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CH-8803 Rüschlikon, Switzerland

email: [jku,sse,wah]@zurich.ibm.com

Abstract. For the MDA vision to become a reality, there must be a
viable means to perform model-to-model transformation. In this paper,
we compare and contrast two approaches to model transformation: one
is a graph transformation-based approach, and the other is a relational
approach, based on the QVT-Merge submission for OMG’s MOF 2.0
Query/View/Transformation Request for Proposal. We apply them both
to a common example, which involves transforming UML statemachines
to a CSP specification, and we look at some of the concrete and concep-
tual differences between the approaches.

1 Introduction

The current MDA initiative favors the use of model transformations within UML-
based development of software systems for a number of different purposes. Model
transformations are being applied for establishing consistency of UML models [6],
for transforming business models into BPEL [8], for refactoring purposes [17] and
for pattern applications.

With model transformations being applied in such diverse scenarios, there is
a strong need for techniques and methodologies dealing with developing model
transformations. Currently, a lot of research is performed in the direction of how
to express model transformations and of building appropriate tool support. The
QVT initiative [15] aims at developing a standard for model transformations.
However, it is still unclear which model transformation approaches are best
suited for which applications and further whether it will be possible to express all
possible model transformations with one approach. It seems to be the case that
a number of different approaches will be needed in the future. As a consequence,
it will be important to know the advantages and disadvantages of the different
approaches to help choosing the right approach for a given application.

In this paper, we present and discuss two different model transformation
approaches: a relational approach and a graph transformation approach. First, in
Section 2, we introduce the running example for our comparison. Then, we focus
on a graph transformation approach in Section 3 and on a relational approach in
Section 4. We then compare the two approaches in detail in Section 5 and finally
draw conclusions for future development of model transformation technology.
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Fig. 1. The metamodel for statecharts

2 Statechart to CSP Translation and Metamodels

One typical approach for defining and checking semantic consistency of a UML
model is to translate the relevant parts of the model into a formal language [6].
For checking behavioral consistency, we have developed complex model trans-
formations of UML statecharts to the process algebra called Communicating
Sequential Processes (CSP) [10]. After translation of statecharts to CSP, formal
consistency conditions can be specified and checked using existing model check-
ing support. Currently, our model transformation approach and tool support
(see our research prototype Consistency Workbench [7]) is based on the concept
of graph transformation. With the current developments concerning a common
standard for model transformations, it will be necessary to know the advantages
and disadvantages of different model transformation approaches.

As this paper aims at a comparison of a relational and a graph trans-
formation approach, we will now introduce a common example, a model
transformation from UML statecharts to CSP. Since OMG’s MOF 2.0
Query/View/Transformation Request for Proposal requires transformation of
MOF-compliant models, we introduce the following metamodels, which define
the source and target models. In Figure 1, a metamodel for statecharts is shown,
taken and adapted from the UML specification.

As a basis for developing the metamodel, we use the following simplified
syntax of CSP: Given a set A of actions (including compound actions, see below)
and a set of process names N , the syntax of CSP is given by

P ::= STOP | SKIP | a → P | if bool then P else P | pn
where a, b ∈ A, pn ∈ N , and non-terminal P . Process names are used for
defining recursive processes using equations pn = P .

The interpretation of the operations is as follows. The processes STOP and
SKIP represent, respectively, deadlock and successful termination. The prefix
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process a → P performs action a and continues like P . Note that a can also
be a compound action and includes constructs like c!b or c?b for sending or
receiving an event b via a channel c, respectively. CSP also includes a so-called
conditional choice operator represented as an if-then-else construct.

Note that for simplification we have left out further binary operators such
as interleaving or parallel composition. The metamodel shown in Figure 2 is a
rather direct translation of the simplified syntax: a CSP expression is a binary
operator (together with two expressions) or an if-then-else expression or one of
the designated CSP literals STOP or SKIP. Further, an expression can be an
activity. Binary operators include the then (CSP →), out (CSP !) operator, or
in (CSP ?) operator.

3 Rule-based Model Transformations with Control
Conditions

A transformation of two or more models may be described by specifying how
a model conforming to its metamodel is translated into a corresponding model
conforming to the other metamodel. The concept of graph transformation has
been a traditional candidate for specifying model transformations in an opera-
tional way because visual models can be considered as special forms of graphs.
The main idea is to specify how elements of one model are transformed into
elements of another model, by using a set of transformation rules.

Based on a sound mathematical background, there is a rich theory available
for graph transformation (see e.g. [5]). This facilitates the analysis of properties
of model transformations such as termination and confluence. From a practical
point of view, a number of recent approaches have adapted graph transformation
for expressing model transformations on UML models [3] [2]. In the following, we
will introduce rule-based model transformations with control conditions (based
on [12]) which has been our approach for specifying a complex model transfor-
mation from UML to CSP [7].

A model transformation for translating a model from a source language to
a target language can be defined by a set of so-called compound rules. Each
such compound rule r : (rs , rt ) consists of two individual rules: The source
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Fig. 3. The first transformation rule for statechart/CSP mapping

transformation rule rs : LS ::= RS describes the transformation of the source
model, the target transformation rule rt : LT ::= RT specifies the transformation
of the target model.

In Figure 3, a compound rule p1 for (partially) translating UML statecharts
to CSP is shown (based on [12]). The general idea is to create a parameterized
CSP process for each state of the state machine. The compound rule p1 creates
such a process (called p:Process in the figure) together with an ifThenElse which
branches to the process of the simple state. To achieve this, p1 consists of two
parts, one for matching the state machine (shown in the upper part) and one
for creating the corresponding CSP process (shown in the lower part). More
formally, in our approach each rule r : (rs , rt ) consists of a UML part and a CSP
part. Concerning p1 in the figure, rs is the UML part in the upper part of the
figure, rt is the CSP part in the lower part of the figure. Both the rs and rt can
be viewed as graph transformation rules when interpreting the visual models as
attributed typed graphs [9].

Source and target rules are coupled by the ability of using shared variables.
Such variables are denoted by 〈variable〉. These variables are used for being
able to transfer model information from one model (e. g. the state machine) to
another model (e. g. the CSP model). For example, SMName is such a variable
in the compound rule p1 for creating a CSP process with the name of the state
machine.

For translation of a source to a target model, we briefly describe how a
compound rule is applied, assuming that X = {x1, .., xn} is the set of variables
of LS :
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Fig. 4. The second transformation rule for statechart/CSP mapping

1. an occurrence of the left side LS of the source transformation rule is searched
within the source model, such an occurrence is called source match.

2. having found a source match, the variables are given concrete values, leading
to a variable instantiation denoted X I .

3. the left side LT of the target transformation rule is instantiated with the
values of the variables, denoted also by LT (X I ).

4. an occurrence of the instantiated left side of the target transformation rule is
searched within the target model, such an occurrence is called target match.

5. the right side RS of the source transformation rule is instantiated with the
values of the variables.

6. the right side RT of the target transformation rule is instantiated with the
values of the variables.

7. the occurrence of the instantiated left side of LS is replaced with the instan-
tiated right side RS of the source transformation rule

8. the occurrence of the instantiated left side of LT is replaced with the instan-
tiated right side RT of the target transformation rule.

Note that we do not go into details here when a compound rule is well-
formed. For example, one possible requirement would be that the set of variables
used in LT is contained in the set of variables used in LS .

In Figure 4 and 5, two further rules are shown, which (together with p1) spec-
ify a partial translation of state machines to CSP as follows: First, p1 is applied
which matches the structure of StateMachine with a top CompositeState and a
SimpleState in the model and then creates a corresponding process structure in
the CSP model, together with a contained process for the first simple state, and
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Fig. 5. The third transformation rule for statechart/CSP mapping

an ifThenElse with an empty eBody. Note that here LT is the empty word, re-
quiring no CSP model to exist. Rule p2 matches another simple state in the state
machine and a corresponding ifThenElse in the CSP model. The negative appli-
cation condition of LT (represented by the elseBody link, the eBody:IfThenElse,
the :Process and p1:Variable crossed out) ensures that these model elements do
not exist and allow to distinguish between simple states already matched in the
UML model and those not dealt with. If the rule p2 is applied, a new thenBody
link together with the process for the simple state is created. Additionally, a
new placeholder eBody:IfThenElse is created. The last rule p3 matches one final
state and creates a process for this state. In this example, we assume that p1 is
applied only once, then p2 is applied as long as possible, and then p3 is applied
once.

In order to be able to specify in which order compound rules are applied, they
must be assembled to a so-called transformation unit with a control expression.
Following existing work on transformation units [11], we will assume that rules
are organized in rule sets which are then organized in a sequence of rule sets
where each rule set can be considered as a layer. Within a rule set, rules may be
applied non-deterministically.

Syntactically, we express layers of rule sets as follows: Assuming the three
rules p1, p2, p3, then 〈p1, p2 ↓, p3〉 specifies three layers, each containing a pi .
This means that first all rules within the first layer are applied and then the
ones in the second layer. For each rule, it is indicated whether it is applied once
or as long as possible by a simple marker. For example, p2 ↓ denotes that the
rule p2 is iterated until it cannot be applied anymore.
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Our concept of rule-based model transformation has been validated in the
consistency workbench [7], specifying two large transformation units for trans-
lating statecharts and collaborations to CSP.

4 A Relational Model Transformation Approach based
on QVT-Merge

In relational approaches, a transformation of two or more models may also be
described by relating their elements [1]. In this approach, a set of relations spec-
ify what the transformation changes in the model(s) instead of specifying how
these changes are computed. The relational approach is in this sense similar to
declarative languages like Haskell or logic-based languages like Prolog.

According to their mathematical nature, relations do not imply a direction.
Thus, they are suitable for multi-directional transformation purposes. In partic-
ular, bi-directional transformations between two models are generally considered
important for MDA [13]. For instance, round-trip software engineering benefits
from being able to freely move between different levels of model abstraction. As
the notion of a relation has its origin in mathematics, this provides a means to
define a formal semantics for relational approaches.

In bi-directional transformation, care has to be taken if information gets
lost in a transformation step (if the transformation is a surjective function) or if
information is added (if the transformation is an injective function). It is possible
to handle some of these problems using tracing techniques, but it is a difficult
problem to address in general.

relation R {

domain { pattern_1 when condition_1 }

...

domain { pattern_n when condition_n }

when { condition }

}

Fig. 6. The syntax of a relation in the current QVT-Merge RFP submission.

There are two different approaches to find the elements that are part of a
relation. The first approach - querying - evaluates an expression over a model, re-
turning those elements of the model for which the constraint holds. Such queries
on models can be formulated in UML’s Object Constraint Language (OCL). The
other common approach uses pattern matching where a term or a graph pattern
containing free variables is matched against the model.

Relations are not executable; to actually execute a relation-based transfor-
mation, a number of approaches exist. The QVT-Merge Group [14] proposes a
hybrid approach that suggests to add imperative constructs (called mappings)
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Fig. 7. The top level relation sm2csp.

that implement the specification defined by the relations. Nevertheless it is pos-
sible to give their relational language an executable semantics by treating it as
a constraint satisfication problem, extended with the ability to delete informa-
tion for states that cannot satisfy the constraint. Operationally, this approach
involves creating, modifying, and/or deleting elements so that the relations are
made consistent. In this paper, since we are investigating relational approaches,
we will take this approach using the relational language of QVT-Merge.

In general, the relational approach starts with one relation between the top
level elements of the models, in which child relations on the models contents are
established.

The skeleton of an exemplary relation according to the current status of the
QVT-Merge Group’s proposal is shown in Figure 6. The proposal defines a pat-
tern matching language. A relation has a unique name (R) by which it may
be referenced by another relation as a child relation. For each model that is
part of the relation, a domain is defined that contains the pattern expression on
the respective meta model. The scope of each domain may be constrained by a
condition. Domains may be related to each other implicitly, using variables com-
mon with other domains, or explicitly, using constraints in a separate condition
labelled with the when keyword, which scopes over all domains.

In the following, we will illustrate a relational approach of transforming a
statechart into the CSP language. The relations will be presented in the di-
agrammatic form introduced in the QVT-Merge proposal, where the domains
are depicted graphically and the respective when condition is given in a textual
form.

The relation sm2csp (Figure 7) maps the skeletons of the state machine on
the left hand side and the CSP process on the right hand side. LHS and RHS
are mapped by graphical pattern expressions where the elements are bound to
each other by corresponding variable names. The variable names used are the
name of the statechart SMName and the sequence of vertices subVertex on the
LHS; on the RHS, the top level IfThenElse node is referenced by the variable
if because this reference is needed in the when condition. The structure of the
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state2ternary(seq :Sequence(UML::SimpleState), i :CSP::IfThenElse, n :int) 
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Fig. 8. The relation state2ternary contains a recursive invocation.

statechart is mapped to CSP by invoking the sub-relation state2ternary on the
sequence of subvertices (captured by the OCL select expression) in the when
condition of the relation.

The recursive mapping of the states to ternary CSP constructs is defined in
the relation state2ternary (Figure 8). The when condition of this relation deals
with the control flow of the relation: if the next state in the sequence of states is
the last element, the relation finalstate2ternary (Figure 9) is invoked. Otherwise,
the relation state2ternary is invoked recursively. Note that this condition makes
use of the assumption that the final state is the last element in the sequence (as
formed by the OCL select expression, given in the when condition of Figure 7).

The transformation of a statechart’s final state is covered by the relation
finalstate2ternary (Figure 9) that maps the final state of the statechart to the
last IfThenElse construct in the CSP program (cf. Figure 5).

5 Comparison and Discussion

A comparison of the graph transformation approach and the relational approach
can be performed under different criteria.

In general, one can compare the two approaches from a software engineering
point of view. One important criterion for model transformation technology to
succeed is certainly its usability. Here we understand by usability the ease of
designing a model transformation as well as the amount of effort for the trans-
formation specifier to design rules (e.g., in some approaches, the same model
transformation may lead to more concise rules than in others). With regard to
the concrete comparison, we observe that in both approaches we deal with ap-
proximately the same number of rules. In addition, even the models in the rules
are rather similar. A slight difficulty may be seen in the concept of compound
rules for graph transformation whereas in a relational approach the knowledge
of the additional expression language for conditions is required. Usability also
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depends on the background of the users and will probably require extensive
empirical studies before one can make any major conclusions in this direction.

The two approaches can also be compared from a computational viewpoint.
Here, one focuses on how the individual transformations will be computed by a
transformation engine. This can lead to efficiency measures as well as an insight
about the capability of the transformations. For comparing the two approaches,
we will introduce what operations are required by a machine for realizing each
approach. First, for the graph transformation approach, the machine must be
capable of performing the following operations:

– match(Model m, Pattern p) matches the pattern p on the model m and
returns a match mt .

– replace(Model m, Match mt, Replacement r) replaces the match mt with the
replacement r in the model m. Note that replace includes possible deletion
of elements.

Second, for the relational approach, the machine must be capable of perform-
ing the following operations:

– matchRooted(Model m, Pattern p, Element r) matches the pattern p rooted
in r on the model m and returns a match mt .

– reconcile(Model m1, Model m2, Match mt1, Match mt2, Relation r) recon-
ciles mt1 and mt2 with respect to relation r in models m1 and m2. This
may involve creating, modifying, and deleting elements so that the constraint
is satisfied. In other words, this operation performs constraint solving with
possible deletion.

For the above operations, different implementations can be thought of, de-
pending on the underlying representation of the model and the pattern: Either
graph matching or string matching, if the pattern and model are represented
as string. Note that for the relational approach, the matching algorithm is as-
sisted by rooting it with an element of the model. This decreases the complexity
of the matching which has been a theoretical problem in graph matching. Note
however, that also for graph matching in general there are efficient techniques [4].

Using these operations, we are capable of expressing the operations of both
approaches. For the graph transformation approach, we get the following algo-
rithm which corresponds to our description in Section 3.

graph_transformation(Source sourcemodel, target targetmodel, compound rule c)

begin

sourcematch = match(sourcemodel, c.getSourcePattern())

targetmatch = match(targetmodel, c.getTargetPattern())

if sourcematch.result AND targetmatch.result then

sourcereplacement = c.getSourceReplacement(matchsource)

targetreplacement = c.getTargetReplacement(matchtarget)

replace(sourcemodel,sourcematch, sourcereplacement)
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finalstate2ternary(s :UML::SimpleState, i :CSP::IfThenElse) 

kind = “final”

s:SimpleState

p1: Variable

name = “FinalState”

parameter
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Fig. 9. The final state is dealt with in the relation finalstate2ternary.

replace(targetmodel,targetmatch, targetreplacement)

else

doNothing()

endif

end

We additionally assume simple helper operations such as getSourcePattern
and getTargetPattern.

For the relational approach, we can also express the algorithm as follows:

relational(Source sourcemodel, target targetmodel, relation r)

begin

sourcematch = matchRooted(sourcemodel, r.leftPattern, r.args[0])

targetmatch = matchRooted(targetmodel, r.rightPattern, r.args[1])

reconcile(sourcemodel, targetmodel, sourcematch, targetmatch, r)

end

In principle, the two algorithms have a similar form and have similar kinds
of operations. We will explain the differences in the following. Note that the fol-
lowing will be a rather intuitive approach, leaving a detailed complexity analysis
to a more elaborated version of this paper.

The matching procedures are similar in each approach, both requiring a graph
to be matched against the corresponding model. The relational approach to
matching offers a rooted match, which means that the graph to be matched
always has an element in the model upon which it can fix the match. Rooted
matching can be more efficiently performed than their non-rooted counterparts.
In the worst, general case, non-rooted matches are less efficient by a factor
equivalent to the number of nodes in the model. The relational approach clearly
depends on the reconciliation procedure. We do not go into the details of this
activity, as there are many possible ways to realize it. Nevertheless, the rule
specifier must have some knowledge as to how reconciliation is performed for
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the approach to be usable, in general. With regard to the graph transformation
approach, the replacement can be thought of as a specific way of reconciliation.
In practice, it will be important that the rule specifier has a clear idea of what
will be the result of its rule specification. This is currently the case for graph
transformation but not for the relational approach.

When regarding the rules presented in Section 3 and Section 4, it becomes
obvious that in using the relational approach the rule specifier has tackled the
problem in a similar way to the method taken with the graph transformation
approach:

– Firstly, the problem involved mapping UML statemachines to CSP, and thus
in using both approaches, only one direction of transformation was consid-
ered. Even in the relational approach, the specifier has thought about which
CSP model elements should be created for a given UML model element.

– Secondly, in the relational approaches, the specifier has used a reconciliation
approach that favors the matching of one specific model element in the CSP
part and the creation of additional model elements in the CSP part: The
specifier has coupled rules sm2csp and state2ternary in the way that the
IfThenElse is created by sm2csp and then matched in state2ternary. There-
after, the other model elements of the CSP part will be created.

Currently, it is unclear whether it is possible for a rule specifier to use the
power of reconciliation in a more general form.

Another aspect is the problem of bi-directionality: In contrast to the graph
transformation approach, a relational approach enables the software engineer to
think also bidirectionally, although this is sometimes more difficult and involves
more work. Although bidirectionality is possible as well in graph transformation
approaches (see the Triple Graph Grammar approach by Schuerr [16]), the gen-
eral rule format does not force the rule specifier to think about it (one might
as well simply specify uni-directional transformations). For example, the rules
in Section 3 cannot be used for CSP to UML statechart translation without
modification.

6 Conclusion

The success of model transformation technology will depend on a common lan-
guage for designing them or, alternatively, on the existence of many languages
for specific model transformations used in various domains. In the second case,
detailed characteristics are needed which help to decide which approach to use
in a certain application. With the current amount of model transformation ap-
proaches available, the question arises which is best suited for which application
and where the differences are. In this paper, as a first step towards a general
classification of approaches, we have compared two model transformation ap-
proaches, a graph transformation approach and a relational approach.

After introducing a running example for the comparison, we have expressed
transformation rules in both approaches. The comparison has then shown that
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there are some similarities between both approaches. Graph transformation ap-
proaches favor matching and replacement, the relational approach favors match-
ing and reconciliation. By providing algorithms in pseudo-code, we have been
able to detail the differences: Firstly, the matching is more general in the graph
transformation approach. Secondly, replacement in the graph transformation can
be thought of a specific way of reconciliation.

From our comparison we can draw the following conclusions: In principle, the
two approaches are rather similar. The graph transformation approach has the
power in the clear operational idea which enhances rule specification. The rela-
tional benefits from the bidirectionality idea. As a special form of reconciliation,
namely replacement of model elements, the graph transformation approach can
be seen as one implementation of a relational approach. Further, it remains to be
shown in practice that a human mind is capable of using different ways of recon-
ciliation when designing the rules. Another important conclusion from the two
approaches being rather similar is that results from graph transformation the-
ory can also be applicable to a relational approach. These may include insights
about confluence of model transformations or efficient ways of implementing the
graph matching part.
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