’ oclExpression
operationContextDecl ::= ’context’ operation prePostOrBodyDecl+
prePostOrBodyDecl ::= ’pre’ [simpleName] ’:’ oclExpression
prePostOrBodyDecl ::= ’post’ [simpleName] ’:’ oclExpression
prePostOrBodyDecl ::= ’body’ [simpleName] ’:’ oclExpression
operation ::= pathName ’(’ [variableDeclarationList] ’)’ [’:’ type]
variableDeclarationList ::= variableDeclaration (’,’ variableDeclaration)*
variableDeclaration ::= simpleName [’:’ type] [’=’ oclExpression]
type ::= pathname
type ::= collectionType
type ::= tupleType
collectionType ::= collectionKind ’(’ type ’)’
tupleType ::= ’TupleType’ ’(’ variableDeclarationList ’)’
oclExpression ::= literalExp
oclExpression ::= ’(’ oclExpression ’)’
oclExpression ::= pathName [’@’ ’pre’]
oclExpression ::= oclExpression ’[’ argumentList ’]’ [’@’ ’pre’]
oclExpression ::= oclExpression ’.’ simpleName [’@’ ’pre’]
oclExpression ::= oclExpression ’− >’ simpleName
oclExpression ::= oclExpression ’(’ ’)’
oclExpression ::= oclExpression ’(’ oclExpression ’)’
oclExpression ::= oclExpression ’(’ oclExpression ’,’ argumentList ’)’
oclExpression ::= oclExpression ’(’ variableDeclaration ’|’ oclExpression ’)’
oclExpression ::= oclExpression ’(’ oclExpression ’,’ variableDeclaration ’|’

17

Please list Your Lastname Here

oclExpression ’)’
oclExpression ::= oclExpression ’(’ oclExpression ’:’ type ’,’
variableDeclaration ’|’ oclExpression ’)’
oclExpression ::= oclExpression ’− >’ ’iterate’ ’(’ variableDeclaration [’;’
variableDeclaration] ’|’ oclExpression ’)’
oclExpression ::= ’not’ oclExpression
oclExpression ::= ’-’ oclExpression
oclExpression ::= oclExpression ’*’ oclExpression
oclExpression ::= oclExpression ’/’ oclExpression
oclExpression ::= oclExpression ’div’ oclExpression
oclExpression ::= oclExpression ’mod’ oclExpression
oclExpression ::= oclExpression ’+’ oclExpression
oclExpression ::= oclExpression ’-’ oclExpression
oclExpression ::= ’if’ oclExpression ’then’ oclExpression ’else’ oclExpression
’endif’
oclExpression ::= oclExpression ’<’ oclExpression
oclExpression ::= oclExpression ’>’ oclExpression
oclExpression ::= oclExpression ’<=’ oclExpression
oclExpression ::= oclExpression ’>=’ oclExpression
oclExpression ::= oclExpression ’=’ oclExpression
oclExpression ::= oclExpression ’<>’ oclExpression
oclExpression ::= oclExpression ’and’ oclExpression
oclExpression ::= oclExpression ’or’ oclExpression
oclExpression ::= oclExpression ’xor’ oclExpression
oclExpression ::= oclExpression ’implies’ oclExpression
oclExpression ::= ’let’ variableDeclarationList ’in’ oclExpression
oclExpression ::= oclExpression ’ˆˆ ’ simpleName ’(’
[oclMessageArgumentList] ’)’
oclExpression ::= oclExpression ’ˆ ’ simpleName ’(’
[oclMessageArgumentList] ’)’
argumentList ::= oclExpression (’,’ oclExpression)*
oclMessageArgumentList ::= oclMessageArgument (’,’ oclMessageArgument
)*
oclMessageArgument ::= oclExpression
oclMessageArgument ::= ’?’ [’:’ type]
literalExp ::= collectionLiteralExp
literalExp ::= tupleLiteralExp
literalExp ::= primitiveLiteralExp
collectionLiteralExp ::= collectionKind ’{’ collectionLiteralParts ’}’
collectionLiteralExp ::= collectionKind ’{’ ’}’
collectionKind ::= ’Set’ | ’Bag’ | ’Sequence’ | ’Collection’ | ’OrderedSet’
collectionLiteralParts ::= collectionLiteralPart (’,’ collectionLiteralPart)*
collectionLiteralPart ::= oclExpression | collectionRange
collectionRange ::= oclExpression ’..’ oclExpression

18

Please list Your Lastname Here

tupleLiteralExp ::= ’Tuple’ ’’ variableDeclarationList ’’
primitiveLiteralExp ::= integer | real | string | ’true’ | ’false’
pathname ::= simpleName | pathName ’::’ simpleName
integer ::= [0-9]+
real ::= integer[.]integer[eE][+-]?integer | integer[eE][+-]?integer |
integer[.]integer
string ::= [’][̂ ’]*[’]
simpleName ::= [a-zA-Z][a-zA-Z0-9]*

Operator Precedence

All operations are left associative and defined to have the following prece-
dence (week to strong). These precedence’s are required to remove the ambi-
guity in parsing the oclExpression non-terminal.

• ’.’

• ’ˆ´ and ’ˆˆ’

• ’implies’

• ’and’, ’or’, and ’xor’

• ′ =′ and′ <>′

• ′ <′,′ >′, and′ <=′,′ >=′

• ’if’, ’then’, ’else’, and ’endif’

• ’+’ and ’-’ (binary minus)

• ’*’, ’/’, ’div’, and ’mod’

• ’not’ and ’-’ (unary minus)

• ′.′, and′− >′

• ’@’

• ’(’ ’)’ and ’[’ ’]’

• ’:’

19

	Introduction
	Implementation Structure
	Parsing
	Parsing Types as Arguments
	Iterator and Accumulator Variables

	Semantic Analysis
	Semantic Model
	Bridge
	Types
	Context
	Expressions
	Environment

	Synthesis
	OCL Standard Library
	Bridge Implementations
	OCL for KMF
	OCL for EMF
	OCL for Java

	Related Work
	Conclusion
	Unsupported Concepts

	References

