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Abstract. A rule system for type checking and semantic annotation
of OCL is presented. Its main feature is the semantic annotation and
disambiguation of syntax trees provided by an OCL parser, in particular
for implicit property calls and implicit bound variables. It is intended as
a component to be plugged in to other systems which handle OCL. An
implementation of the system is available.

1 Introduction

A suitable structure for a computer program which handles the Object Con-
straint Language (OCL [7, 8]) is that of a compiler (cf. [10]) with at least three
components:

1. a component which parses OCL specifications into syntax trees.
2. a component which performs some kind of semantic analysis of OCL syntax

trees, e.g. type checking.
3. a component which does something interesting with the result of the seman-

tical analysis, e.g. transforms it into a proof obligation in Dynamic Logic to
be fed into a theorem prover [1], or generates assertions to be inserted into
Java source code [10].

In this paper we focus on part 2: we present a rule system for type checking
and semantic annotation of OCL. The input to the system is a syntax tree from
an OCL parser, and a representation of the user UML model. The result is a
syntax tree annotated with type information and other semantic distinctions
which disambiguates the output of the parser. This makes the job of part 3
easier than if it would have to work directly with the parser output.

The disambiguation concerns in particular the “property call” syntactic struc-
ture, the semantics of which has many special cases: calls to properties defined
in the user UML model or the OCL library, variable binding constructions (e.g.
forAll or collect), and meta-level constructions (e.g. allInstances). With re-
spect to property calls one must also consider various implicit or special forms:
self can be left out, variable bindings can be left out, collect can be left out,
and the return type of associations of multiplicity one (as opposed to other mul-
tiplicities) can be considered to be a collection type or a basic type. All these



cases share the same basic syntactic structure, which motivates a disambiguating
step between part 1 and part 3.

Our system was originally developed as a part of a project for linking OCL
specifications to informal specifications in natural language [9], which is in turn
a part of the KeY project [1]. In this context, part 3 would be the translation to
natural language. However, we here present our work as a standalone system.

1.1 Paper Outline

Some background, including related work, is given in Section 2. Then we define
the language of annotated OCL in Section 3. Section 4 describes the annotating
rule system itself. This is followed by brief discussion of the implementation in
Section 5. Section 6 concludes and gives directions for future work. We assume
that the reader is reasonably familiar with the OCL specification, version 1.x or
2.0 [7, 8].

2 Background

2.1 Implicit Features of OCL

In this paper we will use the term “implicit” for various features of OCL. We will
make this use precise by the definition of annotated OCL and the annotating
rules in the sections following, but we give some informal examples below to get
started:

Implicit self refers to property calls to self where self has been left out ([7]
Sect. 6.3.3). E.g. attr is an implicit form of self.attr.

Implicit bound variables refers to the use of variable binding collection op-
erations of the OCL library where one does not explicitly bind variables
([7] Sect. 6.6.1). E.g. collection->collect(attr) is an implicit form of
collection->collect(x|x.attr).

Implicit property calls refers to property calls where either self or an im-
plicit bound variable is “left out” ([7] Sect. 6.6.7). E.g. collection->
collect(attr) is an implicit form of either collection->
collect(self.attr) or collection->collect(x|x.attr) (and is, as noted
in [7], potentially semantically ambiguous).

Implicit collect means that collect has been left out ([7] Sect. 6.6.2.1). E.g.
collection.attr is an implicit form of collection->collect(x|x.attr).

2.2 Related Work

Semantic analysis of OCL is of course in some sense performed in any OCL
tool. Our rule system is in particular inspired by [4] and [3], which define OCL
type derivation systems and operational semantics, and also prove various results
such as subject reduction and type uniqueness. Of the two, the more recent [3]



handles more OCL constructions, and it also gives comparisons to many other
systems.

In comparison to [3] we do not provide an operational semantics or proofs
about our system. Our perspective is more that of giving a formal description
of a concrete implementation which has to handle “real” OCL files. This means
that we in our system must include constructions such as implicit self, implicit
bound variables and collection operations which can be expressed using iterate
— which are not included in [3]. Also, in contrast to our system, [3] does not
employ any disambiguating annotations besides types. For instance, it handles
implicit collect by normalization, which means an annotated implicit collect
expression cannot be easily distinguished from an annotated expression using
explicit collect.

2.3 From OCL to Natural Language

As a part of ongoing work of linking formal specifications to informal ones [9],
we wish to translate OCL into Natural Language (NL), e.g. English or German.

The system in [9] is based on grammars in the Grammatical Framework (GF)
formalism [12]. These grammars give an abstract syntax of specifications, which
can be presented in NL (English and German) as well as OCL.

GF grammars are written in the same style as programs in typed functional
languages. In our GF grammars, there are types and functions corresponding
to the classes and properties from the OCL library and user UML model. The
grammars have to be dynamically extended with new types and functions for
each new user UML model. Since there is no subtyping in GF, we use explicit co-
ercions (typecasts). Variable binding constructions are modelled as higher order
functions.

In other words, the GF syntax trees provide a typed and semantic repre-
sentation of OCL specifications. Now, if we want to transform the syntax trees
provided by a standard OCL parser into GF trees, it makes sense to do this in
a modular way as described in the introduction: First we add types and disam-
biguating annotations to the syntax trees from the parser. Then it will be fairly
straightforward to transform annotated syntax trees into GF syntax trees.

Although the system we present in this paper was originally a module in the
OCL to NL translation, we think that it is general enough to be useful for other
purposes, and therefore to be presented as something of its own.

3 Annotated OCL

We will give a grammar for unannotated OCL, based on OCL version 1.5 [7], and
then define annotated OCL by extending this grammar — adding new categories,
and new rules to existing categories.

There are a number of OCL 1.5 features that we do not support: replacing
self with a named variable, named constraints, the def stereotype (i.e. “global
let-definitions”), the types OclExpression and OclState, qualified associations,



associations classes, enumerations, and implicit flattening of collections. The
main reason for these limitations, and for not supporting the new features in
OCL 2.0, is practical: our system is intended as a part of the KeY [1] system,
which has no yet moved beyond OCL 1.5.

In comparison to [3], the most important OCL features we add are implicit
property calls and implicit bound variables. We also handle packages as well as
pre- and postconditions, but we will not discuss them in this paper. On the other
hand, [3] includes features we do not support, e.g. OCL 2.0 tuples and undefined
values.

3.1 Unannotated OCL

The grammar for unannotated OCL, which describes the syntax trees provided
by the OCL parser (for the sake of presentation the grammar used in the actual
implemented parser has been somewhat simplified here).

OclPackage ::= package PathName Constraint {Constraint} endpackage
PathName ::= Ident{:: Ident}
Constraint ::= context Context ConstrBody {ConstrBody}
Context ::= Ident | Ident :: Ident ([FormalParam {,FormalParam}])

[: Class]
FormalParam ::= Ident : Class
Class ::= PathName | CollKind(Class)
CollKind ::= Collection | Set | Bag | Sequence
ConstrBody ::= (inv|pre|post): [LetExp {LetExp} in] Expr
LetExp ::= let Ident [([FormalParam {,FormalParam}])] [: Class]

= Expr
Expr ::= Expr InfixOp Expr |

PrefixOp Expr |
Literal |
if Expr then Expr else Expr endif |
PropCall |
Expr ApplOper PropCall

Literal ::: IntLit | RealLit | StringLit | true | false |
CollKind {[CollItem{,CollItem}]}

CollItem ::= Expr | Expr .. Expr
InfixOp ::= + | - | / | * | = | <> | < | > | <= | >=
PrefixOp ::= - | not
ApplOper ::= . | ->
PropCall ::= PathName[@pre][PropCallParams]
PropCallParams ::= ([Declarator |][Expr{,Expr}])
Declarator ::= Ident{,Ident}[:PathName][;Ident:Class=Expr]

We leave the categories IntLit, RealLit and StringLit abstract. We will focus our
disambiguation efforts on the implicit property call rule Expr ::= PropCall, and
on the PropCall and PropCallParams categories.



3.2 Types

We will use the Class category to annotate expressions with their types. We
also want to annotate properties (or property calls) with their types, and we
therefore add a category PropType:

PropType ::= T
A→ T | T

Q→ {T →} T | T
St.→ T

A property can be either an attribute (or association), a query, or a singleton
(of multiplicity one) association . Consider the properties in this example class
diagram:

Person
age : Integer
isFemale : Boolean
name() : String {query}
income(Date) : Integer {query}

mother
1

child
0..*

These properties would be typed as follows:

age : Person A→ Integer

isFemale : Person A→ Boolean

name : Person
Q→ String

income : Person
Q→ Date → Integer

child : Person A→ Set(Person)

mother : Person St.→ Person

3.3 Annotating Expressions

Aside from annotating an expression with its type, we also want to disambiguate
the rule Expr ::= PropCall in the unannotated grammar. This syntactic struc-
ture could be a variable, a class literal, or an implicit property call to self or an
implicit bound variable. We also introduce annotation for a singleton association
considered as a set.

Expr ::= Expr : Class |
Var(Ident) |
ClassLit(Class) |
implicit((self | Ident),PropCall) |
{Expr}1

We use a bold font to distinguish semantic annotations from unannotated OCL.
We use underline for indicating implicit bound variables.



We will also annotate expressions with explicit coercions (typecasts) by the
following rule:

Expr ::= [Expr]Class
Class

If expression e has type T1, and we know that T1 is a subtype of T2, then [e]T1
T2

represent the expression e coerced (upcasted) into type T2. We will slightly abuse
notation by considering [e]T1

T2
to be the same as just e when T1 is the same class

as T2.

3.4 Annotating Property Calls

Property calls will be annotated with their types, i.e. with a PropType. We
also make some disambiguation: a property call can be a “normal” property call
(in which case we use no annotation except the PropType), a variable binding
operation (e.g. iterate or select) or an implicit collect:

PropCall ::= PropCall : PropType |
(iterate | forAll | exists | one | isUnique | any | sortedBy |
select | reject | collect) [@pre] PropCallParams |
implCollect(PropCall)

In the unannotated grammar, there is no reserved word for the OCL library
iterate construction. The identifier iterate could refer either to the OCL
library construction, or to a user-defined property. In the annotated grammar,
iterate will refer to the OCL library construction, and iterate to a user-defined
property (if there is such a property in the UML model).

We also extend Declarator to enable implicit binding of variables (again using
underlining to distinguish explicit from implicit binding):

Declarator ::= Ident : Class

3.5 Annotated Example

This unannotated OCL constraint says that the age of a person must be non-
negative:

context Person inv: age >= 0

Using the rule system in Sect. 4, we add type annotations on the property age
and the integer literal 0. Also, we disambiguate the property call age by an
implicit self annotation. Finally, since age and 0 both have type Integer,
but the comparison operator >= works on the supertype Real, we add explicit
coercions from Integer to Real:

context Person inv:

[implicit(self : Person, age : Person A→ Integer) : Integer]IntegerReal
>=

[0 : Integer]IntegerReal



Since we add annotation in almost every node of the syntax tree, even this
small example becomes unwieldy when annotated. Of course, the annotated
syntax is intended as input to programs, not as a convenient notation to be read
or written manually.

3.6 Semantics of Annotated OCL

While we have not defined a formal semantics for our annotated OCL language,
we hope that the informal semantics is clear (as far as the semantics in [7, 8] is
clear). However, one way of achieving a formal semantics would be to drop the
annotations in a systematic way, with the goal of ending up in the unannotated
OCL fragment of [3], which has an operational semantics. From this perspective,
we have then given a semantics to the OCL fragment of [3] extended with implicit
property calls and implicit bound variables.

An informal outline of how to de-annotate annotated OCL is the following:

– the type annotations of Expr with Class and PropCall with PropType are
simply dropped, and so are explicit coercions

– the annotations implCollect and { . . . }1 are also just dropped, since im-
plicit collect and singleton associations are handled by [3]

– Var and ClassLit expressions should be transformed into their counterpart
in [3]

– The implicit annotation has to be normalized. E.g. implicit(self, age)
should be changed into self.age, and implicit(x, age) into x.age.

– iterate is just changed into iterate. The other variable-binding collection
operations (forAll, exists, . . . ) have to be rewritten in terms of iterate,
according to the definitions in [7, 8].

– Implicit bound variables and declarators are made into normal variables and
declarators (i.e. just remove the underlining). Before doing this the implicit
bound variables should be renamed to avoid name clashes.

Essentially we remove all annotations except the ones for implicit property calls
and implicit bound variables — which are not handled by [3]. These are instead
replaced with the corresponding “explicit” constructions.

4 Rule System

The task of the rule system is to take a syntax tree produced by an OCL parser,
typecheck it, and annotate it with semantic information. To do this, information
about the user UML model is also required. Inspired by [3], the system will use
judgements of the form

E ` t . t′

where E is an environment, t is a syntax tree, and t′ is an typechecked, annotated
syntax tree. Note that the rule system annotates implicit constructions, it does
not replace them with explicit ones, as is done with e.g. implicit collect in [3].



We do not give a complete and fully formal description of our system — we
focus mostly on the the disambiguation of constructions involving PropCall.

In the rules we will use variables ranging as follows: x, y, i ∈ Ident, e ∈
Expr, T ∈ Class,PT ∈ PropType, p ∈ PathName, C ∈ CollKind

4.1 Environments

An environment may contain a signature and a context. Depending on the syn-
tactic category we are annotating, there may also be other components. A sig-
nature Σ contains class names, operations, properties, and a subtyping relation,
i.e. information from the user UML model and the definition of the OCL library
classes. A context Γ contains typing of variables and properties defined in let-
definitions, and the (name of) the current package. We omit the many details of
how theories and contexts are represented, but use the constructions below to
access and update their respective components:

T1<:ΣT2 type T1 conforms to T2 in signature Σ
tΣ{T1, . . . , Tn} the least common supertype of types T1, . . . , Tn in Σ
T ∈ classesΣ T is a class in Σ
(x : T ) ∈ Γ x has type T in context Γ
Γ, (x : T ) update type of x in Γ to T
packageΓ current package in Γ
Since a context Γ contains the current package, we always assume that an

unqualified, non-OCL-library class T belongs to the current package in a lookup
(x : T ) ∈ Γ or update Γ, (x : T ).

To find out what property an identifier refers to in a given environment, we
use the following partial functions ([Class] is the type of lists of Class):

lookupAttrΣ,Γ : Ident → Class → PropType
lookupPropΣ,Γ : Ident → Class → [Class] → PropType

Again, we omit all details on how these functions are defined, but note that they
are partial: there might not be a matching property for a given identifier, or the
result might be ambiguous (e.g. in case of multiple inheritance).

We define two functions recType and retType on PropType:

recType (T1 ( A→ | Q→ | St.→) . . . T2) = T1

retType (T1 ( A→ | Q→ | St.→) . . . T2) = T2

4.2 Property Call Parameters

We go bottom-up and start with the category PropCallParams, where we handle
variable bindings. The environment Σ;Γ ;T ;B consists of signature and context,
a type T , and a boolean B. T is used for typing bound variables (if there are
any), if B is true then we insert an implicit bound variable in case there are no
explicit ones.



If there are no bound variables, and B is false, then we just annotate the
parameters:

Σ;Γ ` e1 . e′
1 : T1 · · · Σ;Γ ` e1 . e′

n : Tn

Σ;Γ ;T ; False ` (e1, . . . , en) . (e′
1 : T1, . . . , e

′
n : Tn)

When there is a declarator (or an implicit bound variable), there must be
exactly one parameter. There may or may not be typings on the bound variables.

Σ;Γ, (x1 : T ), . . . , (xn : T ) ` e . e′ : T1

Σ;Γ ;C(T );B ` (x1, . . . , xn|e) . (x1, . . . , xn|e′ : T1)

T<:ΣT ′

Σ;Γ, (x1 : T ′), . . . , (xn : T ′) ` e . e′ : T1

Σ;Γ ;C(T );B ` (x1, . . . , xn : T ′|e) . (x1, . . . , xn|e′ : T1)

Σ;Γ, (x : T ) ` e . e′ : T1

Σ;Γ ;C(T ); True ` (e) . (x : T| e′ : T1)

Side condition: x is fresh.
If there is an accumulator, there must be exactly one bound variable (because

accumulators are only used with iterate):

Σ;Γ ` ey . e′
y : T2

Σ ` T2<:ΣTy

Σ;Γ, (x : T ), (y : Ty) ` e . e′ : T1

Σ;Γ ;C(T );B ` (x; y : Ty = ey|e) . (x; y : Ty = [e′
y : T2]T2

Ty
|e′ : T1)

T<:ΣT ′

Σ;Γ ` ey . e′
y : T2

Σ ` T2<:ΣTy

Σ;Γ, (x : T ′), (y : Ty) ` e . e′ : T1

Σ;Γ ;C(T );B ` (x : T ′; y : Ty = ey|e) . (x : T ′; y : Ty = [e′
y : T2]T2

Ty
|e′ : T1)

4.3 Property Calls

A property call (PropCall) pc is annotated in an environment Σ;Γ ;T ; e; (.|->),
meaning that it occurred in an expression context e(.|->)pc where e : T . Accord-
ing to the grammar, every property has an optional @pre. This does not affect
the typing or annotation, however, so in this section we give all rules without
@pre.

We distinguish between normal property calls (attributes, associations and
properties from the user UML model or the OCL library), variable binding



constructions (e.g. iterate), implicit collect, and meta-level operations (e.g.
allInstances). All property calls are annotated with their PropType, variable
binding constructions and implicit collect are also annotated as special con-
structions. The variable binding constructions could be seen as higher order
functions, but in the PropType annotations we ignore this. We have chosen not
to give the meta-level operations special annotation, but they do require special
rules for type checking.

In variable binding constructions, there may or may not be variables in the
Declarator, and the variables may or may not have typings. These cases are
handled in the annotation of PropCallParams above, and make no difference in
the PropCall rules of this section. Therefore, we give the rules only for when
there are variables explicitly given, and the variables have typings.

Attributes/associations

lookupΣ;Γ (a, T ) = T1
A→ T2

Σ;Γ ;T ; e; . ` a . a : T1
A→ T2

For singleton associations we have the same rule except that A→ is replaced with
St.→.

Queries

Σ;Γ ;T ; False ` (e1, . . . , en) . (e′
1 : T1, . . . , e

′
n : Tn)

lookupΣ;Γ (q, T, [T1, . . . , Tn]) = T ′ Q→ T ′
1 → · · · → T ′

n+1

Σ;Γ ;T ; e; ao ` q(e1, . . . , en) .

q([e′
1 : T1]T1

T ′
1
, . . . , [e′

n : Tn]Tn

T ′
n
) : T ′ Q→ T ′

1 → · · · → T ′
n+1

Note that n might be 0 here.

Iterate

Σ;Γ ; Collection(T); False ` (x:T1;acc:T2=e2|e3) . (x:T1;acc:T2=e′
2|e

′
3)

Σ;Γ ; Collection(T); e1; -> ` iterate(x:T1;acc:T2=e2|e3) .

iterate(x:T1;acc:T2=e′
2|e

′
3) : Collection(T)

Q→ T2 → T2

Other variable binding collection operations The rules for forAll, exists,
one, isUnique, any, sortedBy, select, reject and collect are quite similar.
We here give the ones for forAll and collect to exemplify.

In the informal descriptions in [7] (Sect. 6.6.3) and [8] (Sect. 7.6.3) it is explic-
itly said that for forAll, binding of several variables at once in the declarator is



allowed, and there is no mention that other operations would allow it. This is ap-
parently contradicted by [8] (Sect. 11.9) which lists certain constructions as only
allowing one bound variable (the others would then implicitly allow several).

Σ;Γ ; Collection(T); True ` (x1, . . . , xn : T1|e2) . (x1, . . . , xn : T1|e′
2 : T2)

Σ ` T2<:ΣBoolean

Σ;Γ ; Collection(T); e1; -> ` forAll(x1, . . . , xn : T1|e2) .

forAll(x1, . . . , xn : T1|[e′
2 : T2]T2

Boolean) :

Collection(T)
Q→ Boolean → Boolean

The collect construction is defined for Set, Bag, and Sequence, but not for
Collection, so in this rule C ∈ {Set, Bag, Sequence}. If C is Sequence, D is
Sequence, otherwise D is Bag.

Σ;Γ ;C(T ); True ` (x : T1|e2) . (x : T1|e′
2 : T2)

Σ;Γ ;C(T ); e1; -> ` collect(x : T1|e2) .

collect(x : T1|e′
2 : T2) : C(T )

Q→ T2 → D(T2)

Implicit collect An expression of collection type followed by a dot and a
property call might be an implicit collect property call. As with collect,
C ∈ {Set, Bag, Sequence}:

Σ;Γ ;C(T ); e1; -> ` collect(pc) . collect(i : T|i.pc′) : T2

Σ;Γ ;C(T ); e1; . ` pc . implCollect(pc′) : T2

Meta-level operations The meta-level operations involve OclType and class
literals.

Σ;Γ ; OclAny; False ` (e1) . (ClassLit(T ) : OclType)

Σ;Γ ; OclAny; e; . ` oclAsType(e1) .

oclAsType(ClassLit(T ) : OclType) : OclAny
Q→ OclType → T

Σ;Γ ; OclType;ClassLit(T ); . ` allInstances() .

allInstances() : OclType
Q→ Set(T)

Σ;Γ ; OclType; e; . ` allSupertypes() .

allSupertypes() : OclType
Q→ Set(OclType)

4.4 Expressions: Implicit property calls

The rule Expr ::= PropCall has to be disambiguated. It represents either a
variable, a class literal or an implicit property call.



Variables Mark variables as being variables.

x : T ∈ Γ
Σ;Γ ` x . Var(x) : T

Class literals Mark class literals as being class literals.

packageΓ = p
p::i ∈ classesΣ

Σ;Γ ` i . ClassLit(i) : OclType

i1:: . . . ::in ∈ classesΣ

Σ;Γ ` i1:: . . . ::in . ClassLit(i1:: . . . ::in) : OclType

Implicit property call to self or bound variables Here we try putting a
self or an implicit bound variable in front of the property call. Implicit property
calls can be ambiguous if self and an implicit bound variable (or two implicit
bound variables) conform to the same type, in which case typechecking should
fail. This is expressed as side-conditions on the two rules.

Σ;Γ ` self.pc . e.pc′ : T

Σ;Γ ` pc . implicit(self, pc′) : T

Side condition: There are no x, pc′, T such that Σ;Γ ` pc . implicit(x, pc′) : T .
We assume here that implicit bound variables have non-collection types,

hence we can safely use a dot (and not an arrow) when annotating the the
property call.

x : T1 ∈ Γ
Σ;Γ ` x.pc . e.pc′ : T2

Σ;Γ ` pc . implicit(x, pc′) : T2

Side conditions: There are no pc′, T such that Σ;Γ ` pc . implicit(self, pc′) : T ,
and there is exactly one x ∈ Γ such that there exists e, pc′, T such that Σ;Γ `
x.pc . e.pc′ : T

4.5 Expressions: Explicit property calls

We did annotation of the category PropCall separately in in Sect. 4.3. This means
that we annotate an explicit property call expression e(.|->)pc by annotating
the property call pc, and then explicitly coercing e into the correct type. Note
that when annotating pc in the context e(.|->)pc, the environment is extended
with the type of e, e itself, and also the . or ->. Here ao ∈ {., ->}.

Σ;Γ ` e . e′ : T
Σ;Γ ;T, e′, ao ` pc . pc′ : PT

Σ;Γ ` e ao pc . [e′ : T ]TrecType(PT) ao pc′ : retType(PT )



Singleton associations The only special case is e->pc when e is a singleton
association property call, in which case we need to treat e as a singleton set
(a, a′ ∈ PropCall):

Σ;Γ ` e . e′ : T
e′ = e′′.a or e′ = implicit(e′′, a)

a = a′ : T1
St.→ T2

Σ;Γ ; Set(T); {e′}1, -> ` pc . pc′ : PT

Σ;Γ ` e -> pc . [{e′}1 : Set(T)]Set(T)
recType(PT) -> pc′ : retType(PT )

In contrast to [3], we do not allow any non-collection expression to be con-
sidered as a set, but only direct property calls to singleton associations.

4.6 Expressions: other cases

The rules for infix, prefix, literal and if-then-else expression should be unsurpris-
ing. We give only the rule for if-then-else here, as an example.

Σ;Γ ` e1 . e′
1 : T1

Σ ` T1<:ΣBoolean
Σ;Γ ` e2 . e′

2 : T2

Σ;Γ ` e3 . e′
3 : T3

tΣ{T2, T3} = T4

Σ;Γ ` if e1 then e2 else e3 endif .

if [e′
1 : T1]T1

Boolean then [e′
2 : T2]T2

T4
else [e′

3 : T3]T3
T4

endif : T4

4.7 Other Categories

We do not present the rules for the categories LetExp, ConstrBody, Constraint or
OclPackage. These rules mainly deal with adding let-definitions, self, result,
formal parameters and the name of the current package to the context.

4.8 KeY extensions

Our system is developed as part of the KeY system [1], in which OCL is used for
specifications of JavaCard programs. To handle the JavaCard concepts of null
values and exceptions, the constructions null and excThrown are used in KeY
OCL specifications.

We add a class Null to the OCL library package, an expression null of
type Null, and let Null be a subtype of all other types. We consider null as a
reserved word in both unannotated and annotated OCL.

Σ;Γ ` null . null : Null

Null and null seem to work just as Void and undef in [3].



We handle excThrown as a new property of the OCL library class OclAny, tak-
ing an argument of type OclType, and returning Boolean. Assuming a user UML
model containing JavaCard packages, excThrown(java::lang::Exception) can
be used as a predicate stating that an exception of type java::lang::Exception
has been thrown. This is an implicit self property call, and since self always
conforms to OclAny it can be used in any context. We use the following rule for
the property call excThrown:

Σ;Γ ` e1 . ClassLit(T1) : OclType
Σ ` T1<:Σjava::lang::Exception

Σ;Γ ;T ; e; . ` excThrown(e1).

excThrown(ClassLit(T1) : OclType) : OclAny
Q→ OclType → Boolean

5 Implementation

The system for annotating OCL syntax trees is implemented in the functional
language Haskell, hence it can be used as a component of Haskell programs.
We also provide a command line interface taking as input two text files: one
containing OCL and another containing the UML model (for which we have
defined a simple custom format). The output is a textual representation of the
typechecked and annotated OCL file, or a message giving a type error.

The textual representation used in the output of the command line interface
is by default normal OCL syntax, but extended with our annotations. To use
our implementation with another, non-Haskell program, a format which is more
suitable for parsing might be preferred. We have defined an example of such a
simple interchange format, which is supported by the command line tool and for
which we provide a Java parser.

The parsers used in our system are generated from context free grammars
using the BNF converter (BNFC, [6]), a front-end to standard lexer and parser
generators for Haskell, Java, C++, and C. The grammar used for generating
the OCL parser is based on the grammars given in [7] and [5]. Using the LALR
grammar in [2] instead is being investigated.

Using BNFC makes it simple to experiment with e.g. adjustments to the
OCL grammar, or to define tailor-made interchange formats for the command
line interface between our Haskell based system and other systems in Java, C++
or C.

The implementation is available on the web [11].

6 Conclusion

We have presented a rule system for type checking and semantic annotation of
OCL, with disambiguation of implicit property calls and implicit bound vari-
ables as the main feature. It is intended to function as a component of a larger
system, sitting in between an OCL parser and some other component performing



transformations on OCL specifications. So far it has only been tested in ongoing
work in the KeY project [1] with translating OCL specifications to Natural Lan-
guage. Besides adding features of OCL 1.5 and 2.0 currently missing from the
system, this is the most important line of future work: to try to link it to other
parts of the KeY project which handle OCL, e.g. the transformation of OCL to
Dynamic Logic, and ongoing work with partial evaluation of OCL.

Acknowledgements: We thank Aarne Ranta for discussions on drafts of this
paper, Daniel Larsson for feedback on the implementation, and the anonymous
reviewers for suggestions on improving the paper.
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