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Abstract. OCL is proposed as a query language within the QVT framework. 
The main QVT submission bases the specification of transformations on the 
concept of relations. Relations are not first class entities within the OCL. By 
extending OCL with the concept of Relations it can better serve the needs of the 
QVT framework. In particular this enables OCL to be used as a semantic 
interpretation of a QVT transformation language and may even facilitate the use 
of OCL as a transformation specification language. 

1 Introduction 
The QVT Merge submission [4] seems to agree that the specification of model 
transformations be based (at some level) on the concept of Relations. There is also 
some agreement that OCL [3] be used as an expression language within such 
specifications.  

OCL is based partly on the mathematical foundation of Set Theory; of which 
Relation Theory is considered to be a part. Indeed if we look at the specification 
language Z [6], which is also based on Set Theory, binary relations are considered to 
be a major part of its use, as are Schemas which define n-ary relations. This paper 
proposes the addition of relations as a type within the OCL. The technical details are 
based partially on the use of relations within Z but adapted to be inline with the 
conventions of OCL and take also into consideration the approach to relations found 
in Databases and Relation Algebra. 

OCL already has the concept of n-tuples with named parts; it follows that a relation 
in OCL can be a set of n-tuples that conform to a common type. Seeing as there can 
be frequent use of binary relations this paper proposes to also incorporate the notion 
of a binary relation as a special type of n-ary relation (Figure 1). 
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Figure 1 Relations 

The work described in this paper is not complete; rather, it is a proposal with some 
initial ideas of how the incorporation of relations into OCL could be achieved. 

Section 2 gives a brief overview of the relational operators found in Set Theory, Z 
and Relational Algebra. Section 3 provides a proposal for incorporating n-ary 



relations into OCL and Section 4 extends the proposal to also incorporate binary 
relations. Section 5 looks at interpreting the semantics of the relation specification 
language defined in the QVT-Merge submission using the OCL relations defined in 
this paper. 

2 Relation Theory 
A Binary Relation is defined to be a set of pairs, i.e. a subset of a Cartesian 

product. This can of course be extended to n-ary Relations being a set of n-Tuples, 
formed from the Cartesian product of n sets. It is at this point that relation theory 
splits into two strands; Binary relation theory which deals with operations on and 
properties of binary relations; and Relational Algebra [2] handling functions and 
properties of n-ary Relations used within computing under the domain of Databases 
and SQL. 

2.1 Binary Relations (Set Theory) 
If S and T are sets then the type of a binary relation R is defined as follows: 

R :  P(SxT), or R is a Set { (s,t) | s e S ¶ t e T } 

I.e. a binary relation is a set of pairs of elements, the first part of each pair is drawn 
from the set S and the second from part T. The definition of a relation is either given 
as an explicit set of pairs, or by using a predicate to define a subset of the full product 
of sets S and T. 

Functions dom and ran are defined to give the sets of elements that are related. 
dom gives the domain, i.e. those elements from S that are related to something in T 
and ran gives the range, i.e. those elements from T that are related to something in S. 

Additional useful functions on relations are: 
• domain/range restriction 
• domain/range subtraction 

(anti-restriction) 
• relational image 
• relational inverse 
• relational composition 
• reflexive closure 

• symmetric closure 
• n compositions 
• transitive closure 
• reflexive transitive closure 
• relational overriding 

Plus any of the set operations, which when applied to a relation, are interpreted as 
being applied to the set of elements. 

There are also a number of properties of relations that can be defined: 
• homogeneous 
• heterogeneous 
• reflexive 
• symmetric 

• anti symmetric 
• asymmetric 
• transitive 
• equivalence 

If we then introduce the notion of a function as a particular type of relation or the 
property ‘functional’ on relations, we get another set of properties (which can also be 
seen as properties of a relation): 

• functional / injective 
• partial 



• total / surjective 
• bijective (injective and surjective) 

2.2 Z 
The language Z uses set theory and binary relations as its foundation; however it 

also offers a notion of n-ary relations in the form of a Schema. This gives names to 
each part of an n-tuple, and the Schema defines a type for all such n-tuples. 

As with binary relations, there are a number of operations that can be performed on 
Schemas as follows: 

• conjunction 
• disjunction 
• negation 

• quantification 
• hiding 
• composition 

Within the Z schema language there is the notion of renaming which enables a 
specification to rename one (or more) of the parts in a schema to a new name. 

2.3 Relational Algebra 
A relational algebra (RA) is a set of operators that take relations as their operands 

and return a relation as their result. There are eight main operators (defined in [2]), 
called: Select; Project; Intersect; Difference; Join; Divide; Union; and Product. 
However, these eight are not independent and three (Intersect, Join and Divide) can be 
defined in terms of the other five, which are called primitive operators (see [2]). 
Consequently, in order for a query language to be considered fully expressive, it must 
support as a minimum, the primitive operators [1]: Union, Difference; Product; 
Project; and Select. A definition of a relation and these five operators (taken from [2]) 
is given below: 

Relation: Is a mathematical term for table, which is a set of tuples; a relation 
with arity k is a set of k-tuples. 

Union:  Returns a relation containing all tuples that appear in either or both 
of two specified relations. 

Difference: Returns a relation containing all tuples that appear in the first and 
not the second of two specified relations. 

Product: Returns a relation containing all possible tuples that are a 
combination of two tuples, one from each of two specified relations. 

Project: Returns a relation containing all (sub) tuples that remain in a 
specified relation after specified attributes have been removed. 

Select: Returns a relation containing all tuples from a specified relation that 
satisfy a specified condition. 

The interested reader is referred to [2] and [5] for further details on relational 
algebras. 

3 N-ary Relations 
When handling n-ary relations, elements of the relation can either be n-tuples with 

ordered parts, or n-tuples with each part named. In relational algebra in order to 
distinguish between the multiple parts of an n-tuple, each part is named, and thus each 
dimension of the relation is also named; we suggest a similar approach be taken for 
incorporating n-ary relations into OCL. 



There are two aspects to consider when introducing the new concept of relations 
into OCL: 

1. How do we specify or construct a relation? 
2. What operations can be performed on a relation? 

The following sub-sections address these issues. 

3.1 Constructing a relation 
A literal set in OCL is defined using the keyword ‘Set’ followed by the elements to 

be contained in the set: 
let s1 = Set{ 1,2,3 } 

Thus in OCL we could construct a literal relation in a similar manner as follows: 
let r1 = Relation{ Tuple{x=1,y=1,z=1}, 
                   Tuple{x=2,y=4,z=8}, 
                   Tuple{x=3,y=9,z=27} } 

A second way in which we could construct a relation is to convert a Set of tuples 
into a relation. i.e. 

let r2 = Set{ Tuple{x=1,y=1,z=1}, 
              Tuple{x=2,y=4,z=8}, 
              Tuple{x=3,y=9,z=27} }->asRelation() 

The result of such an operation on a set would of course be undefined if the 
elements of the set were not all tuples of a single conforming type. An alternative 
method of converting a set into a relation would be to construct an identity relation 
from the Set, i.e.: 

Set{ 1, 2, 3 }->identityRelation() = 
     Relation{ Tuple{first=1,second=1}, 
               Tuple{first=2,second=2}, 
               Tuple{first=3,second=3} } 

However, as we have n-ary relations it would be nice to extend the identity 
operation to facilitate construction of a relation between n parts, e.g. using an iterator: 

Set{1,2,3}->identityRelation( x,y,z | true ) = 
     Relation{ Tuple{x=1,y=1,z=1}, 
               Tuple{x=2,y=2,z=2}, 
               Tuple{x=3,y=3,z=3} } 

Which enables us to construct relations of n parts, to name each part, and at the 
same time constrain the elements of the relation using the condition part of the 
iterator, e.g.: 

Set{1..5}->identityRelation( x,y,z | x < 4 ) = 
     Relation{ Tuple{x=1,y=1,z=1}, 
               Tuple{x=2,y=2,z=2}, 
               Tuple{x=3,y=3,z=3} } 

3.2 Relations Types 
As well as constructing relations from explicit literal elements it is often useful to 

define the relation using a predicate expression rather than literal values. In this case it 



is necessary to give the explicit types and names of the parts of the relations along 
with an expression to define members of the relation, e.g.: 

Relation{ x:Integer, y:Integer, z:Integer | 
              x*x = y and x*x*x = z } 

If we were to try and define the set of elements for a relation defined like this we 
would end up with an infinite set as there are an infinite number of Integers. 

Initial work made a distinction between Finite and Infinite Relations; however, 
since submitting the paper for review, further work has developed a more satisfactory 
approach. (This approach also provides a solution to the problem originally discussed 
in section 5.1 of this paper, requiring a mechanism for stating that pairs of elements 
from two containers of objects are related, see section 5.1.) 
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Figure 2 - Relation and RelationType 

The approach makes a distinction between a relation and its type, i.e. similarly to 
the notions of: 

Tuple{x=1, y=2} 

and 
TupleType(x:Integer, y:Integer) 

We can have the notions of: 
Relation{ Tuple{x=1,y=1}, Tuple{x=2,y=2}, Tuple{x=3,y=3 } } 

and 
RelationType(x:Integer, y:Integer | expression ) 

If we look to the definition of functions in Z literature, they make use of the notion 
of source and target sets, from which the elements of the function are drawn. Thus for 
any relation type we can define a relation by setting the source sets for each domain 
of the relation, e.g.: 

let 
  R3 = RelationType( x:Integer, y:Integer, z:Integer | 
                     x*x = y and x*x*x = z ), 
  r3 = R3{ x=Set{1..3}, y=Set{1..9}, z=Set{1..27} } 
in 
  r3 = Relation{ Tuple{x=1,y=1,z=1}, 
                 Tuple{x=2,y=4,z=8}, 
                 Tuple{x=3,y=9,z=27} } 



The elements of relation r3 are formed by restricting the elements of the cross 
product of the source sets to those elements that meet the expression given in the 
relation type R3. 

As a consequence, all the relation operations can be defined on (finite) relations, 
although some performance gains may be achievable by making use of the expression 
given in the type of each relation. Where necessary the default expression for the type 
of a relation (e.g. when constructed explicitly) can either be set to ‘true’ or an 
expression that tests for membership in an explicit set of tuples. 

3.3 Operations on Relations 

Relation 
 
<nameK> : Set(TypeK) 
includes( tuple:Tuple(name1:Type1..nameN:TypeN) ) : Boolean 
restrict( var1..varM | expression : Expression ) : Relation(name1:Type1..nameN:TypeN) 
project( var1..varM | expression : Expression ) : Relation(var1:Type1..varM:TypeM) 
join(r:Relation(…)) : Relation(…) 
rename(var1..varN | varr1..varrN) : Relation(…) 
intersection(r:Relation(name1:Type1..nameN:TypeN)) : Relation(name1:Type1..nameN:TypeN) 
union(r:Relation(name1:Type1..nameN:TypeN)) : Relation(name1:Type1..nameN:TypeN) 
product(r:Relation(…)) : Relation(…) 
…{other Set operations } … 

name1 : Type1 
.. 
nameN : TypeN 

 
Figure 3 Relation Operations 

The previous section has already mentioned a requirement for two operations, one 
to test if a particular tuple is a member of a relation and one to restrict a relation to 
eliminate members. Another important operation is the n-dimensional version of the 
dom and ran operations known as project in relational algebra. Figure 3 shows a 
Template Relation class with a number of possible operations. 

Some operations such as inverse do not have any meaning when applied to n-ary 
relations; Some operations such as union and intersection can be interpreted as if they 
are identical to the similar set operations - operating on the set of elements. 

 The rest of this sub-section addresses the specification of a number of operations 
on OCL relations. The set of operations specified is not necessarily complete, but 
includes an important subset of useful operations. Some of the operations are 
described by giving examples of their use; others are more formally defined in terms 
of other OCL operations. 

 project / image / hiding 
We can facilitate the project operation by simply extending the notion of project on 

tuples. I.e. for any tuple, writing ‘.name’ after an expression will return the part of the 
tuple that is named ‘name’. We can do the same for relations, where the result 
returned by ‘.name’ is the set of objects formed from the set of all tuple parts named 
‘name’ for all tuples in the relation. E.g. 

  r3.x = Set{1,2,3} and r3.z = Set{1,8,27} 



In addition to a simple project for extracting one of the domains of a relation, we 
may wish to hide or remove one of the dimensions, i.e. a project to a relation with a 
subset of the ‘columns’. The following OCL shows example uses of the project 
operation. 

let 
  lectures = Relation{ Tuple{tutor=‘John’, course=’Zed’}, 
                       Tuple{tutor=‘Dave’, course=’UML’}, 
                       Tuple{tutor=‘Pete’, course=’Java’} }, 
  studies = Relation{ Tuple{student=‘Jane’, course=’UML’}, 
                      Tuple{student=‘Anna’, course=’Zed’}, 
                      Tuple{student=‘Bess’, course=’Zed’} }, 
  progCourses = Set{ ‘Java’ }, 
  taughtCourses = lectures.course, 
  attendedCourses = studies.course, 

  -- image where course is from progCourses 
  taughtProgCourses = lectures->project( course | 
                         progCourses->includes(course)), 
  rel = Relation { 
    Tuple{tutor=’John’, course=’Zed’, student=’Anna’ }, 
    Tuple{tutor=’John’, course=’Zed’, student=’Bess’ }, 
    Tuple{tutor=’Dave’, course=’UML’, student=’Jane’ } }   

  -- hide ‘course’ 
  tutors = rel->project(tutor,student| true ) 

 includes 
Test if a tuple is a member of the relation. 
context Relation::includes(t:Tuple) : Boolean 
 body normalCase: elements->includes(t) 

 restrict / select 
In Z there are explicit operators that can be used to restrict the domain and range of 

a binary relation, e.g. to restrict the range of r3: 

r3 r {1,2} 

In relational algebra, such an operation would be formed using a select operation. 
A similar expression in SQL could be: 

SELECT x, y, z FROM r3 WHERE x=1 OR x=2 

Now to do this in an OCL like manner, and at the same time adapt the operation so 
that the name of the part to be restricted is given, we could introduce an operation in 
OCL to be used as follows: 

r3->restrict( x | Set{1,2}->includes(x) ) 

This operation restrict can be defined as a standard select operation on the set of 
elements, i.e. equivalent to: 

r3->asSet()->select( t | 
   Set{1,2}->includes(t.x) )->asRelation() 

The name ‘select’ could be used as the operation name as the operation is similar 
to the select operation on sets. 



 compose / natural join 
We have a number of options here: the Z approach to joining two relations is to 

hide the tuple part on which the join is formed; whereas the relational algebra 
approach is to keep it. {Which is most useful for OCL? Here we keep it.} 

E.g. 
let 
  rel=lectures->join(studies) = 
   Relation { 
    Tuple{tutor=’John’, course=’Zed’, student=’Anna’ }, 
    Tuple{tutor=’John’, course=’Zed’, student=’Bess’ }, 
    Tuple{tutor=’Dave’, course=’UML’, student=’Jane’ } } 

We could provide a more general version of the operation that takes an expression 
parameter giving the conditions of joining. E.g. 

  rel=lectures->join(studies|self.course = studies.course) 

Although this is using the iterator syntax, it is not using it is the same way. The 
name ‘studies’ is being used to refer to an existing variable rather than defining an 
iterator variable in the context of the following expression. Perhaps a better approach 
would be to enable explicit specification of expressions and provide a two parameter 
version of join, e.g. 

  rel=lectures->join( studies, 
                      Expression{self,studies | 
                         self.course = studies.course} 
                    ) 

Although this is not as concise as the previous approach, it does not misuse the 
standard iterator syntax! Both of these two extended versions of join could run into 
problems with name clashes. 

 rename 
This operation is slightly problematic to express in OCL without adding additional 

syntax. We could add additional syntax, and form expressions similar to that of Set 
theory, Z or RA, however it would be better not to extend the syntax. An example of 
its use would be to rename the domains of a relation as follows: 

rel->rename[tutor,course/teacher,subject] 
= Relation { 
    Tuple{teacher =’John’, subject=’Zed’, student=’Anna’ }, 
    Tuple{teacher =’John’, subject=’Zed’, student=’Bess’ }, 
    Tuple{teacher =’Dave’, subject=’UML’, student=’Jane’ } } 

In fact this operation is essential to the specification of some of the binary relation 
operations such as ‘compose’. 

The only part of the OCL syntax that enables the specification of names, is the first 
part of the arguments to an iterator operation (as has been used for the other relation 
operations); these names can be used to identify the original names1. However, we 
need a second list of names to indicate the new names. The second part of an iterator 
                                                           
1 even if it does misuse the OCL syntax, such names are intended to be variables in the 

following expression, bound to each element of the set on which the operation is called. 



operation is an expression, which cannot directly be used to define a list of names 
other than as Strings, which could only be evaluated at runtime. To ensure that the 
static typing of OCL works it is necessary to have the new name values available 
before runtime. 

The following are possible options for renaming syntax, but I don’t think any of 
them are satisfactory. The first requires new syntax, and the others severely misuse 
syntax! 

rel[tutor,course/teacher,subject] 

rel->rename( tutor, course | 
  Relation(teacher:String, subject:String, student:String) ) 

rel->rename( tutor, course; 
             teacher:String, subject:String |  ? ) 

 product 
This works the same as the product of two sets, how ever the result is a set of 

tuples formed from the product of two sets of tuples producing a set of tuples of 
tuples, which is then flattened, hence the original two sets of tuples must have disjoint 
names for their parts. 

 Other Set Operations 
Other operations such as intersection, union, difference, etc that are found as 

operations on sets should also be defined for relations. 

4 Binary Relations 
If we consider binary relations as a special type of n-ary relations it is convenient 

to define them as subtypes of a 2-ary relation with parts named ‘first’ and ‘second’. 
BinaryRelationType(X,Y) == RelationType(first:X, second:Y) 

To make things convenient we also define the literal type Pair to be equivalent to a 
2-tuple with named parts ‘first’ and ‘second’, e.g. 

Pair{1,2} = Tuple{first=1, second=2} 

In the case of the Pair, the OCL literal expression can be simply a shorthand 
method of writing out the longer tuple version. However, for the BinaryRelation, we 
can define a number of alternative operations, thus it is necessary to have a separate 
type, with some conversion operations, e.g. 

BinaryRelation{ Pair{1,2} }->asRelation() = 
           Relation{ Tuple{first=1, second=2} } 

Relation{ Tuple{first=1, second=2} }->asBinaryRelation() = 
           BinaryRelation{ Pair{1,2} } 

Although this can return undefined if the element type of the relation elements is 
not TupleType(first:X, second:Y). If we assume that the type BinaryRelation extends 
the type Relation, the operations on binary relations can be defined in terms of the 
operations on the super type. The ‘asRelation’ and ‘asBinaryRelation’ can be used to 
promote or demote a relation to one or other of the types. 



4.1 Constructing Binary Relations 
As discussed above, we can construct a binary relation by promoting a standard 

relation using the ‘asBinaryRelation’ operation. We can also construct one using 
literal values: 

BinaryRelation{ Pair{‘a’,1}, Pair{‘b’,2}, Pair{‘c’,3} } 

or using by using an explicit type and expression: 
let BR = BinaryRelationType( first:Integer, second:Integer | 
                             first*first = second ) 
in brel = BR{ first=Set{1.3}, second=Set{1..9} } 

To construct an identity relation from a set and get a binary relation we could 
provide a separate identity operation on sets, however this is not really necessary as 
we can construct a standard identity relation and then promote it: 

Set{1,2,3}->identityRelation(first, second | true) 
->asBinaryRelation() 

Or we could define a simple unparameterised form to have a return type of 
BinaryRelation: 

Set{ 1, 2, 3 }->identityRelation() = 
     BinaryRelation{ Tuple{first=1,second=1}, 
                     Tuple{first=2,second=2}, 
                     Tuple{first=3,second=3} 
     } 

4.2 Binary Relation Operations 
We give a definition here of some of the operations on binary relations, others such 

as the many ‘closure’ operations could also be defined. 

 domain / range 
context BinaryRelation(X,Y)::domain() : Set(X) 
  body: self.first 

context BinaryRelation(X,Y)::range() : Set(Y) 
  body: self.second 

 domainRestrict / rangeRestrict 
context BinaryRelation(X,Y)::domainRestrict(s:Set(X)) 
                                : BinaryRelation(X,Y) 
  body: self->restrict(first|s->includes(first)) 

context BinaryRelation(X,Y)::rangeRestrict(s:Set(Y)) 
                                : BinaryRelation(X,Y) 
  body: self->restrict(second|s->includes(second)) 

 domainSubtract / range Subtract 
context BinaryRelation(X,Y)::domainSubtract(s:Set(X)) 
                                : BinaryRelation(X,Y) 
  body: self->restrict(first|s->excludes(first)) 



context BinaryRelation(X,Y)::rangeSubtract(s:Set(Y)) 
                                : BinaryRelation(X,Y) 
  body: self->restrict(second|s->excludes(second)) 

 image 
context BinaryRelation(X,Y)::image(s:Set(X)) 
                                : Set(Y) 
  body: self.domainRestrict(s).second 

 inverse 
context BinaryRelation(X,Y)::inverse() 
                                : BinaryRelation(Y,X) 
  body: self->rename( first, second | second, first ) 

 compose 
context BinaryRelation(X,Y)::compose(br:BinaryRelation(Y,Z)) 
                                : BinaryRelation(X,Z) 
  body: self->rename[second/temp] 
        ->join( br->rename[first/temp] ) 
        ->project( first, second | true ) 

5 Correspondence to QVT relations 
In the QVT Merge Group submission, there is a running example describing the 

mapping between a simple UML metamodel and a simple model of XML. We show 
in this section how the specification of relations using the QVT-Merge notation could 
be represented using the OCL relations. This does not include a representation of 
mappings; mappings cause changes to the model and in this paper we are only 
suggesting extensions to OCL that facilitate relation specification and not suggesting 
extensions that facilitate actions – i.e. building objects – although such extensions are 
feasible. 

The following is the QVT-Merge specification of a relation between a UML 
Attribute and its representation in XML as an XML Element. 

relation Attribute_And_XML { 
  domain { (UML.Attribute,a)[name=n, type=t] } 
  domain { 
    (XML.Element,e)[ 
      name = “Attribute”, 
      attrs = { 
        (XML.Attribute,xa)[name=”name”, value = n], 
        (XML.Attribute,xa)[name=”type”, value = t] 
      } 
    ] 
  } 
} 

This can be mapped to a relation type in OCL and subsequently used to check if 
two objects are related in this way. The corresponding relation type defined is OCL is 
as follows: 

 



Attribute_And_XML = 
   RelationType( a:UML::Attribute, e:XML::Element | 
    let 
      n = a.name, 
      t = a.type 
    in 
     e.name=”Attribute” and 
     e.attrs->any(xa|xa.name=”name”).value = n and 
     e.attrs->any(xa|xa.name=”type”).value = t 
  ) 

The main difference between the two is the use of a pattern language in the QVT-
Merge specification. More differences can be seen in the following example which is 
the specification of a relation between a UML Class and its XML Element 
representation. 

relation Class_And_XML { 
 domain{ (UML.Class,c)[name=n, attributes=A, methods=M] } 
 domain{ 
  (XML.Element,e)[ 
    name=”Class”, 
    attributes={(XML.Attribute)[name=”name”, value=n]}, 
    contents = XAM 
  ] 
 } 
 when { 
  A->forAll(a | Attribute_And_XML(a, XAM.toChoice()) ) and 
  M->forAll(m | Method_And_XML(m, XAM.toChoice()) ) 
 } 
} 

Which can be expressed as an OCL relation type as follows: 
Class_And_XML = 
   RelationType( c:UML::Class, e:XML::Element | 
    let 
      n = c.name, 
      A = c.attributes, 
      M = c.methods, 
      XAM = e.contents 
    in 
     e.name=”Class” and 
     e.attributes->any(xa|xa.name=”name”).value = n and 
     A->forAll(a | 
      XAM->select(e|e.name=’Attribute’) 
      ->exists(e|Attribute_And_XML->includes(Tuple{a=a,e=e})) 
     ) and 
     M->forAll(m | 
      XAM->select(e|e.name=’Method’) 
      ->exists(e|Method_And_XML->includes(Tuple{m=m,e=e})) 
     ) 
  ) 

5.1 Relating elements of containers 
There are two things to be said about these relation specifications. Firstly, the 

‘toChoice’ operation is not absolutely necessary – although its use may have 
performance implications – we can construct a similar expression using a nested 
‘exists’ quantification as is shown in the OCL version. 



Secondly, the relation is not necessarily complete; it allows elements to exist in the 
set XAM that are not mapped to either a UML.Attribute or a UML.Method. It may 
have been the intention of the original specification not to include such a constraint; 
however, it could be included, in which case there would also need to be a ‘forAll’ 
quantification over the elements stating that there should exist either an attribute or 
method that is related to each one, i.e.: 

  XAM->forAll(e | 
       A->exists(a | Attribute_And_XML(a, e) 
    or M->exists(m | Method_And_XML(m, e)      ) 

This pattern of constraints that check that the contents of two sets (often 
containers) are related to each other commonly occurs in relation specifications. In 
fact it occurs so frequently that it would be very useful to have a more concise way of 
stating the constraint. The ‘toChoice’ operation suggested by the QVT-Merge 
submission goes part way to providing this, but it is not a complete solution. 

In set theory (or Z), if the relation2 ‘Attribute_And_XML’ is referred to as AX, and 
there is a set attributes A to be related to a set elements E we can write expressions 
such as: 

AX · A ‚ = E 

This says that the set of elements to which some attribute in A is related (i.e. the 
relational image of A under AX) is equal to the set E; which basically says that all 
attributes in A are related to some element in E. We may wish to vary this in some 
cases by stating that there is a subset relationship rather than equality, e.g. 

AX · A ‚ z E 

Saying that all attributes are related to an element, but there may be elements in E 
that are not related to an attribute. 

This operation ‘image’ looks as though it meets our requirement; however it is an 
operation on binary relations and is thus directional. It does not treat the sets A and E 
as equal citizens in the context of the expression; ideally we want an expression of the 
form: 

AX.ff( A, E ) 

Due to the split notions of RelationType and Relation we can easily construct an 
expression that checks if the objects in sets A and E are related in the appropriate 
manner, e.g. the expression: 

Attribute_And_XML{ A, E }->isBijective() 

will construct a relation from the objects in A and E, restricted by the expression 
defined in the relation type ‘Attribute_And_XML’ and then test (using the isBijective 
operation) if every object in A and E is related and that every object is related to only 
one object from the other set. Variations such as ‘isFunctional’ or ‘isTotal’ could also 
be used. 
 
 
                                                           
2 Z does not make the relation and relation type distinction that is discussed in this paper. 



This enables a more succinct specification of Class_And_XML as follows: 
Class_And_XML = 
   RelationType( c:UML::Class, e:XML::Element | 
    let 
      n = c.name, 
      A = c.attributes, 
      M = c.methods, 
      XAM = e.contents 
    in 
     e.name=”Class” and 
     e.attributes->any(xa|xa.name=”name”).value = n and 
     Attribute_And_XML{ A, E }->isBijective() 
   ) 

6 Conclusion 
This paper has proposed that relations be included in OCL as basic types 

corresponding to the Collection and Tuple types along with the necessary notion of a 
RelationType corresponding to CollectionType and TupleType. The paper has 
illustrated the use or specification of a number of useful relation operations within 
OCL. Finally the paper has shown that these OCL relations can be used to give part of 
the semantics to a QVT transformation specification language. 

Specific points to note are: that some relation operations may require additional 
OCL syntax (e.g. rename and join) in addition to the obvious additional syntax 
required to specify a relation. The RelationType concept enables relations to be 
specified using a predicate expression and source sets from which the elements are 
drawn. 

By looking at the use of relations in the context of QVT specifications, the paper 
shows the use of relation types and operations to specify that two sets of objects are 
related by a specific relation; a specification construct commonly required in 
transformations specifications. 
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