
Embedding OCL expressions in YATL

Octavian Patrascoiu and Peter Rodgers

Computer Laboratory, University of Kent, UK

{ O.Patrascoiu, P.J.Rodgers }@kent.ac.uk

Abstract. Modeling is a technique used extensively in industry to define
software systems, the UML being the most prominent example. With the
increased use of modeling techniques has come the desire to use model
transformations. While the current OMG standards such as Unified Modeling
Language (UML) and Meta Object Facility (MOF) provide a well-established
foundation for defining models, no such well-established foundation exists for
transforming models. The current paper describes how the OCL expressions are
integrated in a transformation language called YATL (Yet Another
Transformation Language) to provide support for model querying. The paper
presents also the transformation environment and the main features of YATL.

1 Introduction

The Model-Driven Architecture (MDA) [15][6] is an initiative of the Object
Management Group (OMG) to define an approach to software development based on
modeling and automated mapping of models to implementations. The basic MDA
pattern allows the same platform-independent model (PIM), which specifies business
system or application functionally and behavior, to be mapped automatically to one or
more platform-specific models (PSMs).

While the current OMG standards such as Unified Modeling Language (UML)
[19] and Meta Object Facility (MOF) [16] provide a well-established foundation for
defining PIMs and PSMs, no such well-established foundation exists for transforming
PIMs to PSMs [7]. In 2002, in its effort to define the transformations, OMG initiated
a standardization process by issuing a Request for Proposal (RFP) on Query / Views /
Transformations (QVT) [9]. This process will lead to an OMG standard for defining
model transformations, which will be of interests not only for PIM-to-PSM
transformations, but also for defining views on models and synchronization between
models. Driven by practical needs and the OMG’s request, a large number of
approaches to model transformation have been recently proposed [4]. This paper
presents the integration of OCL expressions into a transformation language called
YATL (Yet Another Transformation Language), defined to perform transformations
within the OMG’s MDA framework.

2 Octavian Patrascoiu and Peter Rodgers

instance
of

described
by

YATL
Transformation

Engine

YATL
Transformation

Language

MOF

Source
Model

Target
Model

Source Model
Instance

Target Model
Instance

instance
of

source

target

execute

described
by

described
by

YATL
Program

instance
of

target

source

BNF

described
by

Figure 1. Transformation environment.

2 KMF: the transformation environment

YATL was developed within the Kent Modeling Framework (KMF) [9], to describe
and perform model transformations.

The core technologies of MDA are the UML, MOF, XMI, and CWM. These
standards are used to facilitate the design, description, exchange, and storage of
models. MDA also introduces other important concepts: PIM, PSM, transformation
language, and transformation engine. The relations and interactions between these
concepts in KMF are depicted in Figure 1.

In our approach, the source and target models are described using the MOF
language, which in this case acts like a metalanguage. The transformation language,
in our case YATL, is described using two metalanguages: BNF and MOF. BNF is
used to describe the concrete syntax, while MOF is used to describe the abstract
syntax. The transformation engine performs the mapping from a source model
instance to a target model instance, executing a YATL program, which is an instance
of the YATL transformation language.

The entire transformation process is performed in KMF following the steps:
• The source and target models are defined using a MOF editor (e.g.

Rational Rose or Poseidon)
• KMF-Studio is used to generate Java implementations of the source and

target models.
• The source model repository is populated used either Java hand-written

code or GUI provided by the modeling tool generated by KMF-Studio.

Embedding OCL expressions in YATL 3

• YATL-Studio is used to create a YATL project and perform the requested
transformation.

3 A brief description of YATL

YATL is a hybrid language (a mix of declarative and imperative constructions)
designed to answer the Query/Views/Transformations Request For Proposals [10]
issued by OMG and to express model transformations as required by the MDA
[MDA] approach. The abstract syntax of YATL namespaces, translation units,
queries, views, transformations, and transformations rules is described in Figure 2.

Figure 2. YATL Abstract Syntax.

A YATL query is an OCL expression, which is evaluated into a given context such
as a package, classifier, property, or operation. The returned value can be a primitive
type, model elements, collections or tuples. Queries are used to navigate across model
elements and to interrogate the population stored in a given repository. YATL uses
the OCL implementation that was initially developed under KMF and then under
Eclipse as an open source project [18].

A YATL transformation is a construct that maps a source model instance to a
target model instance by matching a pattern in a source model instance and creating a
collection of objects with given properties in the target model instance. Each
transformation contains one or more transformation rules. A transformation rule
consists of two parts: a left-hand side (LHS) and a right-hand side (RHS). The LHS of
a YATL transformation is specified using a filtering expression. A compound
statement specifies the effect of the RHS. The LHS and RHS for the YATL
transformation are described in the same syntactical construction, called
transformation rule. A rule is invoked explicitly using its name and with parameters.
The RHS of rule R is applied over every source model element for which the filter
contained in the LHS of rule R is true. If the source model and target model are

4 Octavian Patrascoiu and Peter Rodgers

identical, the elements added by other previous rules are discarded. YATL provides
also the possibility of interacting with the underlying machine using native
statements. Although we do not encourage the use of such features, they were
provided to support the modeler when some operations are not available at the
metamodel level (e.g. the standard library of OCL 2.0 does not provide a function to
convert lowercase letters to uppercase letters).

3.1 YATL programs

A YATL program consists of one or more source files, known formally as translation
units. A source file is an ordered sequence of Unicode standard characters.
Conforming implementations must accept Unicode source files encoded with the
UTF-8 encoding form [UNI], and transform them into a sequence of Unicode
characters. Implementations may choose to accept and transform additional character
encoding schemes, such as UTF-16, UTF-32, or non-Unicode character mappings.
The steps of the YATL programs analysis are described in details in [20].

3.2 Syntax

Currently YATL programs are described using textual notation. The syntax of YATL
language is using two grammars, structured on two levels. On the first level, the
lexical grammar defines how Unicode characters are combined to form line
terminators, white space, comments, and YATL tokens. At the second level, the
syntactic grammar defines how the tokens resulting from the lexical grammar are
combined to form YATL programs. Both grammars are described using an EBNF
notation in [20]. The future versions of YATL will provide also a graphic syntax.

3.2 Types and variables

The types of the YATL language are derived from the OCL’s types [17][1][2]. They
can be used to encapsulate logical values, numbers, collections, tuples, and user types.
The type hierarchy of YATL is described in Figure 3 and derives from [2].

YATL’s type system is unified such that a value of any type can be treated as a
Classifier. Every type in YATL directly or indirectly derives from the Classifier class
type, which is the ultimate base class of all types. On the other hand, undefined values
are represented using VoidType.

YATL defines two categories of variables: local variables and value parameters. In
the example

transformation T {
 rule r match java::Class (String s) {
 let i: Integer = 3;
 }
}

Embedding OCL expressions in YATL 5

s is a value parameter and i is a local variable.

Figure 3. YATL types.

YATL is a type-safe language, and the YATL processor guarantees that values
stored in variables are always of the appropriate type. The value of a variable can be
changed through assignment. If the value of a variable is not specified by an
initialization or assignment, it is considered to be the undefined value from OCL.

3.3 Expressions

This section defines the syntax, order of evaluation of operands and operators, and
meaning of expressions. YATL expressions are extensions of OCL 2.0 expressions
presented in [2].

The extensions specific to YATL are presented in Table 1. More details about the
expressions supported by OCL and YATL (e.g. concrete syntax, abstract syntax, and
semantics) and the way they are implemented can be found in [2][17][20].

6 Octavian Patrascoiu and Peter Rodgers

Figure 4. YATL expressions.

Table 1. YATL extensions.

Operator Meaning Example

:= Assigns a new value to a
variable or a property.

self.name := ‘John’;

new Creates new instances of model
element types

let x: A;
x := new A;

build Creates new instances of model
element types and set their
properties.

let x: A;
x := build A {
 name := ‘John’
}

track To store and retrieve mappings
during and after the
transformation process.

let x: A;
x := new A;
let y: B;
y := new B;
-- stores the relation
track(x, rel, y);
-- retrieves y.
y := track(x, rel, null);
-- retrieves x
x := track(null, rel, y);

Embedding OCL expressions in YATL 7

Figure 5. YATL statements.

3.4 Statements

The abstract syntax of YATL statements is presented in Figure 5. More details about
YATL statements and other concepts used to describe them (e.g. end point,
reachability, name lookup, and rule resolution) can be found in [20].

3.5 Namespaces and translation units

A YATL program consists of one or more translation units, each contained in a
separate source file. When a YATL program is processed, all of the translation units
are processed together. Thus, translation units can depend on each other, possibly in a
circular fashion. A translation unit consists of zero or more import directives followed
by zero or more declarations of namespace members: queries, views, or
transformations.

The concept of namespace was introduced to allow YATL programs to solve the
problem of names collision that is a vital issue for large-scale transformation systems.
Namespaces are used both as an “internal” organization system for a program, and as
an “external” organization system - a way of presenting program elements that are
exposed to other programs. A YATL program can reuse a transformation or a query
by importing the corresponding namespaces and invoking the appropriate rules.

8 Octavian Patrascoiu and Peter Rodgers

4. Details of implementation

The compiler and interpreter for YATL are implemented in Java and are designed
to maximize the portability to different modeling environments/tools. Both language
processors contain a core of elements (classes, methods etc.), which are independent
of the modeling environment/tool. The features that are environment-dependant are
implemented using delegation. This approach allows a fast implementation under
different modeling framework, for example Eclipse Modeling Framework (EMF).

Parts of the above language processors were built using MDA techniques. The
lexical analyzer, the parser and translators were generated automatically using
Syntax-Driven Translation Scheme (SDTS), lexical analyzers, and parsers generators.
The Java code associated to the YATL’s abstract syntax was generated using KMF
Studio, a tool provided by KMF, using the MOF model of the abstract syntax as input.

These parts can be easily regenerated for other environments if appropriate
generation tools are provided. For instance, if the target language is C#, the above
parts of the language processors can be easily generated as C# parser generators are
available and KMF can be configured to generate C# code.

5. Conclusions and related work

We performed various transformations using YATL such as the transformations from
UML to Java, from spider diagrams to OCL, and from EDOC to Web Services.
These experiments forced us to add new features to YATL and improve the
implementation. The idea of using OCL expression to navigate over the source model
during the transformation proved to be very useful. We believe that it is the best
approach to interrogate the UML models, considering its nonprocedural and high-
level features.

Since OMG launched its QVT RFP [10] in 2002, several submissions were made.
DSTC’s submission [11] contains a declarative definition of QVT and uses high-level
concepts that are similar with those from Prolog, but it cannot cope with large-scale
transformations because its concepts make the implementation very slow. QVT
Partners submission [13] considers that transformations are special cases of relations
and describes them using a graphical syntax. Both QVT Partners and the French
submission [14] have similarities to our approach. However, there are a lot of
differences such as the concrete syntax, the semantics of the rules, the tracking
mechanism, the support for interaction with the host machine and creation of target
model instance etc.

YATL is still evolving because one of our main goals is to make it complaint to the
QVT standard. But we also hope to add many original features to the YATL
development environment and to integrate it with KMF and EMF.

Acknowledgements. This work has been funded by the UK Engineering and
Physical Sciences Research Council (EPSRC) under grants GR/R63509/01 and
GR/R63516/01.

Embedding OCL expressions in YATL 9

References

[1] Akehurst D. and O. Patrascoiu. OCL 2.0-Implementing the Standard for
Multiple Metamodels. In OCL2.0-"Industry standard or scientific
playground?" - Proceedings of the UML'03 workshop, page 19. Electronic
Notes in Theoretical Computer Science, November 2003.

[2] Akehurst D., P. Linington, and O. Patrascoiu. OCL2.0-Implementing the
Standard. Technical report, Computer Laboratory, University of Kent,
November 2003.

[3] Akehurst D., S. Kent, O. Patrascoiu. A relational approach to defining and
implementing transformations between metamodels, SoSym, volume 2,
number 4, December 2003, 215-239.

[4] Czarnecki K., S. Helsen. Classification of Model Transformation Approaches,
OOPSLA 2003 Workshop: Generative techniques in the context of MDA.

[5] Eclipse Modeling Framework http://www.eclipse.org/emf.
[6] Frankel D. S. Model Driven Architrecture: Applying MDA to Enterprise

Computing. John Wiley & Sons, 2003.
[7] Gerber A., M. Lawley, K. Raymond, J. Steel, A. Wood. Transformation: The

Missing Link of MDA, in A. Corradini, H. Ehring, H. J. Kreowsky, G.
Rozenberg (Eds): Graph Transformation: First International Conference (ICGT
2002)

[8] Janssen T. M. V. and van Emde Boas. Some observations on compositional
semantics. Report 81-11. University of Amsterdam, 1981.

[9] Kent Modeling Framework http://www.cs.kent.ac.uk/projects/kmf
[10] QVT Query/Views/Transformations RFP, OMG Document ad/02-04-10,

revised on April 24, 202. http://www.omg.org/cgi-bin/doc?ad/2002-4-10
[11] MOF Meta Object Facility Specification OMG Document 2003-05-02,

available at http://www.omg.org/uml
[12] MOF Query/Views/Transformation, Initial submission, DSTC and IBM.
[13] MOF Query/Views/Transformation, Initial submission, QVT Partners.
[14] MOF Query/Views/Transformation, Initial submission, Alcatel, SoftTeam,

Thales, TNI-Valiosys.
[15] MDA Model Driven Architecture http://www.omg.org/mda.
[16] MOF Meta Object Facility http://www.omg.org/mof
[17] OCL Object Constraint Language Specification Revised Submission, Version

1.6, January 6, 2003, OMG document ad/2003-01-07.
[18] OCL http://www.cs.kent.ac.uk/projects/ocl.
[19] Patrascoiu O. YATL:Yet Another Transformation Language. In Proc. of First

European Workshop MDA-IA, University of Twente, the Nederlands, 2004.
[20] Patrascoiu O. YATL:Yet Another Transformation Language. Reference

Manual. Version 1.0. Technical Report 2-04, University of Kent, UK, 2004.
[21] Patrascoiu O. Model transformations in YATL. Studies and Experiments.

Technical Report 3-04, University of Kent, UK, 2004.
[22] Unicode standard. http://www.unicode.org

http://www.eclipse.org/emf
http://www.cs.kent.ac.uk/projects/kmf
http://www.omg.org/cgi-bin/doc?ad/2002-4-10
http://www.omg.org/uml
http://www.omg.org/mda
http://www.omg.org/mof
http://www.cs.kent.ac.uk/projects/ocl
http://www.unicode.org/

