
5-Jun-01 Copyright P.H.Welch 1

Communicating
Processes,

Components and
Scaleable Systems

Communicating
Processes,

Components and
Scaleable Systems

Peter Welch
Computing Laboratory

University of Kent at Canterbury
(P.H.Welch@ukc.ac.uk)

IFIP WG2.4, San Miniato, Italy (May 2001)

5-Jun-01 Copyright P.H.Welch 2

Components?Components?

Components must be composeable …
… and they must compose simply!

5-Jun-01 Copyright P.H.Welch 3

Components?Components?

Mind you, just because components compose …

… doesn’t always mean that it makes sense …

5-Jun-01 Copyright P.H.Welch 4

Components?Components?

… to compose them …

*Image courtesy of Philips TASS <http://www.tass.philips.com/>

*

5-Jun-01 Copyright P.H.Welch 5

� A and B must be composeable …

� Semantics [A + B] = Semantics [A] + Semantics [B]

plug togetherplug together no surprisesno surprises

� If we understand A and B separately, we must be
able to deduce simply their combined behaviour.

Components?Components?

5-Jun-01 Copyright P.H.Welch 6

Composition?Composition?
� Complex systems are composed from less complex

components …

� … which are composed from simpler components …

� … which are composed from simpler components …

� … etc …

� … which are composed from simple components.

5-Jun-01 Copyright P.H.Welch 7

Composition?Composition?
� Composition rules must be simple and yield no

surprises.

� Whatever it is they encapsulate, components must
have interfaces that are clean, complete and explicit.

� Hardware systems are forced (by physics/geometry)
to be built like this.

� Software systems have no such constraints. We think
we can do better than nature … and get into trouble.

5-Jun-01 Copyright P.H.Welch 8

� OO systems are hierarchies of component networks.

� OO components encapsulate state and algorithms for
manipulating that state.

� OO components exist concurrently and interact by
message passing across well-defined interfaces.

� OO languages support the above …

Object Orientation?Object Orientation?

as if!

5-Jun-01 Copyright P.H.Welch 9

Communicating Processes?Communicating Processes?
� CSP systems are hierarchies of component networks.

� CSP components encapsulate state and algorithms for
manipulating that state.

� CSP components exist concurrently and interact by
message passing across well-defined interfaces.

� CSP languages support the above … claim!

5-Jun-01 Copyright P.H.Welch 10

Objects Considered HarmfulObjects Considered Harmful
� Data encapsulation breaks down all too easily.

� Private attributes of an object may themselves be objects.

� All objects live on a universally accessible heap.

� Hence, private attributes may be shared (!) between any
number of objects - sometimes by design and often by
accident (we just have to give the reference away).

� Either way, this contradiction means that local control of
an attribute is lost and, with it, local and simple reasoning.

5-Jun-01 Copyright P.H.Welch 11

Objects Considered HarmfulObjects Considered Harmful

What we tell our
students:

“An opaque
object interacting
with a wider
system of objects
via its formal
public interface.”

5-Jun-01 Copyright P.H.Welch 12

Objects Considered HarmfulObjects Considered Harmful
The truth:

“Undeclared
interactions
between the
object and any
other parts of
the system …”

Documentation
= Source Code

5-Jun-01 Copyright P.H.Welch 13

Objects Considered HarmfulObjects Considered Harmful

� … data encapsulation still breaks down too easily.

� Even when the attribute is a primitive data-type, we
are not safe … (I am grateful to Tom Locke for the
following, rather scary, observation) …

5-Jun-01 Copyright P.H.Welch 14

count

state

ready

XSuppose class X has a
private integer field, count,
and private methods that
see and change it.

Objects Considered HarmfulObjects Considered Harmful

What is the value of
count after these two
statements?

Suppose the following
code occurs in one of
those methods:
 count = 42; thing.f();

thing.f ();

5-Jun-01 Copyright P.H.Welch 15

count

state

ready

X

count++

thing

f ();

Whether thing is an interface or
a class, its f() method could be
implemented or overridden to call
us back and modify our count.

We
don’t
know

!!!

Objects Considered HarmfulObjects Considered Harmful

5-Jun-01 Copyright P.H.Welch 16

Note that synchronized
monitor locks do nothing to
prevent such side-effecting
call backs …

count

state

ready

X

count++

thing

f ();

We
don’t
know

!!!

Objects Considered HarmfulObjects Considered Harmful

5-Jun-01 Copyright P.H.Welch 17

This lack of ability to reason locally about private fields
is strangely familiar. In the bad old days, free use of
global variables led us into exactly the same mess.

count = 42; thing.f ();

We don’t know the value of count after the following two
statements:

Structured programming led us out of that mire. Is
object orientation taking us back in?

Objects Considered HarmfulObjects Considered Harmful

5-Jun-01 Copyright P.H.Welch 18

This time we do know. What-you-see-is-what-you-get.
The answer is 42.

Processes Considered GoodProcesses Considered Good
What is the value of count after these two statements?

The only way count can be changed is if this process
changes it - and it doesn’t! Local analysis is sufficient.
We don’t need to worry about what lies beyond the
thing channel. Our intuitive understanding about the
sequence of instructions has been honored.

count = 42;
thing.write (anything);

thing

5-Jun-01 Copyright P.H.Welch 19

… nuclear … human … astronomic ...

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

5-Jun-01 Copyright P.H.Welch 20

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in
the system … it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

The Real(-Time) World and ConcurrencyThe Real(-Time) World and ConcurrencyThe Real(-Time) World and Concurrency

5-Jun-01 Copyright P.H.Welch 21

This tradition is WRONG!This tradition is WRONG!

… which has (radical) implications on how we
should educate people for computer science …

… and on how we apply what we have learnt …

5-Jun-01 Copyright P.H.Welch 22

What we want from ConcurrencyWhat we want from Concurrency

� A powerful tool for simplifying the description of
systems.

� Performance that spins out from the above, but is not
the primary focus.

� A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

5-Jun-01 Copyright P.H.Welch 23

� Easy to learn - but very difficult to apply … safely …

� Monitor methods are tightly interdependent - their semantics
compose in complex ways … the whole skill lies in setting
up and staying in control of these complex interactions …

� Threads have no structure … there are no threads within
threads …

� Big problems when it comes to scaling up complexity …

Java Monitors - NOT THIS!Java Monitors - NOT THIS!

5-Jun-01 Copyright P.H.Welch 24

� No guarantee that any synchronized method will ever be
executed … (e.g. stacking JVMs)

� Even if we had above promise (e.g. queueing JVMs),
standard design patterns for wait / notify fail to
guarantee liveness (“Wot, no chickens?”)

See:
 http://www.hensa.ac.uk/parallel/groups/wotug/java/discussion/3.html

 http://www.nist.gov/itl/div896/emaildir/rt-j/msg00385.html

 http://www. nist.gov/itl/div896/emaildir/rt-j/msg00363.html

Java Monitors - NOT THIS!Java Monitors - NOT THIS!

5-Jun-01 Copyright P.H.Welch 25

count

state

ready

Most objects are
dead - they have
no life of their own.

All methods have to
be invoked by an
external thread of
control - they have to
be caller oriented …

Objects Considered HarmfulObjects Considered Harmful

… a somewhat curious
property of so-called
object oriented design.

5-Jun-01 Copyright P.H.Welch 26

count

state

ready

The object is at the
mercy of any thread
that sees it.

Nothing can be done
to prevent method
invocation ...

… even if the object is
not in a fit state to service
it. The object is not in
control of its life.

Objects Considered HarmfulObjects Considered Harmful

5-Jun-01 Copyright P.H.Welch 27

Each single thread of
control snakes around
objects in the system,
bringing them to life
transiently as their
methods are executed.

Threads cut across object
boundaries leaving
spaghetti-like trails,
paying no regard to the
underlying structure.

Objects Considered HarmfulObjects Considered Harmful

5-Jun-01 Copyright P.H.Welch 28

Claim

Communicating Sequential
Processes (CSP)

Communicating Sequential
Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the
way things work.

5-Jun-01 Copyright P.H.Welch 29

Why CSP?Why CSP?
� Encapsulates fundamental principles of communication.

� Semantically defined in terms of structured mathematical
model.

� Sufficiently expressive to enable reasoning about deadlock
and livelock.

� Abstraction and refinement central to underlying theory.

� Robust and commercially supported software
engineering tools exist for formal verification.

5-Jun-01 Copyright P.H.Welch 30

� CSP libraries available for Java (JCSP, CTJ).

� Ultra-lightweight kernels have been developed yielding
sub-100-nanosecond overheads for context switching,
process startup/shutdown, synchronized channel
communication and high-level shared-memory locks.

� Easy to learn and easy to apply …

Why CSP?Why CSP?

* not yet available for JVMs.

*

5-Jun-01 Copyright P.H.Welch 31

� After 5 hours teaching
� exercises with 20-30 threads of control
� regular and irregular interactions
� appreciating and eliminating race hazards, deadlock, etc.

� CSP is (parallel) architecture neutral
� message-passing
� shared-memory

Why CSP?Why CSP?

5-Jun-01 Copyright P.H.Welch 32

So, what is CSP?So, what is CSP?

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is pre-engineered
into the model. We benefit from this simply by using it.

CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

5-Jun-01 Copyright P.H.Welch 33

ProcessesProcesses
� A process is a component that encapsulates some data

structures and algorithms for manipulating that data.

� Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [They are not objects.]

� The algorithms are executed by the process in its own
thread (or threads) of control.

� So, how does one process interact with another?

myProcess

5-Jun-01 Copyright P.H.Welch 34

� The simplest form of interaction is synchronised message-
passing along channels.

� The simplest forms of channel are zero-buffered and
point-to-point (i.e. wires).

� But, we can have buffered channels (blocking/overwriting).

� And any-1, 1-any and any-any channels.

� And structured multi-way synchronisation (e.g. barriers) …

� And high-level (e.g. CREW) shared-memory locks …

ProcessesProcesses myProcess

5-Jun-01 Copyright P.H.Welch 35

A (c) || B (c)

cAA BB

Synchronised CommunicationSynchronised Communication

B may read from c at any time, but has to wait for a write.

c ? x

A may write on c at any time, but has to wait for a read.

c ! 42

5-Jun-01 Copyright P.H.Welch 36

A (c) || B (c)

cAA BB

Synchronised CommunicationSynchronised Communication

c ? x

Only when both A and B are ready can the communication
proceed over the channel c.

c ! 42

5-Jun-01 Copyright P.H.Welch 37

Putting CSP into practice …Putting CSP into practice …

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/

5-Jun-01 Copyright P.H.Welch 38

5-Jun-01 Copyright P.H.Welch 39

Shared ChannelsShared Channels
� So far, all our channels have been point-to-point,

zero-buffered and synchronised (i.e. standard CSP
primitives);

� JCSP also offers multi-way shared channels (in the
style of occam3 and the KRoC shared channel
library);

� JCSP also offers buffered channels of various well-
defined forms.

5-Jun-01 Copyright P.H.Welch 40

One2OneChannelOne2OneChannel

Any2OneChannelAny2OneChannel

5-Jun-01 Copyright P.H.Welch 41

One2AnyChannelOne2AnyChannel

No ALTing!

Any2AnyChannelAny2AnyChannel

5-Jun-01 Copyright P.H.Welch 42

Multi-PongMulti-Pong

5-Jun-01 Copyright P.H.Welch 43

control

...

scorer

left right

keycontrol

mouse

flasher

new game freeze

canvas

Multi-
Pong
Multi-
Pong

5-Jun-01 Copyright P.H.Welch 44

MandelbrotMandelbrot

5-Jun-01 Copyright P.H.Welch 45

MandelbrotMandelbrot

5-Jun-01 Copyright P.H.Welch 46

MandelbrotMandelbrot

...

farmer

harvester

graphics

mouseMovement

key
mouse

displayList

control

cancel

>>>

<<<

top

scale

left

canvas

scrolling

iterations

target

colours

5-Jun-01 Copyright P.H.Welch 47

Good News!Good News!
The good news is that we can worry about
each process on its own. A process interacts
with its environment through its channels. It
does not interact directly with other processes.

Some processes have serial implementations -
these are just like traditional serial programs.

Our skills for serial logic sit happily alongside
our new skills for concurrency - there is no
conflict. This will scale!

Some processes have parallel implementations -
i.e. networks of sub-processes.

5-Jun-01 Copyright P.H.Welch 48

… nuclear … human … astronomic ...

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

R
E
C
A
L
L

5-Jun-01 Copyright P.H.Welch 49

Extending FunctionalityExtending Functionality

unprotected
service

claim

put

get

Extend service to authenticate claimants? Inheritance/overriding - NO!

5-Jun-01 Copyright P.H.Welch 50

Extending FunctionalityExtending Functionality

Extend service by adding the necessary components - reuse the old intact.

unprotected
service

claim

put

get

authenticate

protected service

5-Jun-01 Copyright P.H.Welch 51

Extending FunctionalityExtending Functionality
Intercepting external channels and splicing in extra
components modifies the services provided to
external clients. The services provided by the
original component - only now seen internally - are
unchanged. That original component is still there,
completely unchanged.

This is not the case with method overriding in OO.
That changes the internal behaviour of the original
superclass - internal invocations of the overriden
method going to the subclass. To find out if this is
happening, look at the source code …

5-Jun-01 Copyright P.H.Welch 52

But … Language Matters?But … Language Matters?
� Support these ideas with a library (e.g. JCSP, CCSP) plus

usage patterns (e.g. to control aliasing problems) …
� less development effort; (done it)
� less upheaval for users - much easier to sell;
� lets everyone try immediately - gets exposure and feedback;
� long term solution? (build tools to check correct patterns)

� Support these ideas with a language …
� ideas relevant for wide application? (Yes!)
� significant software engineering benefits? (encapsulation

works => scalability)
� direct syntactic expression of the model (=> simpler to use);
� enforce correct patterns - the compiler is the tool for this;
� generate efficient code - the compiler knows what’s going on.

5-Jun-01 Copyright P.H.Welch 53

Continuing WorkContinuing Work
� A CSP model for the Java monitor mechanisms

(synchronized, wait, notify, notifyAll)
has been built.

� This enables any Java threaded system to be
analysed in CSP terms - e.g. for formal verification
of freedom from deadlock/livelock.

� Confidence gained through the formal proof of
correctness of the JCSP channel implementation:
� a JCSP channel is a non-trivial monitor - the CSP model for

monitors transforms this into an even more complex system
of CSP processes and channels;

� using FDR, that system has been proven to be a refinement
of a single CSP channel and vice versa - Q.E.D.

5-Jun-01 Copyright P.H.Welch 54

Continuing WorkContinuing Work
� Higher level synchronisation primitives (e.g. CALL

channels, barriers, buckets, …) that capture good
patterns of working with low level CSP events.

� Proof rules and design tool support for the above.
� CSP kernels and their binding into JVMs to

support JCSP (or CoreJCSP … ?).
� Communicating Threads for Java (CTJ):

� this is another Java class library based on CSP principles;
� developed at the University of Twente (Netherlands) with

special emphasis on real-time applications - it’s excellent;
� CTJ and JCSP share a common heritage and reinforce each

other’s on-going development - we do talk to each other!

5-Jun-01 Copyright P.H.Welch 55

SummarySummary
WYSIWYGWYSIWYG Plug-n-PlayPlug-n-Play

� CSP has a compositional semantics.

� CSP concurrency can simplify design:
� data encapsulation within processes does not break down

(unlike the case for objects);
� channel interfaces impose clean decoupling between

processes (unlike method interfaces between objects)

� JCSP enables direct Java implementation of CSP
design.

5-Jun-01 Copyright P.H.Welch 56

SummarySummary
� CSP kernel overheads are very small (around 50

nanoseconds on a 500 MHz. P3).
� Rich mathematical foundation:

� 20 years mature - recent extensions include simple priority
semantics;

� higher level design rules (e.g. client-server, resource
allocation priority, IO-par) with formally proven guarantees
(e.g. freedom from deadlock, livelock, process starvation);

� commercially supported tools (e.g. FDR).

� We don’t need to be mathematically sophisticated
to take advantage of CSP. It’s built-in. Just use it!

5-Jun-01 Copyright P.H.Welch 57

SummarySummary
� Process Oriented Design (processes, syncs, alts,

parallel, layered networks).
� WYSIWYG:

� each process considered individually (own data, own control
threads, external synchronisation);

� leaf processes in network hierarchy are ordinary serial
programs - all our past skills and intuition still apply;

� concurrency skills sit happily alongside the old serial ones.

� Race hazards, deadlock, livelock, starvation
problems: we have a rich set of design patterns,
theory, intuition and tools to apply.

5-Jun-01 Copyright P.H.Welch 58

SummarySummary
� Move away from:

� passive objects with method interfaces;
� not in control of their own lives (e.g. cannot refuse calls);
� endemic aliasing;
� reuse by inheritance and overriding (which is dependent on

superclass source code).

� Move towards:
� active components - servicing and generating events;
� strong encapsulation behind event (channel) interfaces;
� strictly controlled aliasing;
� hierarchic network structures (and interface structures);
� reuse by plug-and-play (e.g. channel interception/splicing);
� a CSP concurrency model

5-Jun-01 Copyright P.H.Welch 59

SummarySummary
� Benefits:

� explicit connections, minimal coupling, flexibility and reuse;
� strong encapsulation (state and execution threads);
� escape from uncontrolled aliasing and overriding problems;
� local reasoning about components - scalability;
� clean compositional semantics - scalability;
� more understandable systems - scalability;
� ubiquitous concurrency (for when you want to exploit it - e.g.

for performance and response times) - scalability;
� static guarantees against concurrency errors - scalability.

5-Jun-01 Copyright P.H.Welch 60

StatusStatus
� Libraries and Run-Time kernels:

� JCSP (soon distributed-JCSP, working on binding the occam
kernel into a JVM);

� CCSP (with the occam kernel);

� Languages:
� major extensions to occam (dynamic process linking,

distributed dynamic connections, mobile data, mobile
processes, GUI/graphics support, …);

� researching entirely new language (combining safe OO
practice and CSP);

� many open issues (efficient space-time implementation,
controlled aliasing, deadlock analysis, …)

� want wider experience of programming in the paradigm
(invitation).

5-Jun-01 Copyright P.H.Welch 61

AcknowledgementsAcknowledgements
� Paul Austin - the original developer of JCSP

(p_d_austin@hotmail.com).
� Andy Bakkers and Gerald Hilderink - the CTJ library

(bks@el.utwente.nl, G.H.Hilderink@el.utwente.nl).
� Jeremy Martin - for the formal proof of correctness of the

JCSP channel (Jeremy.Martin@comlab.ox.ac.uk).
� David Wood, Tom Locke, Fred Barnes and Jim Moores -

UKC team ({dcw,tsl2,frmb2,jm40}@ukc.ac.uk).
� Nan Schaller (ncs@cs.rit.edu), Chris Nevison

(chris@cs.colgate.edu) and Dyke Stiles
(dyke.stiles@ece.usu.edu) - for pioneering the teaching.

� The WoTUG community - its workshops, conferences and
people.

5-Jun-01 Copyright P.H.Welch 62

URLsURLs

www.cs.ukc.ac.uk/projects/ofa/jcsp/

www.cs.ukc.ac.uk/projects/ofa/kroc/

www.cs.ukc.ac.uk/projects/ofa/java-threads/

www.comlab.ox.ac.uk/archive/csp.html

www.formal.demon.co.uk/FDR2.html

wotug.ukc.ac.uk/

CSP

KRoC

FDR

java-threads@ukc.ac.uk

WoTUG

JCSP

