
OCL as Expression Language in an Action
Semantics Surface Language

Stefan Haustein and Jörg Pleumann

Computer Science Dept. VIII/X
University of Dortmund

Germany
{stefan.haustein,joerg.pleumann}@udo.edu

Abstract. With the specifiaction of Action Semantics in UML 1.5, the
OMG has layed ground to manipulating object diagrams in a formal way,
which is a necessary prerequisite for QVT. In QVT, of course the manip-
ulations take place at M1 level instead of M0, but due to the architecture
of UML, the same mechanisms can simply be reused. Unfortunately, the
Action Semantics specification does not mandate a surface language, lim-
iting its practical application. Due to the high overlap with the Object
Constraint Language, in this article we propose a surface language that
is based on and aligned with OCL.

1 Introduction

In earlier versions of the UML standard, textual descriptions were used to cap-
ture the behavior of operations in an informal way. However, this form of de-
scription is not accessible to tools like theorem provers, model-based simulation,
and code generators [5]. To overcome this problem, UML 1.5 introduced the
specification of operations using Action Semantics (AS) [7, chapter 2]. Action
Semantics is a framework for the formal description of programming languages
[6].

The Action Semantics proposal accepted by the OMG formalizes different
categories of actions [1] for inclusion in UML 1.5 and 2.0:

Control Structures are used to model loop and branch structures.
Read and Write Actions are used to access the values of object properties

and to create new instances or to delete existing instances.
Computation Actions transform a set of input values to produce a set of

output values without side effects on other parts of the system.
Collection Actions permit the parallelizable application of an action to a set

of data elements.
Messaging Actions trigger asynchronous or synchronous actions such as state

machine transitions or method invocations with a return value.
Compositional Actions model iterations and conditionals.
Jump Actions allow deviations from the main path of control flow in iterations

similar to the break statement known from many programming languages.



Fig. 1. Control action overview

Following the general spirit of UML, those actions are modeled as UML
classes. Figure 1 shows an overview of the classes describing control structures
in the Action Semantic framework. The other categories are described in a sim-
ilar way. Each action has a set of input and output pins. Output pins can be
connected to one or more input pins of other actions, creating sequential depen-
dencies. Alternatively to the pin mechanism, the class ControlFlow can be used
to explicitly enforce an order of execution. The class diagrams of the Action
Semantics are roughly similar to the grammar specifying the abstract syntax
of a programming language. Naturally, object diagrams could be used to cap-
ture the equivalent of the abstract syntax tree of a program, altough even for
simple expressions the diagrams become extremely verbose. What is missing in
this system is a concrete syntax, which is called surface language in the Action
Semantics specification.

2 Action Semantics and the Object Constraint Language

The UML Action Semantics recognizes the need for an Action Semantics surface
language, but does not recomend a specific one. The specification contains a set
of informal mappings to action languages used in different UML tools, namely
the Action Specification Language (ASL) [3], the BridgePoint Action Language
(AL) [9], the Kabira Action Semantics (Kabira AS) [2], and the action language
subset of the Specification and Description Language (SDL), an international
standard widely used in the telecommunication industry [10].



All those languages rely on a syntax that is incoherent with the existing
UML expression language, the Object Constraint Language (OCL). Actually,
large parts of the Action Semantics specification duplicates functionality that is
already covered by the OCL, such as

– Navigation and read access to properties
– Computation
– Calls to query operations
– Collection operations

The great overlap of the model access constructs defined in the AS and
OCL specifications suggests that using two completely different syntaxes may be
inappropriate and confusing; one would expect a surface language that leverages
existing OCL knowledge and infrastructure. Naturally, due to the side effect free
nature of OCL, OCL cannot cover actions such as write actions or calls to non-
query operations, but using OCL for the parts covered would mean a significant
improvement over the current situation.

It seemes quite straight-forward to build an action surface language that is
based on OCL expressions, without tainting OCL itself with side effects. Anneke
Kleppe and Jos Warner suggest an action clause as an extension to OCL that
would fit nicely with the declarative nature of OCL [4], but for the desired
purpose a fully operational solution is required. Since the OCL is a subset of
the AS, there are two options for building an action surface language based on
OCL:

1. Map all OCL constructs to actions, then add new syntax constructs for
actions that are required, but not covered.

2. Embed OCL expressions in new syntax constructs for actions.

The first option requires a complete mapping of the abstract OCL syntax to
actions. This would mean to give up declarative semantics in OCL, or to have
two flavours of OCL with different specifications that would need to be aligned
carefully.

The second option can be implemented by referring to the existing OCL sur-
face language, without modifying it, maintaining a clean syntactical separation
between plain queries and actions that may influence the system state. This
approach keeps the interface between bothe languages minimal and allows to
keep both languages relatively separate, not tainting OCL by introducing side
effects to OCL itself. Since this approach seemed the more promising one, we
have implemented it in our Infolayer system.

3 ASOQ

The Infolayer system is basically an UML runtime environment that interprets
class diagrams and state charts as a Web application. It can be seen as an
implementation of a variant of MDA that does not compile PIMs, but interprets



them instead. In this approach, the transformation from the PIM to the PSM is
handled implicitly by a model-driven runtime (MDR) environment. Where MDA
potentially transforms object-oriented concepts to non object-oriented ones (as
in the case of the relational database), our MDR implements selected parts of
the UML metamodel and interprets them for a given application domain.

In the system, OCL is used to implement user defined operations without
side effects. To implement operations that are not free of side effects, we have
implemented a language termed Action Semantics Surface Language based on
OCL Queries (ASOQ), following the ideas outlined in the previous section.

Syntax constructs needed to be created only for the functionality that is not
already present in OCL, namely composite actions, write actions, and messaging
actions. We tried to align the new constructs with existing OCL syntax:

– The OCL if–then–else structure includes endif as a specific end marker, where
other languages such as C and PASCAL use an explicit block structure,
marked by curly brackets or special keywords such as begin and end. For
consistency, implicit blocks and end markers specific to the control structure
are used in ASOQ also for loops (while–do–enddo).

– ‘=’ is used mainly as comparison operator in OCL; when used in assignments
it may be paired with a colon and a type declaration. Thus, using ‘:=’ for
property and variable assignments seems consistent with OCL.

– OCL uses dots (‘.’) to separate parts of path expressions. In ASOQ, we will
use the exclamation mark (‘!’) to indicate an operation with side effects at
the end of a path expression.

– The OCL let...in declaration block and the if–then–else structure can be
reused in the ASOQ with an identical syntax to build group actions and
conditional actions.

Before we can define the details of the syntax, we need a construct to integrate
arbitrary OCL expressions in the Action Semantics framework. For this purpose,
we create a class OclAction that inherits from PrimitiveAction, but has a link to
an OclExpression object, defined in the OCL specification. The new class allows
us to embed OCL expressions in chains of actions. It can have at most one
result output pin, which delivers the result of the evaluation of the expression.
The upper part of figure 2 shows the OclAction class. The isReadOnly property
of the OclAction is always true, since OCL expressions cannot have any side
effects. Variable references can be handed from actions to the OCL parser by
pre-initializing the OCL environment accordingly. Full read access to the System
state is already available in OCL.

The OCL specification includes a mapping from the concrete syntax to the
abstract syntax in the form of a full attribute grammar. The full attribute gram-
mar contains not only the syntax definitions, but also a specification of the re-
sulting abstract syntax tree. For consistency with the OCL specification, we use
the same formalism to specify the ASOQ syntax. This allows us also to include
some OCL constructs by reference.

The appendix contain the syntax specification of the ASOQ building blocks
that complement the OCL to a Action Semantics surface language:



Fig. 2. OclAction and related classes. Classes contained in the Action Semantics spec-
ification are dark gray, classes from the OCL specification are light gray. The new class
OclAction and UML core classifiers are white.



– A simple block struckture including variables and statements
– The OclAction allowing to embed OCL construct
– An if-then-else conditional structure
– A while loop structure
– Non-query method invocations
– Variable assignments
– Property assignments

4 Conclusion and Outlook

The introduction of the Action Semantics framework into the UML has provided
a means of describing UML actions and operation implementations in a formal
way. This is an important building block for model transformations and code
generation in the context of MDA and QVT. The Action Semantics specification
only describes abstract syntax and thus stays largely language-independent. Yet,
for practical purposes, a concrete syntax is required, too. We have designed such
a language – named ASOQ – based on OCL, and we have been able to minimize
the specification effort by integrating the existing OCL specification into this
language. An implementation of ASOQ is used in the Infolayer system [8], where
it serves for manipulating the system state at the M0 level. However, our positive
experience with the language suggests that it might also be used at M1 level in
the context of a transformation language like QVT.

References

1. Action Semantics for the UML, August 2001. OMG ad/2001-08-04.
2. Kabira Technologies, Inc. Kabira Action Semantics. http://www.kabira.com.
3. Kennedy Carter Ltd. Action Specification Language (ASL). http://www.kc.com.
4. Anneke Kleppe and Jos Warmer. Extending OCL to include actions. In Andy

Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The Unified Modeling
Language. Advancing the Standard. Third International Conference, York, UK,
October 2000, Proceedings, volume 1939 of LNCS, pages 278–293. Springer, 2000.

5. Stephen J. Mellor, Steve Tockey, Rodolphe Arthaud, and Philippe LeBlanc.
Software-platform-independent, precise action specifications for UML. In Jean
Bézivin and Pierre-Alain Muller, editors, The Unified Modeling Language, UML’98
- Beyond the Notation. First International Workshop, Mulhouse, France, June
1998, pages 281–286, 1998.

6. Peter D. Mosses. Theory and practice of action semantics. Technical Report BRICS
RS-96-53, Department of Computer Science, University of Aarhus, Ny Munkegade,
building 540, DK-8000 Aarhus C, Denmark, 1996.

7. Object Management Group (OMG). Unified Modeling Language (UML) 1.5 Spec-
ification. http://www.omg.org/cgi-bin/doc?formal/03-03-01, 2003.

8. Jörg Pleumann and Stefan Haustein. A model-driven runtime environment for web
application. In UML Conference 2003, LNCS. Springer Verlag, 2003.

9. Project Technology, Inc. BridgePoint Action Language (AL).
http://www.projtech.com.

10. International Telecommunication Union. Specification and description language
(SDL). Technical Report Z.100, ITU-T, 1999.



A Appendix: ASOQ Grammar

A.1 Blocks, Variables, and Statements

Fig. 3. Mapping of a block to a GroupAction object

The top level concept of ASOQ is a block, consisting of a list of variable
declarations, followed by a sequence of statements. Figure 3 shows an action
object diagram for the following block:

let

x = 5

in

-- Statement 1;

-- Statement 2

In the following annotated syntax definition, SimpleNameCS and OclExpres-
sionCS from the OCL Grammar are referenced. OclActionCS simply wraps the
OclExpression abstract syntax tree in an OclAction object. The variable decla-
ration syntax cannot be simply taken from the OCL specification in order to
allow an initialization with a newly created object. The following rules spend
most space for the correct chaining of actions.

BlockCS ::= StatementListCS

StatementListCS.env = BlockCS.env

BlockCS.ast : GroupAction

BlockCS.ast.subaction = StatementListCS.ast



BlockCS ::= LetBlockCS

LetBlockCS.env = BlockCS.env

BlockCS.ast : GroupAction

BlockCS.ast.subaction = LetBlockCS.ast

LetBlockCS ::= ’let’ AsoqVariableDeclarationCS LetBlockSubCS

LetBlockSubCS.env =

LetBlockCS.env.nestedEnvironment().addElement(

AsoqVariableDeclarationCS.variable.name,

AsoqVariableDeclarationCS.variable,

false)

LetBlockCS.ast = LetBlockSubCS.ast->prepend(

AsoqVariableDeclarationCS.ast)

LetBlockCS.ast->first().consequent : ControlFlow

LetBlockCS.ast->first().consequent.sucessor =

LetBlockSubCS.ast->first()

LetBlockSubCS ::= ’,’ AsoqVariableDeclarationCS LetBlockSubCS[2]

LetBlockSubCS[2].env =

LetBlockSubCS.env.nestedEnvironment().addElement(

AsoqVariableDeclarationCS.variable.name,

AsoqVariableDeclarationCS.variable,

false)

LetBlockSubCS.ast = LetBlockSubCS[2].ast->prepend(

AsoqVariableDeclarationCS.ast)

LetBlockSubCS.ast->first().consequent : ControlFlow

LetBlockSubCS.ast->first().consequent.sucessor =

LetBlockSubCS[2]->first()

LetBlockSubCS ::= ’in’ StatementListCS

StatementList.env =

LetBlockSubCS.env.nestedEnvironment().addElement(

AsoqVariableDeclarationCS.variable.name,

AsoqVariableDeclarationCS.variable,

false)

LetBlockSubCS.ast = StatementListCS.ast->prepend(

AsoqVariableDeclarationCS.ast)

LetBlockSubCS.ast->first().consequent : ControlFlow

LetBlockSubCS.ast->first().consequent.sucessor =

StatementList->first()

AsoqVariableDeclarationCS ::= simpleNameCS : typeCS = AsoqExpres-
sionCS

AsoqExpression.env = AsoqVariableDeclarationCS.

VariableCS.ast : WriteVariableAction

VariableCS.ast.variable : Variable

VariableCS.ast.variable.name : String = simpleNameCS



VariableCS.ast.variable.in : InputPin

VariableCS.ast.variable.in.flow : DataFlow

VariableCS.ast.variable.in.flow.source : OutputPin

VariableCS.ast.variable.in.flow.source.action =

AsoqExpressionCS

StatementListCS ::= StatementCS

Statement.env = StatementListCS.env

StatementListCS.ast = Sequence{StatementCS.ast}

StatementListCS ::= StatementCS ’;’ StatementListCS[2]

StatementListCS.ast =

StatementListCS[2].ast->prepend(StatementCS.ast)

StatementCS.ast.consequent : ControlFlow

StatementCS.ast.consequent.successor =

StatementListCS[2].ast->first

StatementCS ::= BlockCS

BlockCS.env = StatementCS.env

StatementCS.ast = Block.ast

StatementCS ::= IfStatementCS

IfStatementCS.env = StatementCS.env

StatementCS.ast = IfStatementCS.ast

StatementCS ::= WhileStatementCS

WhileStatementCS.env = StatementCS.env

StatementCS.ast = WhileStatementCS.ast

StatementCS ::= AssignmentCS

AssignmentCS.env = StatementCS.env

StatementCS.ast = AssignmentCS.ast

StatementCS ::= AsoqExpressionCS
In order to avoid ambiguities with OCL let and if constructs, all other state-
ment rules must take precedence to this one.

AsoqStatementCS.env = StatementCS.env

StatementCS.ast = AsoqExpressionCS.ast

A.2 OclAction

A simple rule simplifies the integration of OCL expressions in the action syntax:

OclActionCS ::= OclExpressionCS

OclExpressionCS.env = OclActionCS.env

OclActionCS.ast : OclAction

OclActionCS.ast.expression = OclExpressionCS.ast



Fig. 4. Mapping of an if statement to a GroupAction object

A.3 if-then-else

The OCL already contains an if-then-else control structure, but at ASOQ state-
ment level it is not necessary that a value is returned, thus the else part may be
omitted. To avoid deep nesting for multi-way decisions, while still keeping the
syntax consistent with OCL, we add an elseif construct. Other languages such
as C or PASCAL do not need this because they use an explicit general block
structure—instead of implicitly opening a block that must be terminated with
endif.

An example code snippet, matching the multi-way decision sample of the
action semantics specification, looks as follows:

if factor = 1 then

-- Some action 1

else if facror = 2 then

-- Some action 2

else

-- Some action 3

endif

The resulting action semantic object diagram is depicted in figure 4.

IfStatementCS ::= ‘if’ ClauseCS ‘endif’



ClauseCS.env = IfStatementCS.env

IfStatementCS.ast : ConditionalAction

IfStatementCS.ast.clause = Set{ClauseCS.ast}

IfStatementCS ::= ‘if’ ClauseCS ElseCS ‘endif’

IfStatementCS.ast : ConditionalAction

IfStatementCS.ast.clause =

ElseifCS.ast->prepend(ClauseCS)

ClasuseCS.ast.successorClause = ElseifCS->first()

ClauseCS ::= OclActionCS ’then’ BlockCS

ClauseCS.ast : Clause

ClauseCS.ast.test = OclActionCS.ast

ClauseCS.ast.body = BlockCS.ast

ElseCS ::= ‘else’ DefaultClauseCS

ElseCS.ast = Sequence{DefautlClauseCS.ast}

ElseCS ::= ElseifCS ‘else’ DefaultClauseCS

ElseCS.ast = ElseifCS.ast->append(DefautlClauseCS.ast)

DefaultClauseCS.ast.predecessorClause =

ElseifCS.any(successorClause->isEmpty)

DefaultClauseCS ::= BlockCS

DefaultClauseCS.ast : Clause

DefaultClauseCS.ast.test : LiteralActionCS

DefaultClauseCS.ast.test.value = true

DefaultClauseCS.ast.body = BlockCS.ast

ElseifCS ::= ’elseif’ ClauseCS

ClauseCS.env = ElseifCS

ElseifClauseCS.ast = Sequence{ClauseCS}

ElseifCS ::= ’elseif’ ClauseCS Elseif[2]CS

ClauseCS.env = ElseifCS.env

ElseIfCS[2].env = ElseifCS.env

ElseifCS.ast = Elseif[2]CS.ast->prepend(ClauseCS.ast)

ClauseCS.ast.successorClause = ElseifCS[2].ast->first()

A.4 while

A while loop is fortunately quite straightforward to construct:

WhileStatementCS ::= ’while’ OclActionCS ’do’ BlockCS ’enddo’

WhileStatementCS.ast : LoopAction

WhileStatementCS.ast.clause : Clause

WhileStatementCS.ast.clause.test = OclExpressionCS.ast

WhileStatementCS.ast.clause.body = BlockCS.ast



A.5 Method Invocations and ASOQ Expressions

Non-query Operations with and without parameters can be invoked just like
query operations are invoked in OCL. All parameters must be OCL expressions,
it is not possible to nest invocation actions. An optional path to the operation
may be provided as an OCL expression. If so, the operation invocation must be
separated from the path expression with an exclamation mark. An actual ASOQ
code snippet may look as follows:

Publication.allIstances()->one

(title=’Cold Fusion’)!vote()

Fig. 5. Messaging actions referenced in ASOQ

Figure 5 shows the relevant parts of the action semantics used in the following
syntax definiton.

AsoqExpressionCS ::= simpleNameCS ArgumentsCS

ArgumentCS.env = AsoqExpressionCS.env

AsoqExpressionCS.ast : CallOperationAction

AsoqExpressionCS.ast.argument : Sequence(InputPin)

AsoqExpressionCS.ast.argument->size() =

ArgumentCS.ast->size()

AsoqExpressionCS.ast.argument->forAll

(i|i.flow : Dataflow)

Sequence{1..ArgumentCS->size()}->forAll(i|

AsoqExpressionCS.ast.argument->at(i).flow.source =

ArgumentCS->at(i).result)

AsoqExpressionCS.ast.operation =

env.lookUpImplicitNqOperation(

simpleNameCS.ast,

ArgumentCS.ast->collect(result.type))



AsoqExpressionCS ::= OclActionCS ’ !’ simpleNameCS ArgumentsCS

ArgumentCS.env = AsoqExpressionCS.env

AsoqExpressionCS.ast : CallOperationAction

AsoqExpressionCS.ast.target = OclAction

AsoqExpressionCS.ast.target : InputPin

AsoqEspressionCS.ast.target.flow : DataFlow

AsoqExpressionCS.ast.target.flow.source =

OclActionCS.result

AsoqExpressionCS.ast.operation =

OclActionCS.result.type.lookUpNqOperation(

simpleNameCS.ast,

ArgumentCS.ast->collect(result.type))

AsoqExpressionCS.ast.argument : Sequence(InputPin)

AsoqExpressionCS.ast.argument->size() =

ArgumentCS.ast->size()

AsoqExpressionCS.ast.argument

->forAll(i|i.flow : Dataflow)

Sequence{1..ArgumentCS->size()}->forAll(i|

AsoqExpressionCS.ast.argument->at(i).flow.source =

ArgumentCS->at(i).result)

AsoqExpressionCS ::= OclActionCS

OclActionCS.env = AsoqExpressionCS.env

AsoqExpressionCS.ast = OclActionCS.ast

ArgumentsCS ::= ’(’ ’)’

ArgumentCS.ast : Sequence(OclAction)

ArgumentCS.ast = Sequence{}

ArgumentListCS ::= OclActionCS

OclActionCS.env = ArgumentListCS.env

ArgumentListCS.ast = Sequence{OclActionCS.ast}

ArgumentListCS ::= OclActionCS ’,’ ArgumentListCS[2]

OclActionCS.env = ArgumentListCS.env

ArgumentListCS[2].env = ArgumentListCS.env

ArgumentListCS.ast =

ArgumentListCS[2].ast->prepend(OclActionCS.ast)

A.6 Assignments

The action semantics classes modeling assignments are depicted in figure 6. Vari-
able assignments are simple to handle. It is only required to look up the name
in the environment and then construct an according WriteVariableAction:

VariableAssignmentCS ::= SimpleNameCS ’:=’ AsoqExpressionCS



Fig. 6. Messaging actions referenced in ASOQ

SimpleNameCS.env = VariableAssignmentCS.env

AsoqExpressionCS.env = VariableAssignmentCS.env

VariableAssignmentCS.ast : AddVariableValueAction

VariableAssignmentCS.ast.isReplaceAll = true

VariableAssignmentCS.ast.variable =

env.lookUpASVariable(SimpleNameCS)

VariableAssignmentCS.ast.value = InputPin

VariableAssignmentCS.ast.value.flow = DataFlow

VariableAssignmentCS.ast.value.flow.source =

AsoqExpressionCS.outputPin

A.7 Property Assignments

Property assignments, where the target may be an arbitrary complex OclEx-
pression are more difficult to construct. It is necessary to extract the property
from the OCL AssociationEndCallCS in order to link an OclAction from the
source expression of the property. A CreateLinkAction uses the output pin of
the OclAction as input pin.

PropertyAssignmentCS ::= AssociationEndCallCS ’:=’ AsoqExpresisonCS

AssociationEndCallCS.env = PropertyAssignmentCS.env

AsoqExpressionCS.env = PropertyAssignmentCS.env

PropertyAssignmentCS.ast : CreateLinkAction

PropertyAssignmentCS.ast.endData : LinkEndData

PropertyAssignmentCS.ast.endData.end =

AssociationEndCallCS.referredAssociationEnd

PropertyAssignmentCS.ast.endData.value : InputPin



PropertyAssignmentCS.ast.endData.value.flow = DataFlow

PropertyAssignmentCS.ast.endData.value.flow.source =

OutputPin

PropertyAssignmentCS.ast.endData.value.flow.source

.action = OclAction

PropertyAssignmentCS.ast.endData.value.flow.source

.action.expression = AssociationEndCallCS.source

PropertyAssignmentCS.ast.isReplaceAll = true

PropertyAssignmentCS.ast.value = InputPin

PropertyAssignmentCS.ast.value.flow = DataFlow

PropertyAssignmentCS.ast.value.flow.source =

AsoqExpressionCS.outputPin


