
11-Jan-05 Copyright P.H.Welch 1

Freezing Mobile Processes:
an Introduction to occam-π

Freezing Mobile Processes:Freezing Mobile Processes:
an Introduction to occaman Introduction to occam--ππ

Peter Welch and Fred Barnes
University of Kent at Canterbury

Computing Laboratory
p.h.welch@kent.ac.uk

f.r.m.barnes@kent.ac.uk

Peter Welch and Fred BarnesPeter Welch and Fred Barnes
University of Kent at CanterburyUniversity of Kent at Canterbury

Computing LaboratoryComputing Laboratory
p.h.welchp.h.welch@@kent.ac.ukkent.ac.uk

f.r.m.barnesf.r.m.barnes@@kent.ac.ukkent.ac.uk

IFIP WG 2.4, Baden, Austria (7IFIP WG 2.4, Baden, Austria (7thth. January, 2004). January, 2004)

11-Jan-05 Copyright P.H.Welch 2

“…“… improved understanding and architecture improved understanding and architecture
independence were the goals of the design by independence were the goals of the design by
Inmos of the Inmos of the occamoccam multiprocssingmultiprocssing language language
and the Transputer. The goals were achieved and the Transputer. The goals were achieved

by implementation of the abstract ideas of by implementation of the abstract ideas of
process algebra and with an efficiency that is process algebra and with an efficiency that is

today almost unimaginable and certainly today almost unimaginable and certainly
unmatchable.unmatchable.””

Twenty Years Ago …Twenty Years Ago …

C.A.R.Hoare, March 2004.C.A.R.HoareC.A.R.Hoare, March 2004., March 2004.

11-Jan-05 Copyright P.H.Welch 3

We have been extending the classical We have been extending the classical occamoccam
language with ideas of mobility and dynamic language with ideas of mobility and dynamic
network reconfiguration which are taken from network reconfiguration which are taken from

MilnerMilner’’s s ππ--calculus. calculus.

2003 …2003 …

We have found ways of implementing these We have found ways of implementing these
extensions that still involve significantly less extensions that still involve significantly less
resource overhead than that imposed by the resource overhead than that imposed by the

higher level higher level –– but less structured, informal and but less structured, informal and
nonnon--compositional compositional –– concurrency primitives of concurrency primitives of
existing languages (such as Java) or libraries existing languages (such as Java) or libraries

(such as (such as PosixPosix threads).threads).
11-Jan-05 Copyright P.H.Welch 4

We have been extending the classical We have been extending the classical occamoccam
language with ideas of mobility and dynamic language with ideas of mobility and dynamic
network reconfiguration which are taken from network reconfiguration which are taken from

MilnerMilner’’s s ππ--calculus. calculus.

2003 …2003 …

As a result, we can run applications with the As a result, we can run applications with the
order of order of millionsmillions of concurrent processes on of concurrent processes on

modestly powered PCs. We have plans to modestly powered PCs. We have plans to
extend the system, without sacrifice of too extend the system, without sacrifice of too

much efficiency and none of logic, to simple much efficiency and none of logic, to simple
clusters of workstation, wider networks such clusters of workstation, wider networks such

as the Grid and small embedded devices.as the Grid and small embedded devices.

11-Jan-05 Copyright P.H.Welch 5

2003 …2003 …

We conjecture that the extra complexity and We conjecture that the extra complexity and
discipline introduced will make the task of discipline introduced will make the task of

developing, proving and maintaining developing, proving and maintaining
concurrent and distributed programs easier.concurrent and distributed programs easier.

In the interests of In the interests of proveabilityproveability, we have been , we have been
careful to preserve the distinction between the careful to preserve the distinction between the

original static pointoriginal static point--toto--point point synchronisedsynchronised
communication of communication of occamoccam and the dynamic and the dynamic

asynchronous multiplexed communication of asynchronous multiplexed communication of
ππ--calculus;calculus; in this, we have been prepared to in this, we have been prepared to

sacrifice the elegant sacrifice the elegant sparsitysparsity of the of the ππ--calculus.calculus.

11-Jan-05 Copyright P.H.Welch 6

�� SimplicitySimplicity
� There must be a consistent (denotational) semantics that matches

our intuitive understanding for Communicating Mobile ProcessesCommunicating Mobile Processes.
� There must be as direct a relationship as possible between the

formal theory and the implementation technologies to be used.
� Without the above link (e.g. using C++/posix or Java/monitors),

there will be too much uncertainty as to how well the systems we
build correspond to the theoretical design.

�� DynamicsDynamics
� Theory and practice must be flexible enough to cope with process

mobility, location awareness, network growth and decay,
disconnect and re-connect and resource sharing.

�� PerformancePerformance
� Computational overheads for managing (millions of) evolving

processes must be sufficiently low so as not to be a show-stopper.

�� SafetySafety
�� Massive concurrency Massive concurrency –– but no race hazards, deadlock, livelock or but no race hazards, deadlock, livelock or

process starvation.process starvation.

occam-π: Aspirations and Principlesoccam-π: Aspirations and Principles

11-Jan-05 Copyright P.H.Welch 7

occam-πoccamoccam--ππ
� Process, communication, networksProcess, communication, networks (PARPAR)
� Choice between multiple eventsChoice between multiple events (ALTALT)

� Mobile data types Mobile data types ((DagstuhlDagstuhl))

�� Mobile process types Mobile process types (different from Santa(different from Santa--Cruz)Cruz)

� Mobile channel types Mobile channel types ((DagstuhlDagstuhl))

� PerformancePerformance

+ channel bundles, alias checking, no race hazards,
dynamic memory, recursion, forking, no garbage,

extended rendezvous, process priorities, …

+ channel bundles, alias checking, no race hazards, + channel bundles, alias checking, no race hazards,
dynamic memory, recursion, forking, no garbage, dynamic memory, recursion, forking, no garbage,

extended rendezvous, process priorities, extended rendezvous, process priorities, ……

11-Jan-05 Copyright P.H.Welch 8

Mobile Process TypesMobile Process TypesMobile Process Types
At SantaAt Santa--Cruz, a Cruz, a proposalproposal for an (for an (occamoccam) language) language
binding for process mobility was presented. This had binding for process mobility was presented. This had
some good properties some good properties …… but at least one bad one but at least one bad one ……
which was duly pointed out during questions.which was duly pointed out during questions.

One of the major powers of processOne of the major powers of process--oriented design is oriented design is
that the state of a process is represented not only by the that the state of a process is represented not only by the
values of its variables but also by values of its variables but also by where it has reached in where it has reached in
its execution of codeits execution of code. Its execution model does not have . Its execution model does not have
to depend (switch) on global state attributes, which can to depend (switch) on global state attributes, which can
lead to poor engineering.lead to poor engineering.

The SantaThe Santa--Cruz mobiles lost this power. They had to Cruz mobiles lost this power. They had to
terminate before movement, recording their state in terminate before movement, recording their state in
global attributes that survived termination and reglobal attributes that survived termination and re--
activation activation …… // // //

11-Jan-05 Copyright P.H.Welch 9

Mobile Process TypesMobile Process TypesMobile Process Types
The SantaThe Santa--Cruz mobiles were like laptops that you had to Cruz mobiles were like laptops that you had to
boot down before they could be unplugged from their boot down before they could be unplugged from their
current environment (e.g. LAN), moved, plugged into current environment (e.g. LAN), moved, plugged into
their new environment and retheir new environment and re--booted. Safe but tedious.booted. Safe but tedious.

The Baden mobiles can be asked to suspend The Baden mobiles can be asked to suspend (freezing all (freezing all
current live subcurrent live sub--processes)processes), disconnected, moved, re, disconnected, moved, re--
connected and resumed connected and resumed (with all frozen processes (with all frozen processes
carrying on from their suspension points)carrying on from their suspension points)..

The reason we did not propose this originally was that The reason we did not propose this originally was that
we did not see how to arrange for all the subwe did not see how to arrange for all the sub--processes processes
to freeze safely, how the mover could be sure this had to freeze safely, how the mover could be sure this had
happened to allow safe movement happened to allow safe movement …… nor how to find all nor how to find all
the frozen subthe frozen sub--processesprocesses fastfast for refor re--activation. We do activation. We do
see now see now …… ☺☺ ☺☺ ☺☺

11-Jan-05 Copyright P.H.Welch 10

A

B

D

E

C

P

Q

S

T

R

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 11

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

A

B

D

E

C

P

Q

S

T

R

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 12

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

A

B

D

E

C

P

Q

S

T

R

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 13

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

A

B

D

E

C

P

Q

S

T

R

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 14

An occamoccam--ππ mobile process, embedded anywhere in a
dynamically evolving network, may suspendsuspend itself mid-
execution, be safely disconnecteddisconnected from its local
environment, movedmoved (by channel communication) to a
new environment, reconnectedreconnected to that new environment
and reactivatedreactivated.

Upon reactivation, the process resumes from the
same state (i.e. data values and code positions)(i.e. data values and code positions) it
held when suspended. Its view of that environment is
unchanged, since that is abstracted by its channel since that is abstracted by its channel
interfaceinterface. The environment on the other side of that
abstraction, however, will usually be different.

The mobile process may itself contain any number of any number of
levelslevels of dynamically evolving parallel sub-network.

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 15

Mobile processes are entities encapsulating state and
code. They may be activeactive or passivepassive. Initially, they
are passivepassive.

The state of a mobile process can only be felt by interacting
with it when activeactive. When passivepassive, its state is locked – even
against reading.

passivepassive activeactive

activate

(self)
suspend

move

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 16

When passivepassive, they may be activatedactivated or movedmoved. A
movedmoved process remains passivepassive. An activeactive process
cannot be movedmoved or activatedactivated in parallel.

When an activeactive mobile process suspendssuspends, it becomes
passivepassive – retaining its state and code position. When it
moves, its state moves with it. When re-activatedactivated, it sees
its previous state and continues from where it left off.

passivepassive activeactive

activate

(self)
suspend

move

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 17

Mobile processes exist in many technologies – such as
appletsapplets, agentsagents and in distributed operating systems.

occamoccam--ππ offers (will offer) support for them with a
formal denotationaldenotational and refinementrefinement semantics, very
high security and very low overheads.

Process mobility semantics follows naturally from that
for mobile data and mobile channel-ends.

We need to introduce a concept of process typestypes and
variablesvariables.

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 18

PROC TYPE PROC TYPE IN.OUT.SUSPENDIN.OUT.SUSPEND (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?):?):

Process typetype declarations give names to PROCPROC header
templates. Mobile processes may implement types
with synchronisation parameters only (i.e. channels,
barriers, buckets, etc.) plus records and fixed-size
arrays of the same. For example:

The above declares a process typetype called IN.OUT.SUSPENDIN.OUT.SUSPEND.
Processes implementing this will be given three channels by
the (re-)activating host process: two for input (inin?, ?, suspendsuspend??)
and one for output (outout!!), all carrying INTINT traffic.

Process typestypes are used in two ways: for the declaration
of process variablesvariables and to define the connection connection
interfaceinterface to a mobile process.

Mobile Process TypesMobile Process TypesMobile Process Types

11-Jan-05 Copyright P.H.Welch 19

Mobile Process ExampleMobile Process ExampleMobile Process Example

WHILE TRUEWHILE TRUE
INT INT xx::
PRI ALTPRI ALT
suspend suspend ? ? xx

in in ? ? xx
SEQSEQ
total total := := total total + + xx
out out ! ! totaltotal

INITIAL INT INITIAL INT total total IS 0: IS 0: ---- local state local state

SUSPENDSUSPEND ---- control returns to activatorcontrol returns to activator
---- control resumes here when next activatedcontrol resumes here when next activated

MOBILEMOBILE PROC PROC integrate.suspend integrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)

::

suspend

in
out

integrate.suspendintegrate.suspend

IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

11-Jan-05 Copyright P.H.Welch 20

Mobile Processes and TypesMobile ProcessesMobile Processes andand TypesTypes

A process typetype may be implemented by many mobile
processes – each offering different behaviours.

A process variablevariable has a specific process type. Its value
may be undefinedundefined or some mobile processsome mobile process implementing
its type. A process variable may be bound to different
mobile processes, offering different behaviours, at
different times in its life. When defineddefined, it can only be
activated according to that type.

The mobile process from the last slide, integrate.suspendintegrate.suspend,
implements the process type, IN.OUT.SUSPENDIN.OUT.SUSPEND, defined
earlier. Other processes could implement the same type.

11-Jan-05 Copyright P.H.Welch 21

process.outprocess.out ! ! pp
---- pp is now undefined (canis now undefined (can’’t move or activate it)t move or activate it)

PROC PROC AA (CHAN (CHAN IN.OUT.SUSPEND IN.OUT.SUSPEND process.outprocess.out!)!)

::

p p :=:= MOBILEMOBILE integrate.suspendintegrate.suspend
---- pp is now defined (can move and activate)is now defined (can move and activate)

IN.OUT.SUSPEND IN.OUT.SUSPEND pp::
SEQSEQ
---- pp is not yet defined (canis not yet defined (can’’t move or activate it)t move or activate it)

process.outprocess.out
AA

Mobile Process ExampleMobile Process ExampleMobile Process Example

11-Jan-05 Copyright P.H.Welch 22

PROC PROC BB (CHAN (CHAN IN.OUT.SUSPEND IN.OUT.SUSPEND process.inprocess.in??, , process.outprocess.out!,!,
CHAN INT CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)

::

WHILE TRUEWHILE TRUE
IN.OUT.SUSPEND IN.OUT.SUSPEND qq::
SEQSEQ
... input a process to ... input a process to qq
... plug into local channels and activate ... plug into local channels and activate qq
... when finished, send it on its way... when finished, send it on its way

process.inprocess.in
BB

process.outprocess.out

inin suspendsuspend

outout

Mobile Process ExampleMobile Process ExampleMobile Process Example

11-Jan-05 Copyright P.H.Welch 23

process.outprocess.out ! ! qq
---- q is now undefined (canq is now undefined (can’’t move or activate it)t move or activate it)

process.in process.in ?? qq
---- q is now defined (can move and activate)q is now defined (can move and activate)

WHILE TRUEWHILE TRUE
IN.OUT.SUSPEND IN.OUT.SUSPEND qq::
SEQSEQ
---- q is not yet defined (canq is not yet defined (can’’t move or activate it)t move or activate it)

q (in?, out!, suspend?)q (in?, out!, suspend?)
---- q is still defined (can move and activate)q is still defined (can move and activate)

process.inprocess.in
BB

process.outprocess.out

inin suspendsuspend

outout

Mobile Process ExampleMobile Process ExampleMobile Process Example

11-Jan-05 Copyright P.H.Welch 24

Mobile Process NetworkMobile Process NetworkMobile Process Network

CHAN CHAN IN.OUT.SUSPEND IN.OUT.SUSPEND cc,, dd::
CHAN INT CHAN INT inin, , outout, , suspendsuspend::
... other channels... other channels
PARPAR

AA ((cc!)!)
BB ((cc?, ?, dd!, !, inin?, ?, outout!, !, suspendsuspend?)?)
... other processes... other processes

……cc

inin

outout

suspendsuspend

BB
dd

AA

11-Jan-05 Copyright P.H.Welch 25

Mobile NetworksMobile NetworksMobile Networks
Thanks to Tony Hoare for the insight allowing for the safe suspension
of mobiles that have gone parallel internally [bar conversation, GC
conference, Newcastle (29/03/2004)].

So, treat SUSPENDSUSPEND as a special event bound to all internal processes
of the mobile (and local to them – i.e. hidden from its environment).
The SUSPENDSUSPEND only completes when all internal processes engage.
Then, the mobile ““early terminatesearly terminates”” its activation (extended CSP).

Our earlier model handles this by requiring normal termination of a
mobile before it can be moved – i.e. a multiwaymultiway synchronisationsynchronisation on
the termination event of all internal processes (standard CSP).

For implementation, we just need a CSP event (an occamoccam--ππ BARRIERBARRIER)
reserved in the workspace of any mobile. To reactivate, all its
suspended processes will be on the queue held by that event –– easy!easy!

Well, not quite that easy … but it certainly sorted this problem.

11-Jan-05 Copyright P.H.Welch 26

Graceful SuspensionGraceful SuspensionGraceful Suspension
We must still arrange for ‘graceful’ suspension by all the processes
within a mobile.

Fortunately, there is a standard protocol for safely arranging this
parallel suspend – it’s the same as that for ‘graceful’ termination.

If one sub-process gets stuck on an internal communication while all
its sibling processes have suspended, we have deadlock.

For now, this is left for the mobile application to implement. It’s a
concern orthogonal to the (language) design and mechanics of
mobile suspension – in the same way that the ‘graceful’ termination
protocol is orthogonal to the mechanics of parallel termination.

Separately, we are considering language support for such distributed
decisions …

11-Jan-05 Copyright P.H.Welch 27

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

Mobile Network ExampleMobile NetworkMobile Network ExampleExample

++

0000

++

11-Jan-05 Copyright P.H.Welch 28

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

Mobile Network ExampleMobile NetworkMobile Network ExampleExample

11-Jan-05 Copyright P.H.Welch 29

outout ! ! TRUETRUE; x ; x ---- forward dataforward data

PROC PROC freezefreeze (CHAN INT (CHAN INT inin?, ?, suspendsuspend?, CHAN BOOL.INT ?, CHAN BOOL.INT outout!)!)

::

inin outout

suspendsuspend

WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
INT any:INT any:
suspend suspend ? any? any

INT x:INT x:
in in ? x? x

SEQSEQ
outout ! ! FALSEFALSE; 0 ; 0 ---- suspend signalsuspend signal
SUSPENDSUSPEND

Graceful SuspensionGraceful SuspensionGraceful Suspension

11-Jan-05 Copyright P.H.Welch 30

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

Mobile Network ExampleMobile NetworkMobile Network ExampleExample

11-Jan-05 Copyright P.H.Welch 31

outout

in.0in.0

in.1in.1

++

PROC PROC plus.suspend plus.suspend (CHAN BOOL.INT (CHAN BOOL.INT in.0in.0?, ?, in.1in.1?, ?, outout!)!)

::

WHILE TRUEWHILE TRUE
BOOL BOOL b.0b.0, , b.1b.1::
INT x.0, x.1:INT x.0, x.1:
SEQSEQ
PARPAR
in.0in.0 ? ? b.0b.0; x.0 ; x.0 ---- b.0 b.0 ÙÙ no suspendno suspend
in.1in.1 ? ? b.1b.1; x.1 ; x.1 ---- b.1 = TRUEb.1 = TRUE

IFIF
b.0b.0
outout ! ! TRUETRUE; x.0 + x.1 ; x.0 + x.1 ---- new running sumnew running sum

TRUETRUE
SEQSEQ

outout ! ! FALSEFALSE; x.1 ; x.1 ---- suspend signal (with sum)suspend signal (with sum)
SUSPENDSUSPEND

::
11-Jan-05 Copyright P.H.Welch 32

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

++

Mobile Network ExampleMobile NetworkMobile Network ExampleExample

11-Jan-05 Copyright P.H.Welch 33

PROC PROC delta.suspend delta.suspend (CHAN BOOL.INT (CHAN BOOL.INT inin?, ?, out.0out.0!, CHAN INT !, CHAN INT out.1out.1!)!)

::

WHILE TRUEWHILE TRUE
BOOL BOOL bb::
INT x:INT x:
SEQSEQ
inin ? ? bb; x ; x ---- b b ÙÙ no suspendno suspend
IFIF
bb
PARPAR

out.0out.0 ! ! TRUETRUE; x ; x ---- feedback running sumfeedback running sum
out.1out.1 ! x ! x ---- output running sumoutput running sum

TRUETRUE
SEQSEQ

out.0out.0 ! ! FALSEFALSE; x ; x ---- suspend signal (with sum)suspend signal (with sum)
SUSPENDSUSPEND

::

inin out.1out.1

out.0out.0

11-Jan-05 Copyright P.H.Welch 34

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

++

Mobile Network ExampleMobile NetworkMobile Network ExampleExample

11-Jan-05 Copyright P.H.Welch 35

SEQSEQ
out out ! ! nn
WHILE TRUEWHILE TRUE
BOOL BOOL bb::
INT x:INT x:
SEQSEQ
inin ? ? bb; x ; x ---- b b ÙÙ no suspendno suspend
IFIF
bb

SKIPSKIP
TRUETRUE

SUSPENDSUSPEND
out out ! ! TRUETRUE; x ; x ---- feedback running sum (feedback running sum (no suspendno suspend))

PROC PROC prefix.suspend prefix.suspend (VAL INT (VAL INT nn, CHAN BOOL.INT , CHAN BOOL.INT inin?, ?, outout!)!)

::

inin outout
nn

11-Jan-05 Copyright P.H.Welch 36

PARPAR
freezefreeze ((inin?, ?, suspendsuspend?, ?, dd!)!)
plus.suspendplus.suspend ((dd?, ?, cc?, ?, aa!)!)
delta.suspenddelta.suspend ((aa?, ?, bb!, !, outout!) !)
prefix.suspendprefix.suspend (0, (0, bb?, ?, cc!)!)

MOBILEMOBILE PROC PROC integrate.suspendintegrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

CHAN BOOL.INT CHAN BOOL.INT aa, , bb, , c, dc, d::

parallel
suspension

x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outoutinin a

bc

d

suspendsuspend

integrate.suspendintegrate.suspend

++

00

++

00

Mobile Network ExampleMobile NetworkMobile Network ExampleExample

11-Jan-05 Copyright P.H.Welch 37

This parallel version of the integrate.suspendintegrate.suspend mobile process
promptly suspends when its environment offers its ‘suspendsuspend??’ signal. It
does this without deadlocking, without accepting any further ‘inin??’ data
and with flushing to ‘outout!!’ any data owed to its environment – i.e. it
honours the contract (we intend to associate with IN.OUT.SUSPENDIN.OUT.SUSPEND).

Deadlock would occur if the sequence of output communication and
suspension were reversed in any of its component processes.

In fact, the output and suspend operations could safely be run in
parallel by all components, except for prefix.suspend prefix.suspend (where
deadlock would result since the output would never be accepted).

This shows the care that must be taken in applying the ‘graceful
suspension’ protocol – responsibility for which we are leaving, for the
moment, with the application engineer.

Graceful SuspensionGraceful SuspensionGraceful Suspension

11-Jan-05 Copyright P.H.Welch 38

Finally, note that the request for a SUSPENDSUSPEND need not come only from
the environment of a mobile. It could be a unilateral decision by the
mobile itself (subject, of course, to satisfying any behavioural contract
declared by its underlying type). It could be initiated by the mobile and
negotiated with its environment. It could be all of these in parallel!

The ‘graceful’ protocol can deal with such concurrent decisions safely.

Graceful SuspensionGraceful SuspensionGraceful Suspension

11-Jan-05 Copyright P.H.Welch 39

�� Process TypeProcess Type
� Currently, the PROCPROC TYPETYPE defines only the connectionsconnections that are

required and offered by a mobile.
� The activating process has complete charge over setting up those

connections. They are the only way a mobile can interact with its
hosting environment. Nothing can happen without the knowledge
and active participation of the host.

�� ContractContract
� This describes how a mobile is prepared to behavebehave with respect

to the synchronisation offers it receives from its environment (as
parametrised by the PROCPROC TYPETYPE of the mobile).

� CSP provides a powerful algebra for specifying rich patterns of
such behaviour.

�� FunctionFunction
� This describes how values generatedvalues generated by the mobile relate to

values receivedvalues received.
� Z specifications of the mobile as a state machine work here (and

are integrated with CSP in the CircusCircus algebra of Woodcock et al.).

Mobile ContractsMobile ContractsMobile Contracts

11-Jan-05 Copyright P.H.Welch 40

�� SafetySafety
� A connectionconnection (PROCPROC TYPETYPE) interface provides a necessary but

not sufficient mechanism for safety.
� The host environment needs more assurance of good behaviour

from an arriving mobile – e.g. that it will not cause deadlock or
livelock, will not starve host processes of attention … and will
suspend when asked.

� Of course, reciprocal promises by the host environment are just
as important to the mobile.

�� Behavioural Process TypesBehavioural Process Types
� We are looking to boost the PROCPROC TYPETYPE with a contractcontract that

makes (some level of) CSP specification of behaviour.
� Initially, we are considering just trace specifications that the

compiler can verify against implementing mobiles.
� The host environment of each activated mobile also needs to be

checked against the contract (e.g. via FDRFDR).

Mobile ContractsMobile ContractsMobile Contracts

11-Jan-05 Copyright P.H.Welch 41

suspend

in
out

IN.OUT.SUSPENDIN.OUT.SUSPEND

PROC TYPE PROC TYPE IN.OUT.SUSPENDIN.OUT.SUSPEND (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?):?):

For example, an IN.OUT.SUSPENDIN.OUT.SUSPEND process is a serverserver on its ‘inin??’
and ‘suspendsuspend??’ channels, responding to an ‘inin??’ with an ‘outout!!’ and to
a ‘suspendsuspend??’ with suspensionsuspension (“early termination”).

Or this could be strengthened to indicate priorities for service …

Or weakened to specify just its traces …

Or weakened further to allow the number of ‘inin??’ events to exceed the
‘outout!!’ events by more than one … and, of course, that the ‘outout!!’s
never exceed the ‘inin??’s …

Mobile ContractsMobile ContractsMobile Contracts

11-Jan-05 Copyright P.H.Welch 42

This may be important both for the hosting environment and the mobile.
Without such a contract, an IN.OUT.SUSPENDIN.OUT.SUSPEND mobile could arrive that
always refuses its ‘suspendsuspend??’ channel (and could never be removed by
its host!) or activates with an ‘outout!!’ (and deadlocks its host!).

Note that ‘integrate.suspendintegrate.suspend’ satisfies all these discussed contracts …

A behaviour we may want to prohibit is that an IN.OUT.SUSPENDIN.OUT.SUSPEND

process will not accept a ‘suspendsuspend??’ with an answer outstanding –
i.e. that a ‘suspendsuspend??’ may only occur when the number of ‘inin??’ and
‘outout!!’ events are equal.

suspend

in
out

IN.OUT.SUSPENDIN.OUT.SUSPEND

PROC TYPE PROC TYPE IN.OUT.SUSPENDIN.OUT.SUSPEND (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?):?):

Mobile ContractsMobile ContractsMobile Contracts

11-Jan-05 Copyright P.H.Welch 43

MOBILEMOBILE PROC PROC integrate.suspend integrate.suspend (CHAN INT (CHAN INT inin?, ?, outout!, !, suspendsuspend?)?)
IMPLEMENTSIMPLEMENTS IN.OUT.SUSPENDIN.OUT.SUSPEND

::

WHILE TRUEWHILE TRUE
INT INT xx::
PRI ALTPRI ALT
suspend suspend ? ? xx

in in ? ? xx
SEQSEQ
total total := := total total + + xx
out out ! ! totaltotal

INITIAL INT INITIAL INT total total IS 0: IS 0: ---- local state local state

SUSPENDSUSPEND ---- control returns to activatorcontrol returns to activator
---- control resumes here when next activatedcontrol resumes here when next activated

suspend

in
out

integrate.suspendintegrate.suspend

Mobile Process ExampleMobile Process ExampleMobile Process Example

11-Jan-05 Copyright P.H.Welch 44

Process Performance (occam-π)Process Performance (Process Performance (occamoccam--ππ))
� Memory overheads per parallel process:

� <= 32 bytes (depends on whether the process needs to wait on
timeoutstimeouts or perform choicechoice (ALT) operations).

� Micro-benchmarks (800 MHz. Pentium III 800 MHz. Pentium III) show:
� process (startup + shutdown): 30 ns (no priorities) Æ 70 ns (priorites);
� change priority (up /\ down): 160 ns;
� channel communication (INT): 60 ns (no priorities) Æ 60 ns (priorites);
� channel communication (fixedfixed--sizedsized MOBILEMOBILE data): 120 ns (with

priorities, independent of size of the MOBILEMOBILE) ;
� channel communication (dynamicdynamic--sizedsized MOBILEMOBILE data, MOBILEMOBILE

channel-ends): 120 ns (with priorities, independent of size of MOBILEMOBILE) ;
�� MOBILEMOBILE process allocation: 450 ns; MOBILEMOBILE process activate +

terminate: 100 ns; MOBILEMOBILE process suspend + re-activate: 630 ns;
� all times independent of number of processes and priorities used – until until

cache misses kick incache misses kick in.

11-Jan-05 Copyright P.H.Welch 45

� Memory overheads per parallel process:
� <= 32 bytes (depends on whether the process needs to wait on

timeoutstimeouts or perform choicechoice (ALT) operations).

� Micro-benchmarks (3.4 GHz. Pentium IV 3.4 GHz. Pentium IV) show:
� process (startup + shutdown): 00 ns (no priorities) Æ 50 ns (priorites);
� change priority (up /\ down): 140 ns;
� channel communication (INT): 40 ns (no priorities) Æ 50 ns (priorites);
� channel communication (fixedfixed--sizedsized MOBILEMOBILE data): 150 ns (with

priorities, independent of size of the MOBILEMOBILE) ;
� channel communication (dynamicdynamic--sizedsized MOBILEMOBILE data, MOBILEMOBILE

channel-ends): 110 ns (with priorities, independent of size of MOBILEMOBILE) ;
�� MOBILEMOBILE process allocation: 210 ns; MOBILEMOBILE process activate +

terminate: 020 ns; MOBILEMOBILE process suspend + re-activate: 260 ns;
� all times independent of number of processes and priorities used – until until

cache misses kick incache misses kick in.

Process Performance (occam-π)Process Performance (Process Performance (occamoccam--ππ))

11-Jan-05 Copyright P.H.Welch 46

.

....
.

p process pairs, m messages (INT) per pair
– where (p*m) = 128,000,000.

pp process pairs, mm messages (INT) per pair
– where (pp**mm) = 128,000,000.

Process Performance (occam-π)Process Performance (Process Performance (occamoccam--ππ))

11-Jan-05 Copyright P.H.Welch 47

Channel Communication Times

0

100

200

300

400

500

600

1 2 3 4 5 6 7

Number of pairs of processes

N
an

o
se

co
n

d
s

Series1

Series2

Series3

Series4

10000001000001000010001001 10

0.8GHz P3 (opt)

0.8GHz P3 (unopt)

3.4GHz P4 (unopt)

3.4GHz P4 (opt)

Process Performance (occam-π)Process Performance (Process Performance (occamoccam--ππ))

11-Jan-05 Copyright P.H.Welch 48

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)

To swing down a chain of 1M servers, exchanging one INT
during each visit: 770 nsecs/visit (P3), 280 nsecs/visit (P4)
To swing down a chain of 1M1M servers, exchanging one INTINT
during each visit: 770 770 nsecs/visit (P3), 280 280 nsecs/visit (P4)

...

To swing down a chain of 1M servers, but doing no business:
450 nsecs/visit (P3), 120 nsecs/visit (P4)

To swing down a chain of 1M1M servers, but doing no business:
450 450 nsecs/visit (P3), 120 120 nsecs/visit (P4)

11-Jan-05 Copyright P.H.Welch 49

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)
RECURSIVERECURSIVE CHAN TYPE CHAN TYPE SERVESERVE

MOBILEMOBILE RECORDRECORD
... business channels... business channels
CHAN CHAN SHAREDSHARED SERVESERVE! ! anotheranother! :! :

::

PROC PROC serverserver (VAL INT (VAL INT idid, , SERVESERVE? ? serveserve,,
SHAREDSHARED SERVESERVE! ! leftleft, , rightright))

... local state and ... local state and intialisationintialisation
WHILE TRUEWHILE TRUE
SEQSEQ
... conduct business (via... conduct business (via serveserve))
IFIF
send.leftsend.left
serveserve[[anotheranother] !] ! leftleft

TRUETRUE
serveserve[[anotheranother] !] ! rightright

::

serveserve
leftleft

rightright

11-Jan-05 Copyright P.H.Welch 50

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)

PROC PROC visitorvisitor (VAL INT (VAL INT countcount, , SHAREDSHARED SERVESERVE! ! client, client, INTINT timetime))
TIMER TIMER timtim::
INT t0, t1:INT t0, t1:
... other local state and ... other local state and intialisationintialisation
SEQSEQ
timtim ? t0? t0
SEQ i = 0 FOR countSEQ i = 0 FOR count
SHAREDSHARED SERVESERVE! ! next:next:
SEQSEQ
CLAIM CLAIM clientclient
SEQSEQ

... conduct business (via... conduct business (via clientclient))
clientclient[[anotheranother] ?] ? nextnext

client client :=:= nextnext
timtim ? t1? t1
time time := t1 MINUS t0:= t1 MINUS t0

::

clientclient

11-Jan-05 Copyright P.H.Welch 51

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)

MOBILEMOBILE[][]SHAREDSHARED SERVESERVE! ! client:client:
MOBILEMOBILE[][]SERVESERVE! ! serve:serve:
SEQSEQ

client client :=:= MOBILEMOBILE [n.servers][n.servers]SHAREDSHARED SERVESERVE!!
serve serve :=:= MOBILEMOBILE [n.servers][n.servers]SERVESERVE??
SEQ i = 0 FOR n.serversSEQ i = 0 FOR n.servers
client[i], serve[i] := client[i], serve[i] := MOBILEMOBILE SERVESERVE

...

PARPAR
PAR i = 0 FOR n.servers PAR i = 0 FOR n.servers ---- actually set up a ringactually set up a ring
server (i, serve[i], client[((i+n.servers)server (i, serve[i], client[((i+n.servers)--1)1)\\n.servers],n.servers],

client[(i+1)client[(i+1)\\n.servers])n.servers])
... launch visitor and report time... launch visitor and report time

11-Jan-05 Copyright P.H.Welch 52

Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)Mobility via Mobile Channels (Tarzan)
...

{{{ launch visitor and report time{{{ launch visitor and report time
INT INT timetime::
SEQSEQ
... wait for the servers to set up... wait for the servers to set up
visitor (n.servers, client[0], visitor (n.servers, client[0], timetime))
... report... report timetime

}}}}}}

11-Jan-05 Copyright P.H.Welch 53

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

To tunnel through a chain of 1M servers, exchanging one INT
during each visit: 1590 nsecs/visit (P3), 620 nsecs/visit (P4)

To tunnel through a chain of 1M1M servers, exchanging one INTINT
during each visit: 1590 1590 nsecs/visit (P3), 620 620 nsecs/visit (P4)

To tunnel through a chain of 1M servers, but doing no
business: 1340 nsecs/visit (P3), 470 nsecs/visit (P4)
To tunnel through a chain of 1M1M servers, but doing no
business: 1340 1340 nsecs/visit (P3), 470 470 nsecs/visit (P4)

11-Jan-05 Copyright P.H.Welch 54

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

PROC TYPEPROC TYPE VISITOR VISITOR (CHAN INT in?, out!,(CHAN INT in?, out!, SHAREDSHARED SERVESERVE! ! clientclient):):

PROC PROC butlerbutler (CHAN (CHAN MOBILEMOBILE VISITOR VISITOR in?, in?, SHAREDSHARED SERVESERVE! ! clientclient))
WHILE TRUEWHILE TRUE
MOBILEMOBILE VISITOR VISITOR harryharry::
SEQSEQ
in ? in ? harryharry
FORK FORK platformplatform ((clientclient, , harryharry))

::

inin clientclient

outout

clientclient

inin

11-Jan-05 Copyright P.H.Welch 55

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

PROC PROC platformplatform ((MOBILEMOBILE VISITOR visitorVISITOR visitor, , SHAREDSHARED SERVESERVE! ! clientclient))
SHARED RAIL! next: SHARED RAIL! next: ---- should be ashould be a HOLEHOLE parameterparameter
CHAN INT dummy.in, dummy.out: CHAN INT dummy.in, dummy.out: ---- this is not nicethis is not nice
SEQSEQ
visitor visitor (dummy.in?, dummy.out!, (dummy.in?, dummy.out!, clientclient)) ---- activateactivate
clientclient[[anotheranother] ? next] ? next
CLAIM nextCLAIM next
next[c] ! next[c] ! harryharry

::

CHAN TYPECHAN TYPE RAILRAIL
MOBILEMOBILE RECORDRECORD
CHAN CHAN MOBILEMOBILE VISITOR VISITOR c? :c? :

::

clientclient

11-Jan-05 Copyright P.H.Welch 56

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)
MOBILEMOBILE PROC PROC visitor visitor (CHAN INT in?, out!,(CHAN INT in?, out!, SHAREDSHARED SERVESERVE! ! clientclient))
IMPLEMENTSIMPLEMENTS VISITORVISITOR

TIMER TIMER timtim::
INT count, t0, t1:INT count, t0, t1:
... other state variables... other state variables
SEQSEQ
in ? countin ? count
... ... initialiseinitialise other stateother state
SUSPENDSUSPEND
timtim ? t0? t0
SEQ i = 0 FOR countSEQ i = 0 FOR count
SEQSEQ
CLAIM CLAIM clientclient
... do business (using... do business (using clientclient’’s business channels)s business channels)

SUSPENDSUSPEND
timtim ? t1? t1
out ! t1 MINUS t0out ! t1 MINUS t0

::

inin clientclient

outout

11-Jan-05 Copyright P.H.Welch 57

... declare channels... declare channels
SEQSEQ

... ... initialiseinitialise channelschannels
PARPAR
... set up server chain... set up server chain
... set up, release, catch, and debrief ... set up, release, catch, and debrief harryharry

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

11-Jan-05 Copyright P.H.Welch 58

MOBILEMOBILE VISITORVISITOR harryharry::
INT time:INT time:
SEQSEQ

harryharry := := MOBILEMOBILE VISITORVISITOR

... ... initialiseinitialise harryharry (with number of visits to perform)(with number of visits to perform)

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

set upset up harryharry

11-Jan-05 Copyright P.H.Welch 59

SEQSEQ
CLAIM rail.client[0]CLAIM rail.client[0]
rail.client[0] ! rail.client[0] ! harryharry ---- releaserelease harryharry

rail.server[n.servers][c] ? rail.server[n.servers][c] ? harryharry ---- catchcatch harryharry
... debrief ... debrief harryharry (get timing)(get timing)

Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)Mobility via Mobile Processes (Mole)

...

release, catch and release, catch and
debriefdebrief harryharry

11-Jan-05 Copyright P.H.Welch 60

…… for example for example ……

11-Jan-05 Copyright P.H.Welch 61

�� InIn--vivovivo ÙÙ InIn--silicosilico
� One of the UK ‘‘Grand ChallengeGrand Challenge’’ areas.
� Move lifelife--sciencessciences from descriptiondescription to modellingmodelling // predictionprediction.
� Example: the Nematode worm.the Nematode worm.
� Development: from fertilised cell to adultfrom fertilised cell to adult (with virtual experiments).(with virtual experiments).
� Sensors and movement: reaction to stimuli.reaction to stimuli.
� Interaction between organisms and other pieces of environment.between organisms and other pieces of environment.

�� Modelling technologiesModelling technologies
� Communicating process networks – fundamentally good fit.
� Cope with growth / decay, combine / split (evolving topologies).
� Mobility and location / neighbour awareness.
� Simplicity, dynamics, performance and safety.

�� occamoccam--ππ (and JCSP)(and JCSP)
� Robust and lightweight – good theoretical support.
� ~10,000,000 processes with useful behaviour in useful time.
� Enough to make a start …

Modelling Bio-MechanismsModelling BioModelling Bio--MechanismsMechanisms

11-Jan-05 Copyright P.H.Welch 62

�� Classical communicating process applicationsClassical communicating process applications
� Static network structures.
� Static memory / silicon requirements (pre-allocated).
� Great for hardware design and software for embedded controllers.
� Consistent and rich underlying theory – CSP.

�� Dynamic communicating processes Dynamic communicating processes –– some questionssome questions
�� Mutating topologies:Mutating topologies: how to keep them safe?
�� Mobile channelMobile channel--ends and processes:ends and processes: dual notions?
�� Simple operational semantics:Simple operational semantics: low overhead implementation? Yes.Yes.
�� Process algebra:Process algebra: combine the best of CSP and the π-calculus? YesYes..
�� Refinement:Refinement: for manageable system verification … can we keep?
�� Location awareness:Location awareness: how can mobile processes know where they

are, how can they find each other and link up?
�� Programmability:Programmability: at what level – individual processes or clusters?
�� Overall behaviour:Overall behaviour: planned or emergent?planned or emergent?

Mobility and Location AwarenessMobility and Location AwarenessMobility and Location Awareness

11-Jan-05 Copyright P.H.Welch 63

Location (Neighbourhood) AwarenessLocation (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

The
Matrix
The The

MatrixMatrix

Mobile
Agents
Mobile Mobile
AgentsAgents

11-Jan-05 Copyright P.H.Welch 64

Location (Neighbourhood) AwarenessLocation (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

11-Jan-05 Copyright P.H.Welch 65

Location (Neighbourhood) AwarenessLocation (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

11-Jan-05 Copyright P.H.Welch 66

Location (Neighbourhood) AwarenessLocation (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

11-Jan-05 Copyright P.H.Welch 67

�� The MatrixThe Matrix
� A network of (mostly passive) server processes.
� Responds to client requests from the mobile agents and,

occasionally, from neighbouring server nodes.
� Deadlock avoided (in the matrix) either by one-place buffered

server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.

� Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).

�� The AgentsThe Agents
� Attached to one node of the Matrix at a time.
� Sense presence of other agents – on local or neighbouring nodes.
� Interact with other local agents – must use agent-specific protocol

to avoid deadlock. May decide to reproduce, split or move.
� Local (or global) sync barrierssync barriers to maintain sense of time.

Mobility and Location AwarenessMobility and Location AwarenessMobility and Location Awareness

11-Jan-05 Copyright P.H.Welch 68

A Thesis and HypothesisA Thesis and HypothesisA Thesis and Hypothesis
�� ThesisThesis

� Natural systems are concurrent at all levels of scale. Central points of
control do not remain stable for long.

� Natural systems are robust, efficient, long-lived and continuously
evolving. We should take the hint! We should take the hint!

� Natural mechanisms should map on to simple engineering principles
with low cost and high benefit. Concurrency is a natural mechanism.

� We should look on concurrencyconcurrency as a core design mechanismcore design mechanism – not
as something difficult, used only to boost performance.

� Computer science took a wrong turn once. Concurrency should not
introduce the algorithmic distortions and hazards evident in current
practice. It should hastenhasten the construction, commisioning and
maintenance of systems.

�� HypothesisHypothesis
� The wrong turn can be corrected and this correction is needed now.

11-Jan-05 Copyright P.H.Welch 69

�� occamoccam--ππ
� Combines process and channel mobility (from the ππ–calculus) with

the discipline and safety of occamoccam and the composeable semantics
of CSP. Even with the new dynamicsEven with the new dynamics …… whatwhat--youyou--seesee--isis--whatwhat--
youyou--getget..

� Minor performance hits for the new dynamics. Overheads for mobiles
are still comparable to those for static processes …… ~100 ns~100 ns.

� Potential security benefits for dynamic peer-to-peer networks and
agent technologies …… to be exploredto be explored.

�� NaturalNatural for multi-layer modelling of micro-organisms (or nanobots)
and their environments …… to be exploredto be explored.

� Support for creating ‘CLONECLONE’s of (passive) mobile processes …… donedone.
� Serialisation procedures needed to communicate mobile processes

between machines…… to be finished to be finished (based on cloning).
� Semantics for mobile processes – OKOK (but need adapting for our new

model). Mobile channels raise new problems …… to be exploredto be explored.

Summary – 1/4Summary Summary –– 1/41/4

11-Jan-05 Copyright P.H.Welch 70

�� occamoccam--ππ
� All dynamic extensions (including mobile processes) implemented

in KRoCKRoC 1.3.3 (but 1.3.4-pre1 has more ☺).
� Denotational semantics for mobile processes (UToPUToP // CircusCircus) in

print (Jim Woodcock, Xinbei Tang) – supporting refinementrefinement.
� Hierarchical networks, dynamic topologies, structural integrity, safe

sharing (of data and channels).
�� Total alias controlTotal alias control by compiler : zero aliasing accidents, zero race

hazards, zero nil-pointer exceptions and zero garbage collection.
� Zero buffer overruns.
� Most concurrency management is unit time – ~100 ns ~100 ns on modern

architecture.
� Only implemented for x86 Linux and RMoXRMoX – other targets

straightforward (but no time to do them).
� Full open source (GPL / L-GPL).
� Formal methods: FDRFDR model checker, refinement calculus (CSP CSP

and CSPCSP--ππ ?), Circus (CSPCSP + ZZ).

Summary – 2/4Summary Summary –– 2/42/4

11-Jan-05 Copyright P.H.Welch 71

�� The right stuffThe right stuff
� Nature builds robust, complex and successful systems by allowing

independent organisms control of their own lives and letting them
interact. Central points of control do not remain viable for longCentral points of control do not remain viable for long.

� Computer (software) engineers should take the hint! Concurrency
should be a natural waynatural way to design any computer system (or
component) above a minimal level of complexity.

� It should simplifysimplify and hastenhasten the construction, commissioning and
maintenance of systems; it should not introduce the hazards that
are evident in current practice; and it should be employed as a and it should be employed as a
matter of routinematter of routine.

�� NaturalNatural mechanisms should map into simplesimple engineering
mechanisms with low cost and high benefitwith low cost and high benefit.

� To do this requires a paradigm shift in the way we approach
concurrency ... to something much simplerto something much simpler.

� Failure to do this will result in failure to meet the ‘‘Grand Grand
ChallengesChallenges’’ that the 21st. Century is stacking up for us.

Summary – 3/4Summary Summary –– 3/43/4

11-Jan-05 Copyright P.H.Welch 72

�� We Aim to Have Fun We Aim to Have Fun ……
� through the concurrency gateway …
� beat the complexity / scalability rap …
� necessary to start now …

�� GoogleGoogle –– II’’m feeling Lucky m feeling Lucky ……
�� KRoCKRoC + + ofaofa -- occamoccam--ππ (official)
�� KRoCKRoC + + linuxlinux -- occamoccam--ππ (latest)
�� JCSPJCSP -- CSP--ππ for Java
�� QuickstoneQuickstone -- JCSP Networking Edition (Java / J#)
�� Grand Challenges + UKGrand Challenges + UK -- In-vivo ÙÙ In-silico
�� CPA 2004 + ConferenceCPA 2004 + Conference -- ‘Communicating Process

-- Architectures’ conference
�� WoTUGWoTUG -- Lots of good people ...

�� Mailing listsMailing lists ……
�� occamoccam--com@kent.ac.ukcom@kent.ac.uk

�� javajava--threads@kent.ac.ukthreads@kent.ac.uk

Summary – 4/4Summary Summary –– 4/44/4

Any Any
Questions?Questions?

11-Jan-05 Copyright P.H.Welch 73

Putting CSP into practice …Putting CSP into practice Putting CSP into practice ……

http://http://www.cs.ukc.ac.uk/projects/ofa/krocwww.cs.ukc.ac.uk/projects/ofa/kroc//
11-Jan-05 Copyright P.H.Welch 74

Putting CSP into practice …Putting CSP into practice Putting CSP into practice ……

http://http://www.cs.ukc.ac.uk/projects/ofa/jcspwww.cs.ukc.ac.uk/projects/ofa/jcsp//

