
2-Apr-01 Copyright P.H.Welch 1

A CSP Model for Java
Threads (and Vice-Versa)

A CSP Model for Java
Threads (and Vice-Versa)

Peter Welch
Computing Laboratory

University of Kent
(P.H.Welch@ukc.ac.uk)

Logic and Semantics Seminar (CU Computer Laboratory)
 (16th. March, 2000)

Jeremy M. R. Martin
Oxagen Limited

Abingdon, Oxfordshire
(j.martin@oxagen.co.uk)

2-Apr-01 Copyright P.H.Welch 2

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in
the system … it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

The Real World and ConcurrencyThe Real World and ConcurrencyThe Real World and Concurrency

2-Apr-01 Copyright P.H.Welch 3

This tradition is WRONG!This tradition is WRONG!

… which has (radical) implications on how we
should educate people for computer science …

… and on how we apply what we have learnt …

2-Apr-01 Copyright P.H.Welch 4

What we want from ParallelismWhat we want from Parallelism
� A powerful tool for simplifying the description of

systems.

� Performance that spins out from the above, but is not
the primary focus.

� A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

2-Apr-01 Copyright P.H.Welch 5

count

state

ready

Most objects are
dead - they have
no life of their own.

All methods have to
be invoked by an
external thread of
control - they have to
be caller oriented …

Objects Considered HarmfulObjects Considered Harmful

… a somewhat curious
property of so-called
object oriented design.

2-Apr-01 Copyright P.H.Welch 6

count

state

ready

The object is at the
mercy of any thread
that sees it.

Objects Considered HarmfulObjects Considered Harmful

Nothing can be done
to prevent method
invocation ...

… even if the object is
not in a fit state to service
it. The object is not in
control of its life.

2-Apr-01 Copyright P.H.Welch 7

Objects Considered HarmfulObjects Considered Harmful
Each single thread of
control snakes around
objects in the system,
bringing them to life
transiently as their
methods are executed.

Threads cut across object
boundaries leaving
spaghetti-like trails,
paying no regard to the
underlying structure.

2-Apr-01 Copyright P.H.Welch 8

� Easy to learn - but very difficult to apply … safely …

� Monitor methods are tightly interdependent - their semantics
compose in complex ways … the whole skill lies in setting
up and staying in control of these complex interactions …

� Threads have no structure … there are no threads within
threads …

� Big problems when it comes to scaling up complexity …

Java Monitors - CONCERNSJava Monitors - CONCERNS

2-Apr-01 Copyright P.H.Welch 9

� Almost all multi-threaded codes making direct use of the
Java monitor primitives that we have seen (including our
own) contained race or deadlock hazards.

� Sun’s Swing classes are not thread-safe … why not?

� One of our codes contained a race hazard that did not trip
for two years. This had been in daily use, its sources
published on the web and its algorithms presented without
demur to several Java literate audiences.

Java Monitors - CONCERNSJava Monitors - CONCERNS

2-Apr-01 Copyright P.H.Welch 10

� ‘‘ If you can get away with it, avoid using threads. Threads
can be difficult to use, and they make programs harder to
debug. ’’

� ‘‘ Component developers do not have to have an in-depth
understanding of threads programming: toolkits in which
all components must fully support multithreaded access,
can be difficult to extend, particularly for developers who
are not expert at threads programming. ’’

Java Monitors - CONCERNSJava Monitors - CONCERNS
<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

2-Apr-01 Copyright P.H.Welch 11

� ‘‘ It is our basic belief that extreme caution is warranted
when designing and building multi-threaded applications
… use of threads can be very deceptive … in almost all
cases they make debugging, testing, and maintenance
vastly more difficult and sometimes impossible. Neither
the training, experience, or actual practices of most
programmers, nor the tools we have to help us, are
designed to cope with the non-determinism … this is
particularly true in Java … we urge you to think twice
about using threads in cases where they are not
absolutely necessary …’’

Java Monitors - CONCERNSJava Monitors - CONCERNS
<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

2-Apr-01 Copyright P.H.Welch 12

� So, Java monitors are not something with which we want to
think - certainly not on a daily basis.

� If we have to think with them at all, we want some serious
help!

� The first step in getting that help is to build a formal model of
what we think is happening …

Java Monitors - CONCERNSJava Monitors - CONCERNS

2-Apr-01 Copyright P.H.Welch 13

Claim

Communicating Sequential
Processes (CSP)

Communicating Sequential
Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the
way things work.

2-Apr-01 Copyright P.H.Welch 14

Why CSP?Why CSP?
� Encapsulates fundamental principles of communication.

� Semantically defined in terms of structured mathematical
model.

� Sufficiently expressive to enable reasoning about deadlock
and livelock. Process semantics are in terms of its traces,
failures and divergences.

� Abstraction and refinement central to underlying theory.

� Robust and commercially supported software
engineering tools exist for formal verification.

2-Apr-01 Copyright P.H.Welch 15

� CSP libraries available for Java (JCSP, CTJ).

� Ultra-lightweight kernels have been developed yielding
sub-hundred-nano-second overheads for context
switching, process startup/shutdown, synchronized
channel communication and high-level shared-memory
locks.

� Easy to learn and easy to apply (WYSIWYG) …

Why CSP?Why CSP?

* not yet available for JVMs

*

2-Apr-01 Copyright P.H.Welch 16

So, what is CSP?So, what is CSP?

Events are barriers. If one process tries to engage in an
event, all processes (whose alphabets include that event)
must engage in it before the engagement will complete.

CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes (events).

Processes are active entities - they perform (internal)
computations and engage in events. Each process, P, is
registered for a particular set of events in which it might
engage - this set is called its alphabet, alpha(P).

2-Apr-01 Copyright P.H.Welch 17

SKIP is a process that starts, does nothing and terminates.

So, what is CSP?So, what is CSP?
Channels are special kinds of events, usually in the alphabets
of just two processes - the sender and the receiver. Channels
communicate values. Each <channel.value> pair represents a
different event.

Processes may be combined in sequence (P;Q), in parallel
(P||Q), by internal choice (P����Q) and by external choice (P����Q).

If a is an event and P is a process, then (a P) is a process
meaning: engage in a, then become P.

2-Apr-01 Copyright P.H.Welch 18

Java MonitorsJava Monitors

We will only be concerned with how running threads
interact in this paper. We will not be concerned, therefore,
with starting threads (Thread.start) or waiting for them
to terminate (Thread.join).

The key Java primitives for thread synchronisation are:

� synchronized methods and blocks;

� the methods wait, notify and notifyAll from the
Object superclass.

We have no intention of considering the deprecated thread
control methods (Thread.start, Thread.suspend and
Thread.resume).

2-Apr-01 Copyright P.H.Welch 19

Java MonitorsJava Monitors

We will also not be dealing with Thread.interrupt in this
paper - nor with the InterruptedException that might be
thrown by the wait() method.

The key Java primitives for thread synchronisation are:

� synchronized methods and blocks;

� the methods wait, notify and notifyAll from the
Object superclass.

And we’re not going to deal with timeouts either!

Nor priorities!!

2-Apr-01 Copyright P.H.Welch 20

A CSP Model of Java MonitorsA CSP Model of Java Monitors
Let Objects be an enumeration of all Java objects. For
any particular system, this can be restricted to just those on
which a synchronized action is performed. For example:

Objects = {0, 1, 2}

Let Threads be an enumeration of all Java threads. For
any particular system, this can be restricted to just those
threads that are created and started. For example:

Threads = {0, 1}

2-Apr-01 Copyright P.H.Welch 21

A CSP Model of Java MonitorsA CSP Model of Java Monitors
Define the following set of channels:

channel claim, release, waita, waitb, notify, notifyAll

: Objects.Threads

This introduces six families of channel - each family is
indexed by an object and a thread. For example:

claim.o.t

where o is in Objects and t is in Threads.

2-Apr-01 Copyright P.H.Welch 22

This maps to:

claim.o.me P; release.o.me SKIP

where me is the thread executing the above code.

Modeling the Monitor InterfaceModeling the Monitor Interface
Claiming and releasing a monitor lock:

synchronized (o) {

... some process P

}

Note that this also gives us the model for synchronized
methods.

2-Apr-01 Copyright P.H.Welch 23

Modeling the Monitor InterfaceModeling the Monitor Interface
Formally, entry and exit to a synchronized block or
method is modeled by the processes:

STARTSYNC(o, me) = claim.o.me SKIP

ENDSYNC(o, me) = release.o.me SKIP

where o is the monitor object being synchronised and me is
the thread doing the synchronising.

Running in parallel with all user processes will be system
processes MONITOR(o), one for each object o being used
as a monitor. This has the above claim.o.me event in its
alphabet and, if the lock is held by another thread, will refuse
to engage in it. That will block entry to the monitor by the me
thread.

2-Apr-01 Copyright P.H.Welch 24

The o.wait() method is modeled by the process:

WAIT(o, me) = waita.o.me release.o.me

waitb.o.me claim.o.me

SKIP

where o is the monitor object whose lock has to be held and
me is the thread that is doing the waiting.

Modeling the Monitor InterfaceModeling the Monitor Interface

Enter the monitor wait set Release the monitor lock

Exit the monitor wait set Reclaim the monitor lock

2-Apr-01 Copyright P.H.Welch 25

The o.wait() method is modeled by the process:

WAIT(o, me) = waita.o.me release.o.me

waitb.o.me claim.o.me

SKIP

Modeling the Monitor InterfaceModeling the Monitor Interface

Enter the monitor wait set Release the monitor lock

Exit the monitor wait set Reclaim the monitor lock

Again, the system process, MONITOR(o), ensures the above
semantics.

2-Apr-01 Copyright P.H.Welch 26

The o.notify() method is modeled by the process:

NOTIFY(o, me) = notify.o.me SKIP

Modeling the Monitor InterfaceModeling the Monitor Interface

Again, the system process, MONITOR(o), interacts with the
above user process actions to arrange the exit from the wait
set of some waiting user process (or processes) and its (their)
reclaim of the monitor lock.

The o.notifyAll() method is modeled by the process:

NOTIFYALL(o, me) = notifyAll.o.me SKIP

2-Apr-01 Copyright P.H.Welch 27

Summary of the Monitor InterfaceSummary of the Monitor Interface

NOTIFY(o, me) = notify.o.me SKIP

NOTIFYALL(o, me) = notifyAll.o.me SKIP

STARTSYNC(o, me) = claim.o.me SKIP

ENDSYNC(o, me) = release.o.me SKIP

WAIT(o, me) = waita.o.me release.o.me

waitb.o.me claim.o.me

SKIP

… where the blue events above may cause the user threads
engaging in them to block (because MONITOR(o) has those
events in its alphabet and may refuse to engage) .

2-Apr-01 Copyright P.H.Welch 28

Every Java object can be used as a monitor. In our model,
there will be a monitor process, MONITOR(o), for each o in
Objects. This process is itself the parallel composition of
two processes:

MONITOR(o) = MLOCK(o) || MWAIT(o,{})

The Monitor ProcessesThe Monitor Processes

The MLOCK(o) process controls the locking of the monitor
associated with object o - i.e. it deals with synchronized.

The MWAIT(o,{}) process controls the (initially empty)
wait-set of threads currently stalled on this monitor - i.e. it
deals with wait(), notify() and notifyAll().

2-Apr-01 Copyright P.H.Welch 29

Every Java object can be used as a monitor. In our model,
there will be a monitor process, MONITOR(o), for each o in
Objects. This process is itself the parallel composition of
two processes:

MONITOR(o) = MLOCK(o) || MWAIT(o,{})

The Monitor ProcessesThe Monitor Processes

The alphabet of MONITOR(o) is just the union of the
alphabets of its component processes.

This will be the case for all parallel process compositions in
this paper.

2-Apr-01 Copyright P.H.Welch 30

Each MLOCK(o) is basically a binary semaphore. Once
claimed by a thread, only a release from that same thread
will let it go - meanwhile it refuses all other claims.

Locking the MonitorLocking the Monitor

Where the alphabet of MLOCK(o) is:

{claim.o.t, release.o.t | t in Threads}

If this were all it had to do, it could be simply modelled:

MLOCK(o) = claim.o?t release.o.t

MLOCK(o)

2-Apr-01 Copyright P.H.Welch 31

However, a constraint in Java is that o.wait(), o.notify()
and o.notifyAll() are only allowed if the invoking thread
has the monitor lock on o.

Locking the MonitorLocking the Monitor

Therefore, we extend the alphabet of MLOCK(o) to:

{claim.o.t, release.o.t, waita.o.t,

notify.o.t, notifyAll.o.t | t in Threads}

In its initial unlocked state, MLOCK(o) refuses all the extra
events. In its locked state, MLOCKED(o) accepts those
extra events suffixed by the locking thread, but these have
no impact on its state.

2-Apr-01 Copyright P.H.Welch 32

Locking the MonitorLocking the Monitor
The MLOCK(o) process then becomes:

MLOCK(o) = claim.o?t MLOCKED(o,t)

where:

MLOCKED(o,t) = release.o.t MLOCK (o)

���� waita.o.t MLOCKED(o,t)

���� notify.o.t MLOCKED(o,t)

���� notifyAll.o.t MLOCKED(o,t)

So, MLOCK(o) prevents any o.wait() / o.notify() /
o.notifyAll(). MLOCKED(o) allows them, but only by
the locking thread.

2-Apr-01 Copyright P.H.Welch 33

Managing the Wait-SetManaging the Wait-Set
The MWAIT(o,ws) process controls the wait-set, ws,
belonging to the monitor object o. Its alphabet contains
just the wait and notify events:

{waita.o.t, waitb.o.t,

notify.o.t, notifyAll.o.t | t in Threads}

In its initial state, MWAIT(o,ws) listens for a waita.o?t,
notify.o?t or notifyAll.o?t, from any thread t.

It releases a waiting thread, by communicating on some
waitb.o.s - but only in response to a notify.o.t or
notifyAll.o.t.

2-Apr-01 Copyright P.H.Welch 34

if |ws| > 0 then

waitb.o!s MWAIT(o, ws minus {s})

else

MWAIT(o, {})

����
s in ws

MWAIT(o, ws union {t})

MWAIT(o, ws) =

waita.o?t

����

notify.o?t

����

notifyAll.o?t RELEASE (o, ws)

Managing the Wait-SetManaging the Wait-Set

Releases one thread, chosen
non-deterministically

2-Apr-01 Copyright P.H.Welch 35

MWAIT(o, {})

if |ws| > 0 then

else

waitb.o!s RELEASE(o, ws minus {s})����
s in ws

RELEASE(o, ws) =

Managing the Wait-SetManaging the Wait-Set

RELEASE(o,ws) follows a notifyAll.o?t. It must release
all the waiting threads (if any) in some non-deterministic order.

Releases all threads in some
non-deterministic order

2-Apr-01 Copyright P.H.Welch 36

MONITOR(o)

The Monitor ProcessesThe Monitor Processes

waita.o[t]

notify.o[t]

notifyAll.o[t]

claim.o[t]

release.o[t]

waitb.o[t]
MLOCK(o) MWAIT(o)

Each arrow represents an array of channels, one for each
thread, t, that synchronizes on this monitor, o. The shared
channels are broadcasters - both sub-processes must input.

2-Apr-01 Copyright P.H.Welch 37

Putting CSP into practice …Putting CSP into practice …

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/

2-Apr-01 Copyright P.H.Welch 38

2-Apr-01 Copyright P.H.Welch 39

A (c) || B (c)

cAA BB

Synchronised CommunicationSynchronised Communication

B may read from c at any time, but has to wait for a write.

c ? x

A may write on c at any time, but has to wait for a read.

c ! 42

2-Apr-01 Copyright P.H.Welch 40

A (c) || B (c)

cAA BB

Synchronised CommunicationSynchronised Communication

c ? x

Only when both A and B are ready can the communication
proceed over the channel c.

c ! 42

2-Apr-01 Copyright P.H.Welch 41

... public sync Object read ()

... public sync void write (Object mess)

private Object channelHold; // data in transit

private boolean channelEmpty; // sync flag

public class One2OneChannel {

}

The JCSP One2OneChannelThe JCSP One2OneChannel

2-Apr-01 Copyright P.H.Welch 42

if (channelEmpty) { // first to rendezvous

} else { // second to rendezvous

}
return channelHold;

channelEmpty = false;
wait (); // wait for the writer
notify (); // schedule writer to finish

public synchronized Object read ()
throws InterruptedException {

}

The JCSP One2OneChannelThe JCSP One2OneChannel

channelEmpty = true;
notify (); // schedule waiting writer

2-Apr-01 Copyright P.H.Welch 43

channelHold = mess;
if (channelEmpty) { // first to rendezvous

} else { // second to rendezvous

}

channelEmpty = false;
wait (); // wait for the reader

public synchronized void write (Object mess)
throws InterruptedException {

}

The JCSP One2OneChannelThe JCSP One2OneChannel

channelEmpty = true;
notify (); // schedule waiting reader
wait (); // let reader regain lock

2-Apr-01 Copyright P.H.Welch 44

Synchronised CommunicationSynchronised Communication

AA BB

THEOREM:

 For any processes A and B, the above CSP network …

c

2-Apr-01 Copyright P.H.Welch 45

Synchronised CommunicationSynchronised Communication

AjAj BjBj
MONITOR (c)

Hold (c)

Empty (c)

THEOREM (cont.):

 … is equivalent to this one!

2-Apr-01 Copyright P.H.Welch 46

Parallel IntroductionParallel Introduction

Gratuitous introduction of parallel processes can be done
anywhere. Suppose X contains a serial process including
one or more instances of P …

…; P; …; P; …

X

2-Apr-01 Copyright P.H.Welch 47

…; ping pong SKIP; …
…; ping pong SKIP; …

Parallel IntroductionParallel Introduction

ping

pongX’

Xb’= ping P;
 pong Xb’

Xb’

Then, X is equivalent to the parallel composition of
the above two processes. X’ is X with all instances
of P replaced by (ping pong SKIP) . Xb’ is a
buddy process that just performs P on its behalf.

Simple
CSP

 algebra

2-Apr-01 Copyright P.H.Welch 48

Parallel IntroductionParallel Introduction

If the process being delegated accesses
and modifies the state of X …

…; a = P(b); …; c = P(d); …

X

2-Apr-01 Copyright P.H.Welch 49

…; ping!b pong?a SKIP; …
…; ping!c pong?d SKIP; …

Parallel IntroductionParallel Introduction

ping

pongX’

Xb’= ping?x
 y = P(x);
 pong!y Xb’

Xb’

Then, ping and pong become channels through
which the state and update results are passed, as
well as retaining their synchronisation roles
between X’ and Xb’.

Simple
CSP

 algebra

2-Apr-01 Copyright P.H.Welch 50

Synchronised CommunicationSynchronised Communication

LEMMA:
 (A’ || Ab’) = A and (B’ || Bb’) = B

A’A’ Ab’ Ab’ Bb’ Bb’ B’B’c

Parallel
Introduction

2-Apr-01 Copyright P.H.Welch 51

Synchronised CommunicationSynchronised Communication

LEMMA:
 (A’ || Aj’) = Aj and (B’ || Bj’) = Bj

A’A’
MONITOR (c)

Hold (c)

Empty (c)

 Aj’ Aj’ Bj’ Bj’ B’B’

Parallel
Introduction

2-Apr-01 Copyright P.H.Welch 52

Synchronised CommunicationSynchronised Communication

LEMMA:
 The above process (that hides the internal channel c and
just provides two ping-pong interfaces) is equivalent to …

 Ab’ Ab’ Bb’ Bb’c

2-Apr-01 Copyright P.H.Welch 53

Synchronised CommunicationSynchronised Communication

MONITOR (c)

Hold (c)

Empty (c)

 Aj’ Aj’ Bj’ Bj’

LEMMA:

 … the above process (that also hides all internal channel
c and just provides two ping-pong interfaces) .

Proof by FDR

2-Apr-01 Copyright P.H.Welch 54

Summary - ISummary - I
� A CSP model for the Java monitor mechanisms

(synchronized, wait, notify, notifyAll)
has been built.

� This enables any Java threaded system to be
analysed in CSP terms - e.g. for formal verification
of freedom from deadlock/livelock.

� Confidence gained through the formal proof of
correctness of the JCSP channel implementation:
� a JCSP channel is a non-trivial monitor - the CSP model for

monitors transforms this into an even more complex system
of CSP processes and channels;

� using FDR, that system has been proven to be a refinement
of a single CSP channel and vice versa - Q.E.D.

2-Apr-01 Copyright P.H.Welch 55

Summary - IISummary - II
� Extending the model to deal with re-acquisition of a

monitor lock by a thread already holding it (easy).
� Extending the model to deal with interrupts and the

exception raised by wait() - (OK, but not so easy).
� Analysing published Java multithreaded codes and

looking for trouble!
� Verifying (hopefully) the implementation of the rest

of the JCSP primitives - especially those concerning
Alternation, where earlier undetected race hazards
were a real shake to our confidence …

2-Apr-01 Copyright P.H.Welch 56

ALTing CommunicationALTing Communication
c0A0A0

BB

c1A1A1

2-Apr-01 Copyright P.H.Welch 57

ALTing CommunicationALTing Communication

A0A0
MONITOR (c0)

Hold (c0)

Empty (c0)

BB

A1A1 MONITOR (c1)

Hold (c1)

Empty (c1)

Alt (c0)

Alt (c1)

State (alt)

Index (alt)

Selected (alt)

MONITOR (alt)

2-Apr-01 Copyright P.H.Welch 58

ALTing CommunicationALTing Communication
c0A0A0

BB

c1A1A1

2-Apr-01 Copyright P.H.Welch 59

Summary - IIISummary - III
� Using parallel introduction in the same way gives

the model checker something on which to bite.
� FDR, after working through around 48000 states,

confirms that the two networks are equivalent.
� FDR revealed the deadlock trace in the CSP

network representing the original implementation
within seconds. That deadlock had taken 2 years to
reveal itself in practice!

� This has only verified a 2-way ALT. FDR could
probably manage a 3-way one … but an n-way?

� Nevertheless, a huge confidence boost for JCSP.

2-Apr-01 Copyright P.H.Welch 60

Final Thought …Final Thought …
� A CSP model of Java’s multithreading puts it on a

solid engineering foundation.
� Systems can be analysed for refinement,

equivalence, deadlock, livelock and race hazards.

 ‘‘So, Bill, you sold your system without really knowing
whether it was deadlock-free ... and you never even
tried these standard procedures that might have
found out?!! Disclaimer notices notwithstanding,
would you say that that shows a lack of due care or
a lack of diligence towards your customer?’’

