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Abstract. To help designers in writing OCL constraints, we have to con-
struct systems that can generate some of these constraints. This might
be done by instantiating templates, by combining prefabricated parts,
or by more general computation. Such generated specifications will often
contain redundancies that reduce their readability. In this paper, we ex-
plore the possibilities of simplifying OCL formulae through the repeated
application of simple rules. We discuss the different kinds of rules that are
needed, and we describe a prototypical implementation of the approach.

1 Introduction

The Object Constraint Language (OCL) [12] is designed with human authors
and readers in mind. While some of todays UML tools allow attaching OCL
constraints to diagrams and allow to check their syntax with a parser, there
is practically no support for authoring OCL specifications. But writing good
specifications is hard, and as the software to be specified becomes larger and
more complex, designers will need tools that help them with that task.

One approach [2] is to hook into the design pattern instantiation mechanism
provided by various case tools.1 The idea is to let the user instantiate templates,
pieces of class diagrams, which provide implementations for various design pat-
ters. As part of the instantiation, one can generate OCL constraints that capture
certain properties of the pattern.2 This approach is going to provide the motivat-
ing example for this paper, but other scenarios are conceivable, where constraints
are somehow assembled from prefabricated parts, or otherwise generated by a
program, see e.g. [8, 11, 7].

In any case, the (semi-)automatically generated constraints will often contain
redundancies that make them hard to read for humans. The topic of this paper

1 In the present work we employ Borland Together ControlCenter (TCC), see
http://www.borland.com/together/index.html.

2 Design patterns in the usual sense of the word [6] provide a vocabulary for com-
municating design ideas. They are relatively abstract entities, consisting of textual
descriptions of why, when, and how to use them, and the consequences of using them.
What is called “design pattern” in CASE tools like TCC is just mechanical instan-
tiation of templates. It is nevertheless useful, and it is such a template mechanism
we use as an example in this work.



is how OCL constraints can be simplified with the goal of making them more
readable. We will propose a rule-based method where various simple rules get
applied exhaustively.

In Sect. 2, we describe the context of this work and give a motivating exam-
ple. We show in Sect. 3 how a generated constraint can be simplified. We then
analyze the required simplification steps in Sect. 4. Sect. 5 presents a prototypical
implementation of our ideas within the KeY system [1]. Sect. 6 explores some
connections to partial evaluation and Sect. 7 discusses related work. Finally,
Sect. 8 concludes the paper with some remarks about future work.

2 Motivation

The KeY tool [1] is a CASE tool in which formal methods are integrated with
contemporary software development techniques. Besides the usual tasks of a
CASE tool of creating UML models and creating implementations in Java, KeY
allows the developer to add formal specifications to a model in the form of OCL
constraints. One of the main goals of the KeY project is to spread the use of
formal methods in software development, and a crucial step in the use of formal
methods is the authoring of formal specifications, like OCL constraints.

Unfortunately, it is not easy to write useful formal specifications. This is one
of the major obstacles in getting developers to use formal methods in software
development. One possible solution to this problem would be to, somehow, au-

tomatically generate formal specifications out of some prior information. Ideally,
we would like to go directly from an informal specification to a formal one, but
the possibilities to do so are very limited. However, an experienced developer can
often recognize parts of an informal specification as instances of certain design

patterns and, given a specific design pattern, it is possible to generate a formal
specification that expresses useful requirements associated with that pattern [2].
(The class diagram that is part of the design pattern is itself a kind of formal
specification, however, there are many things that cannot be expressed using
only “core” UML but require the use of OCL.)

As software development is becoming more and more structured, taking ad-
vantage of patterns, frameworks, and so on, it is very natural that authoring
of formal specifications also follows that line. It is a good way of re-using and
taking advantage of experienced developers’ knowledge.

How can we obtain a formal specification for a design pattern? The problem
is that in order to write a useful specification we need some information that is
not available until the pattern gets instantiated, i.e. applied to a concrete design.
Until the pattern gets instantiated we do not know:

– The name space of the modeled domain, i.e. we do not know the names of the
classes, fields, methods, associations, etc. in the design to which the pattern
is being applied.

– How the developer will modify the structure of the pattern, i.e. adding or
removing classes, fields, methods, associations, etc.
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– What flavor of the pattern the developer will use. By flavor we here mean
that different instances of a specific design pattern can have different re-
quirements associated with it regarding some details.

Let us look at a concrete example to make this more clear. The intention of the
Observer design pattern (taken from [6]), that is shown in Fig. 1, is to “define
a one-to-many dependency between objects so that when one object changes
state, all its dependents are notified and updated automatically.” This pattern
is useful when one needs to maintain consistency between related objects, but
one does not want to achieve this by making the classes tightly coupled. The
solution is to have an abstract coupling between a subject and its observers:
the subject only knows that it has a list of observers, conforming to the simple
interface of Observer. When the state of a subject changes, notify gets called,
which in turn causes a call of the update method of all current observers for this
object.

subject

0..*

observers

Subject

+attach(o:Observer):void
+detach(o:Observer):void
+notify():void

Observer

+update():void

ConcreteSubject

-state:SubjectState

+getState():SubjectState
+setState(s:SubjectState):void

ConcreteObserver

-state:ObserverState

+update():void

notify():

for all o in observers

o.update()

Fig. 1. The Observer pattern

In modern CASE tools such as TCC, one can perform machine-assisted ap-
plication of design patterns. The user then has to supply a mapping from the
name space of the pattern to the name space of the modeled domain. Option-
ally, the user may choose to modify the structure of the pattern. In the KeY
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tool, the user can also choose what flavor of the pattern he wants to use. In the
context of the Observer pattern we can, for instance, find the following “flavor
components”:

– Should the observers be allowed to observe more than one subject? In other
words, what should be the multiplicity of the subject association-end: 0..1
or 0..*? In some situations observers need information from more than one
source, and then it might be a good idea to let them observe more than
one subject. For example, a spreadsheet may depend on more than one data
source.

– Who triggers the update? One can either let all state-setting methods in
ConcreteSubject call notify() when they have changed the state, or one
can leave this responsibility to the client. The advantage with the first ap-
proach is that clients do not have to remember to call notify(). The ad-
vantage with the second approach is that the client can wait to trigger the
update until a number of state changes have been made, and can therefore
avoid unnecessary intermediate updates.

0..*

observers

statistics

statistics

Subject

+attach(o:Observer):void
+detach(o:Observer):void
+notify():void

Observer

+update():void

BarChart

+update():void

Statistics

-a:int
-b:int
-c:int

+setStatistics(a:int,b:int,c:int):void
+getStatistics():int[]

PieChart

+update():void

Fig. 2. An instance of the Observer pattern

An instance of the Observer pattern is shown in Fig. 2. This example is
from the design of a system that handles statistical data. The statistics can be
viewed graphically, both as a pie chart and as a bar chart. We can see that what
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is called ConcreteSubject in the pattern is here called Statistics, the role-
name statistics corresponds to the role-name subject in the pattern, and so
on. We can also see that we here have two concrete observers (PieChart and
BarChart) in contrast to the single one in the pattern (ConcreteObserver), so
the original structure of the pattern has been slightly modified.

What flavor of the pattern would be useful for this particular instance? It
seems reasonable to assume that the GUI observers only need information from
one Statistics object, i.e. the subject association-end has multiplicity 0..1.

Who should trigger the update? Since in this very simple example we just
have one state-setting method in Statistics, namely setStatistics(), it is
probably a good idea to perform the call to notify() at the end of that method.

Now, if we are going to write a formal specification for this design pattern,
we need information that we do not obtain until the pattern is instantiated. A
possible solution is to use schemas, as suggested in [2]. For each design pattern
we want to specify, we design a schema from which we can generate formal
specifications when the pattern is applied. A schema for (part of) the Observer
pattern might look like this:

schema numOfSubjects(String flavor)

ocl: context Observer inv:

if flavor = ’one’

then self.subject->size() <= 1

else true

endif

Here we have a parameterized version of one of the “flavor components”, namely
whether the subject association-end should have multiplicity 0..1 or 0..*. The
keyword schema, the name of the schema, optional flavor parameters, and the
keyword ocl: are followed by the actual OCL constraint containing the flavor
parameters. But there is a problem with this schema. There is no inheritance
mechanism in the semantics of OCL, and this means that a formal specification
will be generated for the abstract class Observer but not for the concrete ob-
server objects PieChart and BarChart. Writing a schema for ConcreteObserver
instead, so that a specification is generated for each concrete observer in the
model, does not solve the problem in general. If the developer introduces a hier-
archy of observers including abstract super classes for subsets of the observers,
then we have the same problem again. However, we can address the problem
directly in our schema:

schema numOfSubjects(String flavor)

ocl: Observer.allSubtypes()->

forAll(s | s.allInstances()->

forAll(i |

if flavor = ’one’

then i.subject->size() <= 1

else true

endif))
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Now we quantify over all subtypes of Observer, and for each subtype we quantify
over all instances of that subtype. This means that in essence we will get an
invariant for each subtype. (The property allSubtypes is not pre-defined in
OCL but can be expressed with the help of other operations. We just use it
here to make the constraint more readable.) Here is the result of applying the
Observer pattern to the model in Fig. 2 and using the schema above to generate
a specification for the pattern instance:

Observer.allSubtypes()->

forAll(s | s.allInstances()->

forAll(i |

if ’one’ = ’one’

then i.statistics->size() <= 1

else true

endif))

Observer in the pattern is mapped onto Observer (could have another name) in
the model, the subject association in the pattern is mapped onto statistics,
and the parameter flavor is bound to the string literal ’one’. As one can see,
there is a potential for simplification here. Since we now have a concrete design,
it should be possible to evaluate the expression Observer.allSubtypes(). It
should also be possible to evaluate the if-then-else construct now that the
flavor parameter is bound to a concrete value.

In general, when we write OCL constraint schemas for design patterns, they
will be parameterized. We will have explicit parameters of the schema for dif-
ferent flavors of the pattern. The elements from the pattern’s name space can
also be viewed as formal parameters, since they have to be bound to concrete
elements from the modeled domain. Moreover, we have to take into account pos-
sible structural modifications of the pattern. As we saw in the example, all this
will lead to generated specifications containing redundant information. They be-
come hard to read, hard to understand. The generated specifications need to be
simplified.

3 Example

We shall now see how the previous example may be simplified through the appli-
cation of several small simplification steps. The first step would be to recognize
that ’one’ = ’one’ is always true, and may therefore be replaced by true:

Observer.allSubtypes()->

forAll(s | s.allInstances()->

forAll(i | if true

then i.statistics->size() <= 1

else true

endif))
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Next, an if-then-else construct with a condition known to be true may be replaced
by its then-branch:

Observer.allSubtypes()->

forAll(s | s.allInstances()->

forAll(i | i.statistics->size() <= 1))

A further simplification becomes possible if we take information about the model
into account, namely the subtypes of Observer in this particular instance of the
pattern. In Fig. 2, there are only two subtypes, so we can simplify the constraint
as follows:

Set{PieChart,BarChart}->

forAll(s | s.allInstances()->

forAll(i | i.statistics->size() <= 1))

The outer forAll application now ranges over a finite set of which we know all
elements. We can therefore transform it into a conjunction:

PieChart.allInstances()->forAll(i | i.statistics->size() <= 1)

and BarChart.allInstances()->forAll(i | i.statistics->size() <= 1)

Finally, a property that should hold for all instances of a class is usually stated
as an invariant. One could therefore split up this constraint and add an invariant
to both of the observer classes:

context PieChart inv: statistics->size() <= 1

context BarChar inv: statistics->size() <= 1

These constraints are certainly much simpler and more natural than the original
general form from the schema. On the other hand, the meaning is guaranteed to
be the same, as none of the small transformations changed the meaning.

Another example of a step-wise simplification is given in [2]. There, OCL
constraints from an instantiation of the Composite pattern are simplified in a
similar way as was presented here.

4 Analysis

The previous section shows how OCL constraints can be simplified considerably
through the repeated application of small, simple rules. All rules require only
local transformation of the constraint, no global analysis is needed. This suggests
implementing our simplification using a kind of rewriting rule engine. Such a rule
engine repeatedly tries to apply transformation rules on sub expressions of the
input until no more rules are applicable. This is a well-known principle and we
can base our work on the extensive research on term rewriting systems (see
e.g. [5]).

In this section, we are going to have a closer look at the different kinds of
rules that are needed to simplify OCL constraints.
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4.1 Primitive Types

The most fundamental primitive type in OCL is of course the Boolean type.
For this, general logic simplification steps are needed, like for instance rewriting
false and e to false, true and e to e, etc. One can give this kind of rules
for all logical connectives, including the if-then-else construct. The rule that
simplifies e=e to true also belongs into this category.3

A more difficult question is how to handle the other data types built into
OCL. For instance, one surely wants to have simplification rules that rewrite
2+3 to 5. Simplifying 0+x to x is also useful. But should one have rules ca-
pable of simplifying (x+y)*(x+y) - (x-y)*(x-y) to 4*x*y? It is known from
computer algebra research that the simplification of algebraic expressions is a
complicated affair. We think that it depends very much on the application field
whether an OCL simplifier should be able to handle this kind of problem. If
one thinks of design pattern instantiation, then it seems unlikely that algebraic
simplification would be useful. We limit ourselves to evaluation of concrete ex-
pressions and simple laws on neutral elements, units etc.,until we come across
an application that makes more powerful simplification necessary. This holds for
all the primitive data types of OCL, i.e. integers, reals, and strings.

4.2 Collection Types

In Sect. 3 we saw an example of how a forAll expression over a finite set can
be rewritten to a conjunction. Many interesting simplifications are possible for
collections. Here are some examples:

– Operations with finite sets can be simplified: Set{a,b}->exists(x|p(x))
can be written as p(a) or p(b).

– Some operations can be completely evaluated for concrete sets. For instance,
Set{1,2,3}->sum() can be simplified to 6.

– Operations where the other parameters have a simple form can often by sim-
plified: s->forall(x|true) can be rewritten to true and s->collect(x|x)

to s.
– Special cases can be detected for some operations. For instance, one might

rewrite s->including(o)->includes(o) to true.

As is the case for primitive types, no finite set of simplification rules can cover all
cases. One should therefore pick a basic supply and extend it when applications
make it necessary.

An interesting point with the collection operators in OCL is that they can
all be expressed using the iterate construct. It might be worthwhile to reduce
the number of needed simplification rules for the various collection operators
by translating them to an iterate expression and providing simplification rules
only for that. For instance, the previously mentioned expression

3 We omit from our analysis OCL’s undefined value that can occur in any expression.
It would be perfectly possible to extend the rules, but undefined is rarely used in
practice due to its complex semantics.
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Set{a,b}->exists(x | p(x))

can be written as

Set{a,b}->iterate(x ; acc:Boolean = false | acc or p(x) )

The iteration over the finite set can then be unrolled to

(false or p(a)) or p(b)

which is in turn simplified to

p(a) or p(b)

It turns out that most of the simplifications one might think of for forAll,
exists, collect, etc., can actually be handled in this way. If one has m simpli-
fication rules for n operators, one can effectively replace m · n rules by m + n.

The drawback of this approach is what happens when the expression cannot

be simplified further after translation to the iterate form: in that case, the latter
form is certainly harder to read than the original. We are currently investigating
an approach where the simplification would backtrack over such a transformation
step if the result is not ultimately simpler than the original. This approach is
different from the usual one in term rewriting [5], where one also searches for a
minimal form with respect to some ordering, but where every step is required to
reduce the term. If we require decreasing terms, we either need the complete set
of m · n rules, or we need to make the form using iterate smaller in the term
ordering. The first option would make the rule set harder to maintain and the
second would be contrary to the purpose of making the simplified constraints
easier to understand for humans.

4.3 Model Dependent Simplifications

The previously discussed simplification rules are not very specific to OCL. They
would make sense in any formal language that provides the same data types.
A peculiarity of OCL is that OCL constraints are always attached to UML
diagrams. They cannot occur in isolation. UML diagrams provide the name
space for OCL expressions, i.e. the set of available attributes, queries and role
names.

OCL admits properties that are defined on the UML metamodel.4 If the con-
crete model is known, these can often be evaluated. For instance, in our example,
PieChart.supertypes() can be simplified to Set{Observer}. In contrast to the
simplifications proposed in the previous sections, this requires knowledge of the
model. Similarly, expressions involving the attributes, operations, etc., prop-
erties defined for OclType will usually be simplifiable once the model is known.

4 Up to OCL 1.5, these were predefined on the type OclType. In OCL 2.0, they were
removed to avoid inconsistencies between OCL and the UML metamodel. Our dis-
cussion is based on the properties as defined in OCL 1.5.
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The use of information from the UML model is not limited to ‘meta’-proper-
ties: another possibility might be to use the multiplicities of associations. For
instance, if the association assoc has a multiplicity of n, then o.assoc->count()

can be simplified to n.
The interesting issue here is how to organize the implementation of such

simplifications. An implementation that uses a rule engine with a fixed set of
syntactic rewrite rules would have to generate a considerable number of rules
from the model. For instance, there would be a rule for each of the OclType

properties for each class in the model. Even worse, simplification rules that
involve two types, for instance for expressions involving oclIsKindOf, might
need one rule for every pair of classes, so the rule set would grow quadratically
in the size of the model. At the same time, most of these rules would not be
needed for any particular simplification.

To avoid this waste of resources, a practical solution requires a rule engine
that can obtain information from the model to determine the applicability and
result of some of the rules.

We have not yet looked at the final step in Sect. 3, where a single constraint
is split up and distributed among the invariants of several classes. The easiest
way to do this is probably to view it as a separate post-processing step. On the
other hand, it would also be possible to apply our simplification rules not on raw
constraints, but on lists of constraints with contexts. In that case, invariants for
different classes could be generated within the same framework.

5 Implementation

We are currently in the process of implementing a rule-based OCL simplifier that
will be integrated with the pattern-instantiation mechanism in KeY. It is already
possible in KeY to generate OCL specifications for instances of certain design
patterns, with the help of schemas. The job of the simplifier would then be to
simplify the generated specifications that often contain redundant information.
Now, we already have a rule-engine available: the theorem prover in the KeY
tool. This theorem prover is based on taclets [3], which are a kind of generalized
term rewriting rules that can be used to describe the rules of a logic calculus.

Although the taclet concept was designed with theorem proving in mind, the
design is so general that it is possible to use taclets for other purposes as well.
After a few extensions of the implementation of the KeY taclet engine, we were
able to use taclets to perform OCL simplification. Of special interest for us are
the so-called rewrite taclets, which can be used to define rewrite rules in a simple
way. A rewrite taclet for OCL simplification can, for instance, look like this:

find(#e and true) replacewith(#e)

Here, #e is a schema variable, i.e. it stands for arbitrary expressions. This taclet
is applicable to an OCL expression exp if the find-part of the taclet matches
exp (i.e. if we can instantiate the schema variable so that exp and the find-part
become identical). If we apply the taclet to exp, then exp will be replaced by the
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instantiated replacewith-part of the taclet. New rules can easily be defined in a
text file, using the notation above, and are then parsed into the KeY system.
Our approach is to write a set of simplification rules, in the form of taclets, and
then apply them to the generated OCL specifications.

Each OCL taclet consists of a find-expression and a replacewith-expression,
both consisting of OCL syntax extended with schema variables, meta constructs,
and the substitution operator. Meta constructs are references to procedures that
transform a given OCL expression into another one when a taclet is being ap-
plied, and they are only allowed to appear in the replacewith-part. They are
mainly used to extract information from the UML model, e.g. the subtype hier-
archy of classes. Most taclets do not need any meta constructs. The meaning of
the substitution operator will be explained in the context of an example below.

In order to simplify OCL expressions, one has to have a way of dealing
with OCL collections. The constructors for OCL collections (Set{...}, etc.) can
enumerate any number of elements, i.e. they can be viewed as operators having
a variable arity. Now, operators with variable arity are not very easy to handle
in an efficient way when one wants to apply rules to them. Our solution to this
is to represent collection literals in structures that resemble the list in functional
programming languages. These structures are built using two constructors: cons
that takes two arguments—the first element in the list and the rest of the list—
and nil that represents the empty list.

To be more precise, we have two list constructors for each collection type:
set_cons and set_nil, bag_cons and bag_nil, and so on. In that way we
do not loose the type information. Using these list constructors, it is easy to
perform various operations on OCL collections. Instead of having to deal with
variable arity, we use induction when designing our simplification rules: we have
one base case rule for the empty list, and one induction step rule, just as one
defines functions operating on lists in functional programming languages. As an
example for this representation, Set{a, b, c} becomes

set_cons(a, set_cons(b, set_cons(c, set_nil)))

We can now define taclets to transform a universal quantification over a concrete,
finite set to a conjunction. In other words, we want to transform an expression
like

set_cons(a, set_cons(b, set_cons(c, set_nil)))->forAll(x | e(x))

to

e(a) and e(b) and e(c)

Below we see the two taclets needed to perform this transformation, one rule for
the base case and one for the induction step:

forAll2Conjunction_base {

find(set_nil->forAll(#x | #exp))

replacewith(true)}
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forAll2Conjunction_step {

find(set_cons(#head, #tail)->forAll(#x | #exp))

replacewith({#x #head}#exp and #tail->forAll(#x | #exp))}

In the examples, all schema variables are prefixed with a ‘#’ sign to distinguish
them from the keywords in the syntax. Here we can also see the syntax for substi-

tution, {x e}exp, which means that all free occurrences of x in exp are replaced
with e. Here are some more examples of taclets needed for OCL simplification:

equals {find(#e = #e) replacewith(true)}

and_false {find(#e and false) replacewith(false)}

if_true {find(if true then #e1 else #e2 endif)

replacewith(#e1)}

It should be pointed out that in the current implementation, one cannot use
proper OCL syntax in the taclets, like in the examples. A special, taclet-tailored
syntax has to be used instead. This is due to the difficulties in integrating the
parser for the taclet language with an OCL parser. Of course, this technicality
will be visible only to the author of the simplification rules, and not to the user
of the simplifier.

In order to perform OCL simplification using taclets we have to extend the
implementation of the KeY tool, and this is work in progress. The current ver-
sion can, for instance, perform the simplification steps described in Sect. 3, and
also what is needed for the problem described in [2]. We can perform basic sim-
plifications, like x and true to x, but also more advanced tasks like extracting
information from the model using meta constructs. We can also handle bound
variables and express the substitution of such bound variables, which is needed
to handle forAll, iterate, etc. However, a number of things remain to be done:

– Implement pretty-printing of OCL expressions.

– Read the input using an OCL parser. The OCL expressions to be simplified
need to be parsed and type-checked. A new OCL parser that can generate
a suitable abstract syntax tree is currently under development at Chalmers
University, see [9].

– Integrate it with the pattern mechanism in the KeY tool.

– Handle types. So far we ignore OCL’s type system.

– Complete our set of taclets. So far we have only written a few taclets to be
able to simplify some test expressions.

Since it is possible to use the prover of the KeY system “stand-alone”, without
the CASE tool component, we expect to be able to produce a stand-alone version
of our OCL simplifier as well.
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6 Simplification and Partial Evaluation

OCL is nearer to a programming language than most other specification for-
malisms, like for instance classical first order logic (there are even considerations
for a directly executable version). The point is that OCL constraints can (at least
in principle) be effectively evaluated, given a snapshot of the system in question.
This is mostly due to the fact that there is no quantification over infinite sets in
OCL. The collection data types allow only finite collections, and any iteration
or quantification ranges over some finite set.

If one interprets OCL constraints as executable programs, then the process
of first instantiating parts of an OCL schema and then simplifying the result
becomes an instance of what is known as program specialization or partial eval-

uation (see e.g. [10]). This connection suggests that results and techniques from
partial evaluation might be adapted and used in our context.

There are, on the other hand, also significant differences between the two
topics. First, there are no potentially non-terminating constructs, like while-
loops or recursion, in OCL.5 This eliminates many of the more difficult aspects of
partial evaluation. Second, we want to simplify OCL constraints not for efficiency
or space reasons, but to improve their readability for humans. This distinction
can make a big difference in practice.

There are nonetheless several techniques known from partial evaluation that
we eventually want to apply in our OCL specializer:

– For both partial evaluation and human-oriented OCL simplification, there
are cases where it is hard for a computer program to decide whether a certain
rule should be applied or not. In this case, a semi-automatic solution might
be sensible, where the user is queried for some of the applicable rules.

– One technique employed in partial evaluation is to do a binding time analy-

sis before any actual simplification. This analysis identifies expressions and
programs that can be statically evaluated if certain arguments are fixed.
Among other purposes, this information can help in writing programs in a
way that makes it easy to specialize. The same approach would certainly
be helpful for OCL specialization. One could for example envisage an editor
which highlights constructs that can be evaluated statically.

It remains to be seen which other results from the research on partial evalu-
ation can be applied to a specification language like OCL.

7 Related Work

The idea to attach schematic OCL constraints to design patterns was first dis-
cussed in [2]. The need for simplification was recognized there, but not sys-
tematically investigated. This is done in the present paper, together with an

5 Recursive definitions have recently been proposed as an extension, but we will ignore
this here.
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implementation approach. Closest to our work are the specification patterns for
temporal properties in the Bandera project [4]. These are essentially grammars
for structured English that are designed in such a way that they can be directly
translated into low-level logical expressions. In contrast to this grammar-based
approach, one could call our approach language-based, because it uses opera-
tions, parameters, and (in the near futures) types.

8 Conclusion

We presented an approach to perform OCL simplification through repeated ap-
plication of simple rules. Simplification of OCL constraints is often needed when
the constraints have been automatically generated by instantiation of templates,
by combination of constraint fragments, or by some other technique. On a higher
level, we think that tool support for the generation of formal specifications is an
important step on the way to make formal methods more accessible to software
developers. In this paper we concentrated on how to simplify OCL constraints
generated in the context of design pattern instantiation, i.e. constraints express-
ing requirements associated with the patterns.

We identified various kinds of rules that are needed for OCL simplification
and pointed out differences to usual term rewriting systems. We also compared
template instantiation and simplification of OCL constraints to program spe-
cialization.

Moreover, we implemented a prototype of an OCL simplifier by re-using the
rule application mechanism of the theorem prover in the KeY tool. We described
some of the technical issues that need to be solved in such an implementation.

In the near future, we plan to extend the implementation to make it aware of
OCL’s type system. We also want to connect it to an OCL parser and integrate
it with the pattern mechanism in KeY. In a longer perspective we want to look
into the area of partial evaluation and see which techniques from that area might
be applicable.

Another interesting direction for future research is to perform simplification
under side conditions. For instance, one might have information that is separate
from an OCL constraint, but lets one decide which branch of an if-then-else
construct needs to be kept. This would be interesting for the work presented
in [7].

We believe that future tools for formal methods will need to help developers
by generating formal specifications from other information. Simplifying these
specifications for improved readability will be indispensable.
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Philipp Rümmer, and Steffen Schlager. Taclets: a new paradigm for writing theo-
rem provers. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Natu-
rales, 2004. To appear.

4. James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. A language
framework for expressing checkable properties of dynamic software. In Klaus
Havelund, John Penix, and Willem Visser, editors, 7th International SPIN Work-
shop Stanford, volume 1885 of LNCS. Springer, 2000.

5. Nachum Dershowitz and David A. Plaisted. Rewriting. In Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 9,
pages 535–610. Elsevier Science, 2001.

6. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

7. Martin Giese and Rogardt Heldal. From informal to formal specifications in
UML. In Thomas Baar and Alfred Strohmeier, editors, Proc. of UML2004, Lisbon.
Springer, 2004.
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