On Generalization and Overriding in UML 2.0

Fabian Biittner and Martin Gogolla

University of Bremen, Computer Science Department, Database Systems Group

Abstract. In the upcoming Unified Modeling Language specifica-
tion (UML 2.0), subclassing (i.e., generalization between classes) has a
much more precise meaning with respect to overriding than it had in ear-
lier UML versions. Although it is not expressed explicitly, UML 2.0 has a
covariant overriding rule for methods, attributes, and associations. In this
paper, we first precisely explain how overriding is defined in UML 2.0.
We relate the UML approach to the way types are formalized in pro-
gramming languages and we discuss which consequences arise when im-
plementing UML models in programming languages. Second, weaknesses
of the UML 2.0 metamodel and the textual explanations are addressed
and solutions, which could be incorporated with minor efforts are pro-
posed. Despite of these weaknesses we generally agree with the UML 2.0
way of overriding and provide supporting arguments for it.

1 Introduction

The Unified Modeling Language (UML) [OMG03b,0MG04] is a de-facto stan-
dard for modeling and documenting software systems. Generalization in class
diagrams (i.e., subclassing) is one of the key concepts in the object-oriented
methodology and in UML: It allows us to express that one class is a specializa-
tion of another one. The more special class is described as a set of changes and
extensions to the more general class.

However, the concrete interpretation of subclassing in an executable envi-
ronment was rather undefined with respect to overriding (see [Beu02,Pon02])
in previous UML versions (namely, 1.x). In UML 2.0, along many other major
changes, generalization is defined much more precisely than in 1.x.

Although it is never mentioned explicitly on 640 pages, UML 2.0 introduces
a covariant overriding rule for operations and properties. Hence, a subclass over-
riding a superclass operation may replace the parameter types by subtypes of
them. The same rule applies for attributes (the attribute type can be replaced
by a subtype) and associations (the association end types can be replaced by
subtypes), which can be redefined in UML 2.0 as well. The UML 2.0 provides a
meaning for specialization which is consistent across operations, attributes, and
associations.

There has been a never ending discussion about whether covariance is a good
meaning for overriding in the areas of programming languages and type theory.
There has been no final agreement, but a general conclusion was that subclassing
in the presence of covariant overriding cannot be used to define subtyping (for

a formal explanation see [AC96], a good overview can be found in [Bru96]).
Thus on the one hand, statically type checked programming languages cannot
have a sound type system when covariant subclassing is generally allowed. On
the other hand, it is argued that many situations in the real world are better
modeled covariantly, a good argument for this is made, for example in [Duc02].
A more formal comparison of both concepts which does not advocate either of
them can be found in [Cas95].

Commonly, UML models are finally implemented in a statically typed pro-
gramming languages such as Java, C+4, and C#. Most of these programming
languages do not permit covariant method overriding for the aforementioned
type safety reasons (Eiffel [Mey88] is one of the few exceptions). Hence, there
is a gap between subclassing semantics in UML and common OO programming
languages, which must be considered during implementation of UML models.
Nevertheless, we support the UML 2.0 view of subclassing as we think that the
richer expressiveness outweighs the typing problems.

This paper precisely explains how overriding is defined in UML 2.0. We relate
the UML approach to the way types are formalized in programming languages
and we discuss which consequences arise when implementing UML models in
programming languages. Despite of the mentioned typing problems we generally
agree with the UML 2.0 way of overriding and provide supporting arguments.

However, we have some concerns regarding overriding and subclassing in the
final adopted UML 2.0 specification, which could be corrected with minor ef-
forts: (i) There are two inconsistencies in the metamodel parts which deal with
redefinition and subclassing. (ii) The definition of subclassing in UML 2.0 is scat-
tered over a large number of class diagrams, several textual semantics sections,
and a couple of additional interdependent OCL operations. Thus understanding
how subclassing works in UML is a complex task. Since subclassing is such an
important concept in object-oriented analysis and design, an explaining section
is definitely missing in order to carry the meaning of UML subclassing to the
broader audience. This is especially important in the context of Model Driven
Architecture [KWB03,0MGO02]. (iii) Different from earlier versions, UML 2.0
uses the term ‘subtyping’ at various locations where ‘subclassing’ is intended.
Because of the mentioned covariant overriding rule in subclassing, the term ‘sub-
typing’ should be used more carefully in the specification.

This paper is structured as follows: Section 2 explains our notions of class,
type, subtyping, variance, and subclassing used in this paper and relates sub-
classing to subtyping. Section 3 shows how subclassing and overriding is han-
dled in UML 2.0. Section 3 also illustrates the consequences of having covariant
overriding when implementing object models in statically typed programming
languages. In Section 4, we justify the existence of a covariant overriding rule in
UML and address the mentioned concerns with regard to the technical realiza-
tion in the specification. We close the paper with a conclusion in Section 5.

2 Background

In this section we shortly explain our notions for type, subsumption (subtype
polymorphism), covariance, and contravariance, following [CW85,AC96]. We re-
late the notions of subclassing and subtyping. The section is designed to summa-
rize central relevant notions in programming languages and type theory employ-
ing minimal formalization overhead. Readers familiar with these notions may
skip this section.

2.1 Type, Subsumption, and Variance

In a programming language, a type represents a set of values and the operations
that are applicable to them. For example the type Integer may denote the set
of natural numbers N and the operations 1,4+, and —. In object-oriented pro-
gramming, an object type represents a set of objects and the messages that can
be sent to the objects. Types can be used to form a membership predicate over
expressions: If an expression e evaluates to a result of type T we say e has type T,
denoted as e : T'. A strongly typed programming language provides mechanisms
to ensure that only appropriate operations are applied to values. For example,
"Hello"-5 would be rejected, because a String type typically does not include
a ’=’ operation for strings and numbers. In statically typed programming lan-
guages like C++, Pascal, Java, C# and many others, expressions are assigned
static types by a type checker before actual execution. The type checker guar-
antees that if an expression has the static type T, its evaluation at runtime will
always be a value of type T'.

A powerful typing rule which is implemented in nearly all common program-
ming languages and in modeling languages like UML is the subsumption rule,
also known as subtype polymorphism. The subsumption rule states that if an
expression e has type S and S is a subtype of a type T', denoted as S <: T,
then e has also type T'.

ife:Sand S<:T thene:T

As a consequence, expressions may have more than one type. In order to have
a sound type system (i.e., no wrong types can be derived for expressions), only
certain types can be related by the subtype relation <:. Typically, subtyping
for complex types (i.e., for function types and object types) is derived from
simpler types (e.g., for function types, <: is derived from the parameter types
and return types of a function). Several sound type systems exist, with varying
rules for subtyping, including virtual types, higher-order type systems (generic
types) and other more elaborated concepts. The following general considerations
hold for these systems as well.

For languages with functions, the — type constructor can be used to con-
struct function types. For example, Integer—String denotes the type of a function
from Integer to String. As explained in [CW85], for given function types X — Y
and Z — W the subtype relation X — Y <: Z — W can be defined as follows:

X—-Y<:Z—-W if Z<:XandY <:W

For example the function type Real—Integer is a subtype of the function type
Integer—Real, assuming Integer <: Real. Because the argument types X and Z
are related by <: in the opposite direction as X — Y and Z — W, this subtyping
rule for function types is contravariant w.r.t. to the argument type, and covariant
w.r.t. the return type. Strictly speaking, we must always specify to which part
of a complex type we refer to when using the term variance. Formally, variance
is defined as follows: Let T{—} denote a type T with some ‘hole’ (i.e., a missing
type expression in it). Let T{A} denote the type T when the hole is filled with a
type A. T{—} is: covariant if A <: B implies T{A} <: T{B} and contravariant
if A <: Bimplies T{B} <: T{A}. However, some ‘default’ references for variance
have been established in the literature, such as the parameter type for a function
type, so the subtype rule for functions is generally known as the contravariance
rule for functions.

In object-oriented languages, the most important concept is sending a mes-
sage to an object (i.e., invoking an operation). Thus in a statically typed pro-
gramming language, the type checker prevents that inappropriate messages are
sent to objects.

We denote an object type as follows: T = [l; : T, ..., L, : Tp,], where [; are the
elements (labels) of T (i.e., methods and fields). In the case of a field [;, which
is actually a method without parameters, T; is simply another object type (or
a basic type). In the case of a method [;, T; is a function type. For example, a
simple Point type may be modeled as follows:

Point = [z : Integer, y : Integer, distanceTo : Point—Integer]

Obviously, an object type T” for which 7" <: T holds must contain the
labels [, ..., 1, since an object of type T" must understand all methods and field
access operations that an object of the supertype T understands. Furthermore,
in general we cannot allow that the individual label types T1, ..., T, change in
T'. Subtyping for object types is sound, if we require T; = T} for i = 1..n:

(LT, sl : T,

n+m

| <:[ly Ty, el T, i T, =T, i=1..n

Formal proofs for this can be found in [AC96]. The basic idea is as follows:
Let o be an object of type T". If we allowed T <: T; for some i in the above
subsumption rule for object types then we could derive o0.l; : T;. Thus the type
checker would accept an assignment o0.l; := x for a value x : T;. But this as-
signment would be valid only if T; <: T/ (contradiction). The other way round,
if we allowed T; <: T/, a similar contradiction occurs for a selection operation
x : T; := o.l;. Hence, type systems having a general co- or contravariant subtyp-
ing rule for object types cannot be sound.

However, in class based languages, where all methods of an object are de-
clared statically (at compile-time), the types for method labels may change in
subtypes in a covariant way (both, the object type and the method label type
become more special).

Thus for S =[l: X—=Y] and T = [l : Z—W], S is a subtype of T (S <: T)
iff Z7 <: X and Y <: W and [cannot be updated. Although the type of the

label [varies covariantly with the object type, this rule is commonly known as
the contravariance rule for method overriding, because the parameter type varies
contravariantly with respect to the object type. Also common in the literature
is the (unsound) covariance rule for method overriding which also refers to the
parameter types.

2.2 Classes and Subclasses

Classes describe objects with same implementations [Mey97]. A class serves as a
generator for objects. It specifies which state (i.e., which attributes) and which
behavior (i.e., which methods) objects generated by the class have.

Subclassing is a technique for reusing object descriptions (classes). A new
class (the subclass) is described as a set of changes to an existing one (the
superclass). The partial order < denotes if a class is a direct or indirect subclass
of another class.

There is no general agreement about the exact semantics of subclassing (see
e.g., [CHC90,PS92,Bru96]). Common definitions of subclassing in programming
languages involve the following mechanisms to describe how a new class is de-
rived from an existing one: (i) Inheritance, properties of the superclass become
properties of the subclass (often, this is the default), (ii) Overriding, properties
of the superclass are redefined in the subclass (in typical OO languages, over-
riding is restricted to methods), (iii) Extension, new properties are added to the
subclass.

Classes can be used to define types (a class ¢ defines a type type(c)). Then,
the subclass relationship can be used to define subtyping. This is done in most
common statically typed OO programming languages as follows:

type(s) <: type(c) iff s < ¢

To achieve this behavior, types must be extended and distinguished by names
(i.e., ¢ # ¢ implies type(c) # type(c’)). Thus, two distinct classes can have
completely identical definitions but do not create the same type. This is known
as name subtyping in the literature and is used, for example, in Java, C++4, and
C#. Other languages allow distinct classes to create the same type. However,
having name subtyping or not has no impact on the variance aspects of overriding
when subclassing is subtyping.

While defining subtyping as subclassing has no consequences for inheritance
and extension, it restricts the way overriding can be applied in subclassing.
Especially, as explained above, method overriding cannot be covariant (i.e., the
parameter types of an overriding method cannot be subtypes of the parameter
types of the overridden method) as explained above. After having discussed
programming languages let us now turn to modeling languages.

3 How UML Handles Subclassing and Overriding

In this section, we explain how subclassing and overriding is handled in the
UML 2.0 metamodel using a simple example. We focus on overriding of methods,
although the same principles apply to attributes and associations ends.

3.1 The Animals Example

Fig. 1 shows an example of a class diagram containing a generalization relation-
ship. The class Animal generalizes the classes Cow and Rat. Read the other way,
we say Cow and Rat are specializations or simply subclasses of Animal.

Animal
eat(food)
Cow Rat
eat(food) beep()
makeMilk()

Fig. 1. Example class diagram

As said above, along with generalization comes inheritance and overriding.
The eat(food) operation defined in Animal is inherited by Rat. Thus, instances
of class Rat do not only have the operation beep(), but also eat(food). In class
Cow, we have repeatedly defined eat(food) to indicate that the class provides a
new definition of the eat(food) operation. In this case, we say Cow overrides, or,
in UML 2.0 terms, redefines eat(food) from Animal.

Animal
eat(food : Food) Food
AN

Cow Rat

eat(food : Grass) beep()
makeMilk()

Fig. 2. Example class diagram with parameter types

However, the reader may notice that we have omitted the parameter types
in Fig. 1. If we fully specified our operations, the class diagram may look as in
Fig. 2. We now have clarified the fact that Cows shall only eat a certain kind
of food: Grass. But, is this still overriding? Earlier UML versions left the way

operations (methods) override intentionally undefined:

The way methods override each other is a semantic variation point.
[OMGO03b, p.2-74].

The upcoming UML 2.0 specification [OMGO04] is more precise:

An operation may be redefined in a specialization of the featured clas-
sifier. This redefinition may specialize the types of the formal parame-
ters or return results, add new preconditions or postconditions, add new
raised exceptions, or otherwise refine the specification of the operation.
[OMGO04, p.78]

Thus, in UML 2.0, Cow::eat(food:Grass) may override Animal::eat(food:Food)
if Grass is a specialization (i.e., a subclass) of Food. As we explained in Section 2,
this kind of overriding is covariant. The following subsection shows how this
restriction is modeled in the UML 2.0 metamodel.

3.2 Relevant Excerpts of the UML 2.0 Metamodel

The metamodel elements relevant for generalization and redefinition are scat-
tered over five class diagrams in the specification. Furthermore, constraints and
additional operations are defined separately in the textual part. Thus, the de-
scription is distributed over more than 20 (!) locations. The class diagrams in
Figs. 3 and 4 combine all relevant aspects. Constraints and additional opera-
tions are attached either in-place or as comments. We have given names to the
invariants (which do not occur in the UML 2.0 specification) in order to refer to
them in the following. Three invariant constraints occur in Figs. 3 and 4. Two
of them, RedefinitionContextValid and RedefinedElementsConsistent, belong to
the metaclass RedefinableElement. The third, SpecializeValidType, belongs to
the metaclass Classifier.

We first look at RedefinitionContextValid. This constraint is straightforward.
Its meaning is, that for an element ¢’ which redefines another element e, €’
must belong to some subclass of the class in which e is defined. The additional
operation isRedefinitionContext Valid(e:Redefinable Element) must yield true for
each redefined element.

The second constraint, RedefinedElementsConsistent, is more subtle and has
a lot of impact on the UML 2.0 semantics: Its meaning is that all redefined ele-
ments must be consistent with the redefining element. The concrete meaning of
‘is consistent’ is deferred to subclasses of RedefinableElement, e.g., to Operation.
To illustrate this constraint, we consider our animals example from Fig. 2. On
the metamodel level, it looks like the object diagram in Fig. 5 (we have omitted
the operation makeMilk() and the class Rat for simplicity).

inv RedefinitionContextValid [1]:
redefinedElement->forAll(e | isRedefinitionContextValid(e))
inv RedefinedElementsConsistent [2]:
redefinedElement—>forAll(e | e.isConsistentWith(self))

/// isRedefinitionContextValid(r:RedefinableElement) =
J/ redefinitionContext—>exists(c1 |
)/ r.redefinitionContext—>exists(¢ | c.allParents—>includes(c1)))
/ IredefinedElement {union} //
Type RedefinableElement /
conformsTo(o:Type)=false ?sConsig_emWith(e:Rede_finabIeEIe_ment) = false) ’
isRedefinitionContextValid(r:RedefinableElement)=... -
% ‘ IredefinitionContext {union}

Classifier
inheritableMembers(c:Classifier)=member->select(m|c.hasVisOf(m)) | general
conformsTo(o:Classfier)=(self=0) or allParents()->includes(o) 1 Generalization
inherit(inhs:Set(NamedElement)=inhs specific | issubstitutable:Boolean
maySpecializeType(c:Classifier)=ocllsKindOf(c.oclType) 1

Class inv SpecializeValidType [3]:
parents—>forAll(c | maySpecialize Type(c))

Fig. 3. Condensed UML 2.0 Facts about Generalization and Redefinition - Part A

isConsistentWith(r:RedefinableElement) =
r.oclisKindOf(Operation) and let op:Operation = r.oclAsType(Operation) in

formalParameter—>size() = op.formalParameter—>size() and
returnResult—>size() = op.returnResult—>size() and

forAll(i | op.formalParameter[i].type.conformsTo(formalParameter[i].type)) and
forAll(i | op.returnResult[i].type.conformsTo(returnResult[i].type)))

‘ RedefinabIeElement‘
o~ \

[feature {union}

Operation \
isConsistentWith(r:RedefinableElement) = ...

Property
isConsistentWith(r:RedefinableElement) = ...

redefinedOperation

redefinedProperty)
{subsets redefinedElement}

{subsets redefinedElement} /
returnResult {ordered}

Parameter

formalParameter {ordered}

isConsistentWith(r:RedefinableElement) =
r.ocliskKindOf(Property) and let p:Property = r.oclAsType(Property) in

type.conformsTo(p.type) and
(lowerBound()—>notEmpty and p.lowerBound()->notEmpty) implies lowerBound() >= p.lowerBound()) and

(upperBound()->notEmpty and p.upperBound()->notEmpty) implies upperBound() <= p.upperBound()) and
(p.isDerived implies isDerived))

Fig. 4. Condensed UML 2.0 Facts about Generalization and Redefinition - Part B

feature formalParameter type

Animal : Class eat : Operation food : Parameter —— Food : Class |

general redefinedElement general

: Generalization : Generalization
specific feature formalParameter type specific

Cow : Class eat’ : Operation |——— food’ : Parameter | Grass : Class |

Fig. 5. Example as metamodel object diagram

For this object diagram, the invariant RedefinedElementsConsistent can be
written out as follows:

eat’.redefinedElement — forAll(e | e.isConsistentWith(eat'))
= eat.isConsistent With(eat’)
= eat/.formalParameter[1].type.conformsTo(eat.formalParameter[1])
food’.type.conformsTo(food.type)
= Grass.conformsTo(Food)
= (Grass = Food) or Grass.allParents — includes(Food)

RedefinedElementsConsistent is responsible for the mentioned covariant overrid-
ing rule in UML 2.0. If one operation redefines (i.e., overrides) another, all formal
argument and return types of the redefining operation must be specializations
of the formal argument and return types of the redefined operation.

Finally, the third invariant SpecializeValidType intends that a classifier may
specialize each of its superclasses. We show in Section 4 that the operation
maySpecialize Type(c: Classifier) involved in the constraint depends on the OCL
definition of subtyping in an ill-defined way.

3.3 Interpretation of UML Models using Covariant Overriding

Let us consider again our animals class diagram from Fig. 2. The following
piece of program (pseudo code) illustrates the problem which arises when eat is
covariantly overridden in class Cow.

declare x : Animal
declare y : Food

x := someAnimal
y := someFood
x.eat(y)

If we assume that instances of type Cow can be substituted for instances
of type Animal (i.e., by subsumption), then the expression someAnimal may
evaluate to an object of type Cow and the result of someAnimal can be still
safely assigned to the variable x. Further, x.eat(y) would be statically type safe,
because the static type of x is Animal. Nevertheless, if the expression someFood
evaluates to an instance which has type Food (i.e., which has not type Grass), the

evaluation of z.eat(y) will produce an error because Cow::eat is not defined for
the parameter type Food. This consideration exemplifies why subclassing cannot
be subtyping when the parameter types of a method are covariantly redefined,
for the reasons given in Section 2.

However, class based programming languages like Java, C++, or C# have
(more or less) sound type systems and prohibit covariant method overriding.
Actually, they only support invariant overriding, although covariant overrid-
ing would be sound for methods (i.e., parameter types could vary contravari-
antly and return types could vary covariantly w.r.t. the object type). Newer
versions of C++ and Java allow at least covariant redefinition of return types
[Str97][BCKT01]. If a class diagram containing covariant overriding is to be
translated into such a programming language, the inherent typing problem be-
comes obvious. A pragmatic solution may look like the one in Fig. 6.

Animal Animal
eat(food : Food) eat(food : Food)
Cow Rat —> Cow Rat
eat(food : Grass) beep() eat(food : Food) beep()
makeMilk() - makeMilk() K

\
\

if (not food.ocllsKindOf(Grass))
raise type error

else
eat food.oclAsType(Grass)

Fig. 6. Transformation to invariant overriding

Although the animals example is now statically type safe, it still produces an
error if cows shall eat food which is not grass. We have only deferred the error
from compile time to runtime. It is important to see that this (potential) error is
inherent to the UML class diagram and not a consequence of the implementation.
The designer of the class diagram expresses that cows must not eat inappropriate
food, for example to avoid mad cow diseases.

Multi-methods [ADL91,BC97,CL95,DCGI5] provide an alternative interpre-
tation of covariant specialization. Instead of simply failing a dispatch (i.e., a
method call), one of the overridden base class methods may be called instead.
Actually, a multi-method based semantics could have been chosen for overriding
in UML 2.0. However, we feel that multi-methods are a less intuitive meaning
for specialization than ‘simple’ overriding. Furthermore, multi-method seman-
tics are difficult to realize in common OO languages and, in general, can lead to
ambiguities in the context of multiple inheritance.

At least one commonly known OO programming language exists, in which
covariant overriding as it is realized in UML 2.0 is directly available: Eiffel
[Mey88,Mey97]. Eiffel, aware of the mentioned typing problems, supports covari-
ant overriding as a fundamental design aspect and thus is close to the UML 2.0
understanding of subclassing. Our animals example could be directly imple-
mented in Eiffel. A runtime error would be raised by Eiffel when a cow tries to
eat food which is not grass. Although Eiffel is not statically type safe, ongoing
work proposes that many runtime type errors could be eliminated by compilers
by using more elaborated analysis and type-checking techniques [HBM™03].

4 Concerns with the UML 2.0 Specification

Despite the subclassing resp. subtyping problem explained in the last section,
we generally agree with the UML 2.0 way of defining redefinition for operations,
attributes, and associations. Why do we agree? Even sound statical type systems
such as in Java, cannot guarantee real substitutability for subtypes. A more
special object may violate semantic contracts (e.g., invariants) which a more
general object fulfills. Type systems guaranteeing real substitutability would
require a behavioral notion of subtyping (e.g., the ‘Liskov Substitution Principle’
[LW94]). However, it seems that very few real world examples [Duc02] exist
where objects of one class are generally substitutable for objects of another
class. If subclassing must be subtyping when modeling real world aspects, very
few subclassing relations can exist. On the other hand, it is a basic desire of
designers to model set inclusion by subclassing (i.e., the set of cows is a subset
of the set of animals). Hence, although identifying subclassing and subtyping
is desirable for programming languages to achieve reasonable statical safe type
checking, it is not adequate for intuitive object-oriented modeling on a higher
level of abstraction. Therefore, we agree with the covariant way of overriding in
UML 2.0.

Nevertheless, we have a couple of concerns with the upcoming specification,
which are not fundamental but regard the technical realization of how subclass-
ing and overriding (redefinition) is described.

4.1 Concerns with the Metamodel

We have found two errors in the metamodel parts that model subclassing and
overriding. These errors can be fixed with minor efforts.

Ill-defined operation Classifier::maySpecialize Type Consider the third
invariant constraint of the metaclass Classifier (named SpecializeValidType in
Fig. 3). For each instance ¢ of Classifier,

c.parents — forAll(c’|c.maySpecialize Type(c’))
must hold. This can be rewritten using the definition of maySpecialize Type to

c.parents — forAll(c|c.oclIsKindOf(c".ocI Type))

The built-in OCL operation o.0cllsKindOf(t) is defined as follows: ‘The
oclIsKindOf property determines whether t is either the direct type or one of
the supertypes of an object’” [OMGO03a]. Since subtyping in OCL requires sub-
classing, the definition of maySpecialize Type is circular: ¢ may subclass ¢’ only
if ¢ is a subtype of ¢’ and if ¢ is a subtype of ¢’ then ¢ must be a subclass of ¢’.
Hence, maySpecialize Type is not well-defined.

As a proposal for solving this problems we argue for simply omitting Special-
izeValidType from the UML 2.0 specification, as it does not make any further
restrictions to UML models.

Operation Property::isConsistent With contradicts textual semantics
Another inconsistency can be found in Property::isConsistent With. Consider the
example in Fig. 7. It is similar to the previous one, except that animals and cows
now have a ‘food’ attribute (i.e., a property) instead of an ‘eat’ operation. The
(textual) specification states, in the covariant specialization manner, that an
attribute type must be redefined by the same or a more specific type. However,
if we write out the operation isConsistent With we obtain

food’ .redefinedElement — forAll(e | e.isConsistentWith(food'))
= food.isConsistentWith(food")
= food.type.conformsTo(food’ .type)
= Food.conformsTo(Grass)
= (Food = Grass) or Food.allParents— includes(Grass)

which obviously yields false. If we used this definition of maySpecialize Type for
Property, we gained a contravariant overriding rule for properties, which is not
intended according to the explaining text and which does not match the general
idea behind redefinition in UML 2.0.

Apparently, the subterm type.conformsTo(p.type) must be flipped (i.e., be
rewritten to p.type.conformsTo(self.type)) to achieve the intended covariant
overriding rule for properties.

feature type
Animal Animal : Class food : Property Food : Class
food : Food general redefinedElement general
Cow specific feature
food : Grass

Fig. 7. Example with Properties

4.2 Concerns with the Textual Part of the Specification

Beside corrections to the UML metamodel we suggest some further modifications
of the textual description (‘Semantics’) in the specification.

Provide more explanations and examples The descriptions of Classifier,
Generalization, and RedefinableElement should be extended to make it more
clear how subclassing is defined in UML. Especially, some explanations how the
covariant overriding semantics of UML 2.0 may be carried over to typical stat-
ically typed programming languages like Java, C4++ and C# should definitely
be added. A simple example like our animals example would be nice to help
those software developers which are no language lawyers. This also helps in un-
derstanding why UML models using covariant overriding may not be translated
directly into most implementation languages. The textual semantics should be
adjusted to make it clear that subclassing does not produce subtyping in the
common sense in all cases.

Avoid using subtyping and subclassing synonymously The term ‘sub-
typing’ only occurred once in the ‘Foundation’ part of the earlier UML specifica-
tions. The neutral terms parent and child, with the transitive closures ancestor
and descendant, are the preferred terms in that document [OMGO03b, p.2-72].
In the UML 2.0 specification, ‘subtyping’ is heavily used all over the ‘Classes’
part (the term ‘subtype’ occurs 26 times in the text). Especially, it is often used
where ‘subclassing’ is meant. There is no need to employ subtyping in most
cases, ‘subtype’ can be safely replaced by ‘subclass’.

5 Conclusion

As we have pointed out in the previous sections, UML subclassing cannot be
used to define safe subtyping as it is defined in common sense type theory
[CW85,AC96], because it allows subclasses to covariantly override superclass
operations and attributes. Despite of this fact, we advocate the UML way, be-
cause it is more adequate for abstract modeling of real world domains - which
are often covariant: cows should really *not* eat all kinds of food (remind BSE).
In fact, we have to make a compromise between full substitutability of super-
class objects with subclass objects on the one hand (which is not even achieved
by most programming languages), and an intuitive way of modeling inclusion of
values (e.g., animals include dogs) and grouping of similar concepts.
Nevertheless, the way the new semantics for subclassing and overriding is
defined in the UML 2.0 specification is highly complex, scattered over many
diagrams, constraints and additional operations sections and is very difficult to
understand. The specification should definitely be extended by a section which
explains how overriding is handled in UML in a way which even developers who
are no language lawyers can understand. Especially, a simple example should

illustrate the issues which arise when covariantly specialized models are trans-
lated into a statically typed programming language. The specification should
make it clear, that it depends on the modeler if her subclassing transforms into
subtyping. The UML itself should avoid using the term ‘subtyping’ where ‘sub-
classing’ is much more adequate. This was the case in earlier versions and should
be readopted in the final 2.0 specification.

Apart from these general considerations we have proposed two improvements
in the important ‘Classes’ section of the metamodel which could be realized with
minor efforts.

Thanks to the anonymous referees for their helpful comments.

References

[AC96] M. Abadi and L. Cardelli. A Theory of Objects. Springer, New York, 1996.

[ADL91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static type
checking of multi-methods. In Andreas Paepcke, editor, OOPSLA ’91
Conference Proceedings: Object-Oriented Programming Systems,
Languages, and Applications, pages 113-128. ACM Press, 1991.

[BCI7] John Boyland and Giuseppe Castagna. Parasitic methods: An
implementation of multi-methods for Java. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA-97), volume 32, 10 of ACM
SIGPLAN Notices, pages 66-76, New York, October 5-9 1997. ACM Press.

[BCK*01] Gilad Bracha, Norman Cohen, Christian Kemper, Steve Marx, Martin
Odersky, Sven-Eric Panitz, David Stoutamire, Kresten Thorup, and Philip
Wadler. Add generic types to the java programming language. participant
draft specification, 2001. Java Specification Request #14, part of the Java
1.5 specification. http://jcp.org/en/jsr/detail?id=14.

[Beu02] Antoine Beugnard. Is MDA achievable without a proper definition of
late-binding? In Jean Bezivin and Robert France, editors, Workshop in
Software Model Engineering, October 2002.

[Bru96] Kim B. Bruce. Typing in object-oriented languages: Achieving
expressibility and safety(!), 1996.
http://citeseer.nj.nec.com/bruce96typing.html.

[Cas95] Giuseppe Castagna. Covariance and contravariance: Conflict without a
cause. ACM Transactions on Programming Languages and Systems,
17(3):431-447, May 1995.

[CHC90] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not
subtyping. In Conference Record of the Seventeenth Annual ACM
Symposium on Principles of Programming Languages, pages 125-135.
ACM SIGACT and SIGPLAN, ACM Press, 1990.

[CL95] Craig Chambers and Gary T. Leavens. Typechecking and modules for
multimethods. ACM Transactions on Programming Languages and
Systems, 17(6):805-843, November 1995.

[CWS85] Luca Cardelli and Peter Wegner. On understanding types, data
abstraction, and polymorphism. ACM Computing Surveys, 17(4):471-522,
1985.

[DCGY5]

[Duc02]

Jeffrey Dean, Craig Chambers, and David Grove. Selective specialization
for object-oriented languages. In Proceedings of the Conference on
Programming Language Design and Implementation, pages 93-102, 1995.
R. Ducournau. “Real World” as an argument for covariant specialization
in programming and modeling. In J.-M. Bruel and Z. Bellahsene, editors,
Advances in Object-Oriented Information Systems, OOIS’02 Workshops
Proc., volume 2426 of Lecture Notes in Computer Science, pages 3—12.
Springer-Verlag, 2002.

[HBM ™' 03] Mark Howard, Eric Bezault, Bertrand Meyer, Dominique Colnet,

[KWB03]

[LW94]

[Mey88]

[Mey97]

[OMG02]

Emmanuel Stapf, Karine Arnout, and Markus Keller. Type-safe
covariance: Competent compilers can catch all catcalls. Technical report,
Swiss Federal Institute for Technology Ziirich, April 2003.
http://citeseer.nj.nec.com/howard03typesafe.html.

Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained. The
Practice and Promise of the Model Driven Architecture. Addison-Wesley,
2003.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and Systems,
16(6):1811-1841, November 1994.

Bertrand Meyer. Eiffel: A language and environment for software
engineering. The Journal of Systems and Software, 8(3):199-246, June
1988.

B. Meyer. Object-Oriented Software Construction, Second Edition. The
Object-Oriented Series. Prentice-Hall, Englewood Cliffs (NJ), USA, 1997.
MOF 2.0 query / views / transformations rfp. Technical report, Object
Management Group, 2002.

[OMGO03a] UML 2.0 OCL second revised submission. Technical report, Object

Management Group, 2003.
http://www.omg.org/cgi-bin/doc?ad/03-01-07.

[OMGO3b] Unified Modeling Language 1.5 Specification. Technical report, Object

[OMGO04]

[Pon02]

[PS92]

[Str97]

Management Group, 2003.

UML 2.0 superstructure final adopted specification. Technical report,
Object Management Group, 2004.
http://www.omg.org/cgi-bin/doc?ptc/2003-09-15.

Claudia Pons. Generalization relation in UML model elements. In
Inheritance Workshop at European Conference for Object-Oriented
Programming (ECOOP), 2002.

Jens Palsberg and Michael I. Schwartzbach. Three discussions on
object-oriented typing. ACM OOPS Messenger, 3(2):31-38, 1992.
Bjarne Stroustrup. The C++ Programming Language, Third Edition.
Addison-Wesley, 1997.

