
CSP Networking for
Java (JCSP.net)

CSP Networking for
Java (JCSP.net)

Jo Aldous (jra@dial.pipex.com)

Jon Foster (jon@jon-foster.co.uk)

Peter Welch (phw@ukc.ac.uk)

Computing Laboratory
University of Kent at Canterbury

Jo Aldous (jra@dial.pipex.com)

Jon Foster (jon@jon-foster.co.uk)

Peter Welch (phw@ukc.ac.uk)

Computing Laboratory
University of Kent at Canterbury

ICCS 2002 (Global and Collaborative Computing, 22nd. April, 2002)

30-Jan-04 Copyright P.H.Welch 2

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

… nuclear … human … astronomic ...

30-Jan-04 Copyright P.H.Welch 3

… natural design within a single JVM

JCSP enables the dynamic construction of
layered networks of communicating and
synchronising processes (CSP/occam):

30-Jan-04 Copyright P.H.Welch 4

JCSP.net enables the dynamic construction of
layered networks of communicating and
synchronising processes (CSP/occam):

… with the processes distributed over many JVMs

30-Jan-04 Copyright P.H.Welch 5

This PresentationThis Presentation
� Introduction to JCSP

� What is it?
� A few details (with examples)

� JCSP.net
� Virtual Channels
� Links and Channel Name Server
� Connections (2-way extended transactions)
� Anonymous Network Channels and Connections
� Process Farms and Chains (including Rings)
� User-Defined Brokers (and Scaleable Parallel Servers)
� Remote Process Launching
� Mobile Processes (Agents) / Channel Migration

� Summary

30-Jan-04 Copyright P.H.Welch 6

JCSP – What is it?JCSP – What is it?
� JCSP provides the Java programmer with a process

model based upon occam and CSP:
� Layered networks of encapsulated processes;
� Processes communicate using channels:

✦ One-to-One / Any-to-One / One-to-Any / Any-to-Any
✦ optional buffering (finite / overwriting / infinite)
✦ Call Channels / Connections (2-way transactions)
✦ Barriers / Buckets / CREW locks

� The current library offers this only within a single
JVM (which may, of course, be multi-processor).

30-Jan-04 Copyright P.H.Welch 7

� JCSP provides and implements an API for Java
giving interfaces and classes corresponding to the
fundamental operators and processes of CSP (as
well as some higher-level mechanisms built on top
of those CSP primitives).

� A process is an object of a class implementing:

JCSP – a few detailsJCSP – a few details

 interface CSProcess {
 public void run();
 }

 interface CSProcess {
 public void run();
 }

� The behaviour of the process is determined by the
body of its run() method.

30-Jan-04 Copyright P.H.Welch 8

� Channels are accessed via two interfaces:

JCSP – a few detailsJCSP – a few details

interface ChannelInput {
 public Object read ();
}

interface ChannelOutput {
 public void write (Object obj);
}

interface ChannelInput {
 public Object read ();
}

interface ChannelOutput {
 public void write (Object obj);
}

� The Parallel class provides the CSP parallel
operator.

� The Alternative class provides occam-like ALTing
(which is a mix of CSP external / internal choice).

� CSTimer provides timeout guards for Alternatives.

30-Jan-04 Copyright P.H.Welch 9

class Example implements CSProcess {

}

 ... public constructors
 ... public accessors(gets)/mutators(sets)
 (only to be used when not running)

 ... private support methods (part of a run)
 ... public void run() (process starts here)

JCSP Process StructureJCSP Process Structure

 ... private shared synchronisation objects
 (channels etc.)
 ... private state information

30-Jan-04 Copyright P.H.Welch 10

class SuccInt implements CSProcess {

}

 public SuccInt (ChannelInputInt in,
 ChannelOutputInt out) {
 this.in = in;
 this.out = out;
 }

 public void run () {
 while (true) {
 int n = in.read ();
 out.write (n + 1);
 }
 }

 private final ChannelInputInt in;
 private final ChannelOutputInt out;

in outSuccIntSuccInt

This is a
simple
process that
adds one to
each integer
flowing
through it.

30-Jan-04 Copyright P.H.Welch 11

Final Stage ActuatorFinal Stage Actuator

� Sample(t): every t time units, output the latest input (or
null if none); the value of t may be reset;

� Monitor(m): copy input to output counting nulls - if m
nulls occur in a row, send panic message and terminate;

� Decide(n): copy non-null input to output and remember
last n outputs - convert nulls to a best guess depending on
those last n outputs.

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

30-Jan-04 Copyright P.H.Welch 12

class Actuator implements CSProcess {

}

 ... private state (t, m and n)

 ... public void run ()

 ... private interface channels
 (in, reset, panic and out)

 ... public constructor
 (assign parameters t, m, n, in, reset,
 panic and out to the above fields)

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

30-Jan-04 Copyright P.H.Welch 13

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

public void run ()

}

 new CSProcess[] {

 }

 new Parallel (

).run ();

 final One2OneChannel a = new One2OneChannel ();
 final One2OneChannel b = new One2OneChannel ();

a b

 new Sample (t, in, reset, a),
 new Monitor (m, a, panic, b),
 new Decide (n, b, out)

30-Jan-04 Copyright P.H.Welch 14

ALTing Between EventsALTing Between Events

event

ButtonButton

� Button is a (GUI widget) process that outputs a
ping whenever it’s clicked.

� FreezeControl controls a data-stream flowing
from its in to out channels. Clicking the Button
freezes the data-stream - clicking again resumes it.

outin FreezeControlFreezeControl

30-Jan-04 Copyright P.H.Welch 15

while (true) {

 switch (alt.priSelect ()) {

 case EVENT:

 event.read ();

 event.read ();

 break;

 case IN:

 out.write (in.read ());

 break;

 }

}

while (true) {

 switch (alt.priSelect ()) {

 case EVENT:

 event.read ();

 event.read ();

 break;

 case IN:

 out.write (in.read ());

 break;

 }

}

No SPIN

ALTing Between EventsALTing Between Events

final Alternative alt =

 new Alternative (

 new Guard[] {event, in};

);

final int EVENT = 0, IN = 1;

final Alternative alt =

 new Alternative (

 new Guard[] {event, in};

);

final int EVENT = 0, IN = 1;

outin

event

FreezeControlFreezeControl

30-Jan-04 Copyright P.H.Welch 16

ALTing Between EventsALTing Between Events

� The slider (GUI widget) process outputs an integer
(0..100) whenever its slider-key is moved.

event

� SpeedControl controls the speed of a data-stream
flowing from its in to out channels. Moving the
slider-key changes that speed - from frozen (0) to
some defined maximum (100).

outin
SpeedControlSpeedControl

30-Jan-04 Copyright P.H.Welch 17

while (true) {

 switch (alt.priSelect ()) {

 case EVENT:

 int position = event.read ();

 while (position == 0) {

 position = event.read ();

 }

 speed = (position*maxSpd)/maxPos

 interval = 1000/speed; // ms

 timeout = tim.read ();

 // fall through

 case TIM:

 timeout += interval;

 tim.setAlarm (timeout);

 out.write (in.read ());

 break;

 }

}

while (true) {

 switch (alt.priSelect ()) {

 case EVENT:

 int position = event.read ();

 while (position == 0) {

 position = event.read ();

 }

 speed = (position*maxSpd)/maxPos

 interval = 1000/speed; // ms

 timeout = tim.read ();

 // fall through

 case TIM:

 timeout += interval;

 tim.setAlarm (timeout);

 out.write (in.read ());

 break;

 }

}

out
SpeedControlSpeedControlin

event

No SPIN

ALTing
Between
Events
ALTing

Between
Events

final CSTimer tim =

 new CSTimer ();

final Alternative alt =

 new Alternative (

 new Guard[] {event, tim};

);

final int EVENT = 0, TIM = 1;

final CSTimer tim =

 new CSTimer ();

final Alternative alt =

 new Alternative (

 new Guard[] {event, tim};

);

final int EVENT = 0, TIM = 1;

30-Jan-04 Copyright P.H.Welch 18

Distributed JCSPDistributed JCSP
� Want to use the same model for concurrent

processes whether or not they are on the same
machine:

30-Jan-04 Copyright P.H.Welch 19

Distributed JCSPDistributed JCSP
� Want to use the same model for concurrent

processes whether or not they are on the same
machine:

� Processes on different processing nodes
communicate via virtual channels.

NETWORK

30-Jan-04 Copyright P.H.Welch 20

Logical NetworkLogical Network
� Suppose a system contains processes A, B, C, D, E

and F, communicating as shown below.

A D

EB

C F

� There may be other processes and communication
channels (but they are not relevant here).

� Suppose we want to distribute these processes
over two processors …

30-Jan-04 Copyright P.H.Welch 21

Physical NetworkPhysical Network
� Suppose we want to distribute these processes

over two processors (P and Q, say) …
� We could set up separate network links …

P Q

A D

EB

C F

� Or, since links may be a scarce resource, we could
multiplex over a shared link …

30-Jan-04 Copyright P.H.Welch 22

Physical NetworkPhysical Network
� Suppose we want to distribute these processes

over two processors (P and Q, say) …
� We could set up separate network links …

P Q

A D

EB

C F

� Or, since links may be a scarce resource, we could
multiplex over a shared link …

30-Jan-04 Copyright P.H.Welch 23

JCSP LinksJCSP Links
� A connection between two processing nodes

(JVMs in the context of JCSP) is called a link.
� Multiple channels between two nodes may use the

same link – data is multiplexed in both directions.
� Links can ride on any network infrastructure

(TCP/IP, Firewire, 1355, …).

P Q

A D

EB

C F
link

30-Jan-04 Copyright P.H.Welch 24

A
Tx

D

E

C

B

F

Rx

Rx

Tx

link

NETWORK (any protocol)

� Each end of a (e.g. TCP/IP) network channel has a
network address (e.g. <IP-address, port-number>)
and JCSP virtual-channel-number (see below).

42

43

99

98

97

44

� JCSP uses the channel-numbers to multiplex and
de-multiplex data and acknowledgements.

JCSP LinksJCSP Links

� The JCSP.net programmer sees none of this.

30-Jan-04 Copyright P.H.Welch 25

 ! 42

 ! 43

 ?

B

A

C
99

98

97

 Rx 1 Rx 2 Tx 1 Tx 2
JCSP

Crossbar
JCSP

Crossbar

30-Jan-04 Copyright P.H.Welch 26

� Each end of a (e.g. TCP/IP) network channel has a
network address (e.g. <IP-address, port-number>)
and JCSP virtual-channel-number (see below).

JCSP LinksJCSP Links

A
Tx

D

E

C

B

F

Rx

Rx

Tx

link

NETWORK (any protocol)

42

43

99

98

97

44

� JCSP uses the channel-numbers to multiplex and
de-multiplex data and acknowledgements.

� The JCSP.net programmer sees none of this.

30-Jan-04 Copyright P.H.Welch 27

JCSP NetworksJCSP Networks
� The JCSP.net programmer just sees this.

A D

EB

C F

� Channel synchronisation semantics for network
channels are exactly the same as for internal ones.

� Buffered network channels can be streamed - i.e.
network acks can be saved through windowing.

P Q

30-Jan-04 Copyright P.H.Welch 28

JCSP NetworksJCSP Networks
� However, there is one important semantic difference

between a network channel and a local channel.

A D

EB

C F

� Over local channels, objects are passed by
reference (which leads to race hazards if careless).

� Over network channels, objects are passed by
copying (currently, using Java serialization).

P Q

30-Jan-04 Copyright P.H.Welch 29

� That semantic difference will not impact correctly
designed JCSP systems (i.e. those free from race
hazards).

JCSP NetworksJCSP Networks

Process B still sees its
external channels as
ChannelInput /
ChannelOutput

� One other caveat - currently, only Serializable
objects are copied over network channels - sorry!

� With that caveat, JCSP processes are blind as to
whether they are connected to local or network
channels.

B

30-Jan-04 Copyright P.H.Welch 30

Establishing Network ChannelsEstablishing Network Channels
� Network channels may be connected by the JCSP

Channel Name Server (CNS).
� Channel read ends register names with the CNS.

NETWORK

QP

CNS
???

“foo”,Q,42

I want to receive
on channel “foo”

42

“foo”

30-Jan-04 Copyright P.H.Welch 31

Establishing Network ChannelsEstablishing Network Channels
� Network channels may be connected by the JCSP

Channel Name Server (CNS).
� Channel read ends register names with the CNS.
� Channel write ends ask CNS about names.

CNS
“foo”,Q,42

NETWORK

QP
I want to send on
a channel “foo”

???

30-Jan-04 Copyright P.H.Welch 32

Establishing Network ChannelsEstablishing Network Channels
� Network channels may be connected by the JCSP

Channel Name Server (CNS).
� Channel read ends register names with the CNS.
� Channel write ends ask CNS about names.

NETWORK

QP

CNS
“foo”,Q,42

“foo”

And I’ll listen!

Okay I’ll talk!

30-Jan-04 Copyright P.H.Welch 33

Using Distributed JCSPUsing Distributed JCSP

“ukc.foo”

CMU UKC

Producer Consumer

� On each machine, do this once:
Node.getInstance().init(); // use default CNS

find
� On the CMU machine:

One2NetChannel out = new One2NetChannel ("ukc.foo");

new Producer (out);

out

30-Jan-04 Copyright P.H.Welch 34

register

Using Distributed JCSPUsing Distributed JCSP

“ukc.foo”

CMU UKC

Producer Consumer

� On each machine, do this once:
Node.getInstance().init(); // use default CNS

� On the UKC machine:
Net2OneChannel in = new Net2OneChannel ("ukc.foo");

new Consumer (in);

in

30-Jan-04 Copyright P.H.Welch 35

Using Distributed JCSPUsing Distributed JCSP
One2NetChannel out = new One2NetChannel ("ukc.foo");

Named network output channel
construction blocks until the name is

registered by a reader

Net2OneChannel in = new Net2OneChannel ("ukc.foo");

Named network input channel
construction registers the name with the

CNS (will fail if already registered)

30-Jan-04 Copyright P.H.Welch 36

“ukc.foo”

CMU UKC

Producer Consumer

Using Distributed JCSPUsing Distributed JCSP
� User processes just have to agree on (or find out)

names for the channels they will use to communicate.
� User processes do not have to know where each

other is located (e.g. IP-address / port-number /
virtual-channel-number).

30-Jan-04 Copyright P.H.Welch 37

“ukc.foo”

Network Channels are Any-1Network Channels are Any-1

CMU

Producer

UCB

Producer

UKCConsumer

i.e. there can
be any number
of networked

writers

30-Jan-04 Copyright P.H.Welch 38

Net-Any ChannelsNet-Any Channels

UKC

Consumer1

Consumer2

Consumer3

“ukc.foo”

Net2AnyChannel in =

 new Net2AnyChannel (

 "ukc.foo"

);

new Parallel (

 new CSProcess[] {

 new Consumer1 (in),

 new Consumer2 (in),

 new Consumer2 (in)

 }

).run ();

in

i.e. within a node,
there can be any

number of readers

30-Jan-04 Copyright P.H.Welch 39

Any-Net ChannelsAny-Net Channels

CMU

Producer1

Producer2

Producer3

“ukc.foo”

Any2NetChannel out =

 new Any2NetChannel (

 "ukc.foo"

);

new Parallel (

 new CSProcess[] {

 new Producer1 (out),

 new Producer2 (out),

 new Producer3 (out)

 }

).run ();

out

i.e. within a node,
there can be any
number of writers

30-Jan-04 Copyright P.H.Welch 40

“ukc.bar”

CMU UKC

Client Server

Connections (two-way channels)Connections (two-way channels)

� On the UKC machine:
Net2OneConnection in = new Net2OneConnection ("ukc.bar");

new Server (in);

in

� On the CMU machine:
One2NetConnection out = new One2NetConnection ("ukc.bar");

new Client (out);

out

find

register

30-Jan-04 Copyright P.H.Welch 41

Connections (two-way channels)Connections (two-way channels)

� Connection channels have client and server
interfaces (rather than writer and reader ones):

interface ConnectionClient {

 public void request (Object o); // write

 public Object reply (); // read

 public boolean stillOPen (); // check?

}

30-Jan-04 Copyright P.H.Welch 42

Connections (two-way channels)Connections (two-way channels)

� Connection channels have client and server
interfaces (rather than writer and reader ones):

interface ConnectionServer {

 public Object request (); // read

 public void reply (Object o); // write & close

 public void reply (// write &

 Object o, boolean keepOpen // maybe close

);

}

30-Jan-04 Copyright P.H.Welch 43

data = in.request ();

... work out answer

in.reply (answer, true);

followUp = in.request ();

... more ping/pong

in.reply (answer);

out.request (data);

answer = out.reply ();

... work out followUp

out.request (followUp);

... more ping/pong

answer = out.reply ();

Connections (extended rendezvous)Connections (extended rendezvous)

“ukc.bar”

CMU UKC

Client Server
inout

30-Jan-04 Copyright P.H.Welch 44

CMU

Client

UCB

Client

Network Connections are Any-1Network Connections are Any-1

“ukc.bar”
UKCServer

i.e. there can
be any number
of networked

clients

30-Jan-04 Copyright P.H.Welch 45

� Connections allow extended two-way client–server
communication (from any number of clients).

� Without them, two-way network communications
would be tedious to set up. The server would have
to construct two named (input) channels: one for
the opening messages and the other for follow-ups;
the clients would have to create individual named
(input) channels for replies. The server would
have to find all its client reply channels (outputs).

� With them, only one name is needed. The server
constructs a (server) connection and each client
constructs a (client) connection - with same name.

Connections (two-way channels)Connections (two-way channels)

30-Jan-04 Copyright P.H.Welch 46

� A connection is not open until the first reply has
been received (to the first request).

� Once a connection is opened, only the client that
opened it can interact with the server until the
connection is closed.

� Following an request, a client must commit to a
reply (i.e. no intervening synchronisations) .

� A client may have several servers open at the same
time - but only if they are opened in a sequence
honoured by all clients … else deadlock will occur!

� Connections allow extended two-way client–server
communication (from any number of clients).

Connections (extended rendezvous)Connections (extended rendezvous)

30-Jan-04 Copyright P.H.Welch 47

� The connection protocol:

� For completeness, JCSP provides connection
channels for local networks (One2OneConnection,
Any2OneConnection, etc.).

� Connections allow extended two-way client–server
communication (from any number of clients).

request (reply+ request)* reply

is self-synchronising across the network - no
extra acknowledgements are needed.

Connections (extended rendezvous)Connections (extended rendezvous)

30-Jan-04 Copyright P.H.Welch 48

Net2AnyConnection in =

 new Net2AnyConnection (

 "ukc.bar"

);

new Parallel (

 new CSProcess[] {

 new Server1 (in),

 new Server2 (in),

 new Server2 (in)

 }

).run ();

in

Net-Any ConnectionsNet-Any Connections

UKC

Server1

Server2

Server3

“ukc.bar”

i.e. within a node,
there can be any

number of servers

30-Jan-04 Copyright P.H.Welch 49

Any2NetConnection out =

 new Any2NetConnection (

 "ukc.bar"

);

new Parallel (

 new CSProcess[] {

 new Client1 (out),

 new Client2 (out),

 new Client3 (out)

 }

).run ();

out

Any-Net ConnectionsAny-Net Connections

i.e. within a node,
there can be any
number of clients

Client1

Client2

Client3

“ukc.bar”

CMU

30-Jan-04 Copyright P.H.Welch 50

UKC

Server

Net-One Connections are ALTableNet-One Connections are ALTable

� The Server process can ALT over its 3 networked
server connections, its networked input channel and
its local input channel.

Freeze

“ukc.bar0” in0

“ukc.bar1” in1

“ukc.bar2” in2

“ukc.foo” in

30-Jan-04 Copyright P.H.Welch 51

Anonymous ChannelsAnonymous Channels
� Network channels may be connected by the JCSP

Channel Name Server (CNS) …
� … but they don’t have to be!

� A network channel can be created (always by the
inputter) without registering a name with the CNS:

� Remote processes cannot, of course, find it for
themselves …

Net2OneChannel in = new Net2OneChannel (); // no name!

but you can tell your friends …

30-Jan-04 Copyright P.H.Welch 52

Anonymous ChannelsAnonymous Channels
� Location information (<IP-address, port-number,

virtual-channel-number>) is held within the
constructed network channel. This is the data
registered with the CNS - if we had given it a name.

� The information can be distributed using existing
(network) channels to those you trust:

Net2OneChannel in = new Net2OneChannel (); // no name!

NetChannelLocation inLocation = in.getLocation ();

toMyFriend.write (inLocation);

// remember your friend may distribute it further ...

� Extract that information:

30-Jan-04 Copyright P.H.Welch 53

Anonymous ChannelsAnonymous Channels
� Your friend inputs the location information (of your

unregistered channel) via an existing channel:

� And can then construct her end of the channel:

� The One2NetChannel constructor has been given
the information it would have got from the CNS
(had it been given a registered name to resolve).

� You and your friends can now communicate over
the unregistered channel.

NetChannelLocation outLocation =

 (NetChannelLocation) fromMyFriend.read ();

One2NetChannel out = new One2NetChannel (outLocation);

30-Jan-04 Copyright P.H.Welch 54

UKC

Server1

Server2

Server3

Anonymous ConnectionsAnonymous Connections
� These work in exactly the same way as anonymous

channels … and are possibly more useful …

“ukc.bar”

CMU

Client

UCB

Client

30-Jan-04 Copyright P.H.Welch 55

Anonymous ConnectionsAnonymous Connections
� Right now, only one client and one server can be

doing business at a time over the shared connection.

UKC

Server1

Server2

Server3

“ukc.bar”

CMU

Client

UCB

Client

30-Jan-04 Copyright P.H.Welch 56

Anonymous ConnectionsAnonymous Connections
� But that business could be: “gimme a connection”

(client) & “OK - here’s a private one” (server) …

UKC

Server1

Server2

Server3

“ukc.bar”

CMU

Client

UCB

Client

30-Jan-04 Copyright P.H.Welch 57

Anonymous ConnectionsAnonymous Connections
� So, the registered connection is only used to let a

client and server find each other …

UKC

Server1

Server2

Server3

“ukc.bar”

CMU

Client

UCB

Client

30-Jan-04 Copyright P.H.Welch 58

Anonymous ConnectionsAnonymous Connections
� The real client-server work is now conducted over

dedicated (unregistered) connections - in parallel.

UKC

Server1

Server2

Server3

“ukc.bar”

CMU

Client

UCB

Client

30-Jan-04 Copyright P.H.Welch 59

Anonymous ConnectionsAnonymous Connections
� After the client-server transaction has finished the

server deletes the special connections.

UKC

Server1

Server2

Server3

“ukc.bar”

CMU

Client

UCB

Client

30-Jan-04 Copyright P.H.Welch 60

s roll-your-own broker
If you want a

matching service
more sophisticated

than the given CNS,
simply build what you
want as the server for
your CNS registered
connection. Anyone
finding that can use

your new broker.

“jcsp://broker.ukc.ac.uk”

CNS
registered

User-Defined Brokers

30-Jan-04 Copyright P.H.Welch 61

CNS
registered

for example ... UKC

upstream
broker

downstream
brokers

Broker1

s

Broker2

s

s

Manager

c c

“jcsp://broker.ukc.ac.uk” s

cc

ss

User-Defined Brokers

30-Jan-04 Copyright P.H.Welch 62

CNS
registered

UKC

s

Manager

c c

“jcsp://broker.ukc.ac.uk” s

Broker1

s

Broker2

s

CREW-shared
data

upstream
broker

downstream
brokers

cc

ss

User-Defined Brokers

30-Jan-04 Copyright P.H.Welch 63

CNS
registered

“jcsp://broker.ukc.ac.uk” s

upstream
broker

downstream
brokers

cc

ss

UKC

broker rolled

One node of a
continuously

changing
network of
brokers.

User-Defined Brokers

30-Jan-04 Copyright P.H.Welch 64

myrtle

“jcsp://farmer.myrtle.ukc.ac.uk”

“jcsp://harvester.myrtle.ukc.ac.uk”
Harvester

Farmer

...

Process Farming

30-Jan-04 Copyright P.H.Welch 65

...

final int MY_ID = ... ;

final int N_NODES = ... ;

final int NEXT_ID = ((MY_ID + 1) % N_NODES;

OK – so long as each worker knows the
length of the chain and its place in it.

OK – so long as each worker knows the
length of the chain and its place in it.

new WorkProcess (MY_ID, N_NODES, in, out).run ();

Net2OneChannel in = new Net2OneChannel ("node-" + MY_ID);

Net2OneChannel out = new Net2OneChannel ("node-" + NEXT_ID);

Process Chaining

30-Jan-04 Copyright P.H.Welch 66

myrtle

Chainer

“jcsp://chainer.myrtle.ukc.ac.uk”

A volunteer worker won't know this! But it can make its
own network input channel anonymously and send its

location to someone who does …

A volunteer worker won't know this! But it can make its
own network input channel anonymously and send its

location to someone who does …

...

Process Chaining

30-Jan-04 Copyright P.H.Welch 67

...
myrtle

Chainer2

“jcsp://chainer2.myrtle.ukc.ac.uk”

It’s slightly easier if each node makes two network input
channels – so that its control line is different from its data

line from the chain …

It’s slightly easier if each node makes two network input
channels – so that its control line is different from its data

line from the chain …

Process Chaining

30-Jan-04 Copyright P.H.Welch 68

new WorkProcess (MY_ID, N_NODES, in, out).run ();

Ring worker codeRing worker code
One2NetChannel toChainer =

 = new One2NetChannel ("jcsp://chainer.myrtle.ukc.ac.uk");

Net2OneChannel in = new Net2OneChannel ();

NetChannelLocation inLocation = in.getLocation ();

toChainer.write (inLocation);

NetChannelLocation outLocation = (NetChannelLocation) in.read ();

One2NetChannel out = new One2NetChannel (outLocation);

int[] info = (int[]) in.read (); // wait for ring sync

final int MY_ID = info[0]; // (optional)

final int N_NODES = info[1]; // (optional)

info[0]++;

if (info[0] < info[1]) out.write (info); // pass on ring sync

30-Jan-04 Copyright P.H.Welch 69

final int N_NODES = ... ;
Chainer (ringer) codeChainer (ringer) code

Net2OneChannel fromWorkers =

 = new Net2OneChannel ("jcsp://chainer.myrtle.ukc.ac.uk");

NetChannelLocation lastL =

 (NetChannelLocation) fromWorkers (read);

One2NetChannel lastC = new One2NetChannel (lastL);

for (int nWorkers = 1; nWorkers < N_NODES; nWorkers++) {

}

lastC.write (lastL); // completes the network ring

lastC.write (new int[] {0, N_NODES}); // final ring synchronisation

 NetChannelLocation nextL =

 (NetChannelLocation) fromWorkers (read);

 One2NetChannel nextC = new One2NetChannel (nextL);

 nextC.write (lastL);

 lastL = nextL;

30-Jan-04 Copyright P.H.Welch 70

...
myrtle

Chainer2

“jcsp://chainer2.myrtle.ukc.ac.uk”

Process Chaining

It’s slightly easier if each node makes two network input
channels – so that its control line is different from its data

line from the chain …

It’s slightly easier if each node makes two network input
channels – so that its control line is different from its data

line from the chain …

30-Jan-04 Copyright P.H.Welch 71

Process Chaining

Process Farming

Example ApplicationsExample Applications

All ‘embarassingly parallel’ ones, ray
tracing, Mandelbrot, travelling salesman
(needs dynamic control though), …

All space-division system modelling, n-body
simulations, SORs, cellular automata, …
(some need bi-directional chains/rings)

30-Jan-04 Copyright P.H.Welch 72

where

and

= black

= red

SOR – red/black checker pointingSOR – red/black checker pointing

30-Jan-04 Copyright P.H.Welch 73

...

This needs a two-way chain to exchange
information on boundary regions being
looked after by each worker …

SOR – red/black checker pointingSOR – red/black checker pointing

30-Jan-04 Copyright P.H.Welch 74

Also, a global sum-of-changes (found by each node)
has to be computed each cycle to resolve halting
criteria. This is speeded-up by connecting the nodes
into a tree (so that adds and communications can take
place in parallel).

SOR – red/black checker pointingSOR – red/black checker pointing

30-Jan-04 Copyright P.H.Welch 75

Basically a process farm …

myrtle

Master

...

“jcsp://tsp.myrtle.ukc.ac.uk”

 but when better lower
bounds arrive, they must be communicated to all
concerned workers.

Travelling Salesman ProblemTravelling Salesman Problem

30-Jan-04 Copyright P.H.Welch 76

0

8

16

24

32

2 4 8 16 32
CPUs

Sp
ee

du
p

mpiJava
Tspaces
JCSP

The n-Body benchmark (n = 10000)

30-Jan-04 Copyright P.H.Welch 77

0

8

16

24

32

2 4 8 16 32
CPUs

Sp
ee

du
p

mpiJava
Tspaces
JCSP

The SOR benchmark (7000 x 7000 matrix)

30-Jan-04 Copyright P.H.Welch 78

0

8

16

24

32

2 4 8 16 32
CPUs

Sp
ee

du
p

mpiJava
Tspaces
JCSP

The Travelling Salesman Problem (15 cities)

30-Jan-04 Copyright P.H.Welch 79

myrtle

Master

...

“jcsp://tsp.myrtle.ukc.ac.uk”

Currently, workers report newly discovered shorter paths back to
the master (who maintains the global shortest). If master receives
a better one, it broadcasts back to workers.

Travelling Salesman ProblemTravelling Salesman Problem

30-Jan-04 Copyright P.H.Welch 80

myrtle

Master

...

“jcsp://tsp.myrtle.ukc.ac.uk”

Massive swamping of network links in the early stages.
Also, generation of garbage currently provokes garbage collector
– and clobbers cache on dual-processor nodes.

Travelling Salesman ProblemTravelling Salesman Problem

30-Jan-04 Copyright P.H.Welch 81

Eliminate the broadcasting – control against swamping – stop
generating garbage … ���� ���� ����

myrtle

Master

“jcsp://tsp.myrtle.ukc.ac.uk”

...

Travelling Salesman ProblemTravelling Salesman Problem

30-Jan-04 Copyright P.H.Welch 82

Global minimum maintained in ring (made with one-place
overwriting channel buffers) … easy!!!

myrtle

Master

“jcsp://tsp.myrtle.ukc.ac.uk”

...

Travelling Salesman ProblemTravelling Salesman Problem

30-Jan-04 Copyright P.H.Welch 83

Networked Class LoadingNetworked Class Loading
� By default, objects sent across a networked

channel (or connection) use Java serialization.
� This means the receiving JVM is expected to be

able to load (or already have loaded) the class files
needed for its received objects.

� However, JCSP networked channels/connections
can be set to communicate those class files
automatically (if the receiver can’t find them locally).

� Machine nodes cache those class files locally in
case they themselves need to forward them.

30-Jan-04 Copyright P.H.Welch 84

Link Process Link ProcessNetwork

ObjectOutputStream ObjectInputStream

Serialization
Write Filter Deserialization

Read Filter

User Process Channel Process

1. Message
Transmitted

2. Replaced By
SerializedMessage

3. SerializedMessage
Passes Through

Buffer

4. Origianl Message
Extracted

Deserialization
Read Filter Serialization

Write Filter

5. Acknowledgment
Transmitted

6. Acknowledgment
Passes Through
FIlter Unchanged

ObjectOutputStreamObjectInputStream

7. Acknowledgment
Received by

AcknowledgementsBuffer

8. Acknowledgment
Received User Process

Networked Class LoadingNetworked Class Loading

30-Jan-04 Copyright P.H.Welch 85

Remote Process LaunchingRemote Process Launching
� Example: UKC offers a simple worker farm …

UKC

Worker

Worker

Worker

“ukc.workers”

CMU

Client

UCB

Client

� Clients grab available workers …

30-Jan-04 Copyright P.H.Welch 86

Remote Process LaunchingRemote Process Launching

Worker

Client

Work work = new Work (); // CSProcess

out.request (work);

work = (Work) out.reply ();

client
code

CSProcess work = (CSProcess) in.request ();

work.run ();

in.reply (work);

worker
code

Work class file
automatically
downloaded

30-Jan-04 Copyright P.H.Welch 87

“ukc.agent.007”

Mobile Processes (Agents)Mobile Processes (Agents)

a b

c

in

UKC

30-Jan-04 Copyright P.H.Welch 88

“ukc.agent.007”

Mobile Processes (Agents)Mobile Processes (Agents)

a b

c

in

UKC

30-Jan-04 Copyright P.H.Welch 89

“ukc.agent.007”

Mobile Processes (Agents)Mobile Processes (Agents)

a b

c

in

UKC

30-Jan-04 Copyright P.H.Welch 90

while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

Mobile Processes (Agents)Mobile Processes (Agents)

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 91

while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

Mobile Processes (Agents)Mobile Processes (Agents)

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 92

while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

Mobile Processes (Agents)Mobile Processes (Agents)

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 93

while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

Mobile Processes (Agents)Mobile Processes (Agents)

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 94

while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

Mobile Processes (Agents)Mobile Processes (Agents)

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 95

Mobile Processes (Agents)Mobile Processes (Agents)
while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 96

Mobile Processes (Agents)Mobile Processes (Agents)
while (running) {

 Bond james = (Bond) in.read ();

 james.plugin (a, b, c);

 james.run ();

 NetChannelLocation escapeRoute =

 james.getNextLocation ();

 One2NetChannel escape =

 new One2NetChannel (escapeRoute);

 running = james.getNuke ();

 escape.write (james);

 escape.disconnect ();

}

local 007
controller

a b

c

in

30-Jan-04 Copyright P.H.Welch 97

Mobile Network ChannelsMobile Network Channels
� Channel ends may be moved around a network.
� This is potentially dangerous as we are changing

network topology, which may introduce deadlock
- considerable care must be taken.

� There is nothing special to do to migrate channel
write-ends. Network channels are naturally any-
one. All that is needed is to communicate the
CNS channel name (or NetChannelLocation) to
the new writer process.

� Migrating channel read-ends securely requires a
special protocol …

30-Jan-04 Copyright P.H.Welch 98

Mobile Network ChannelsMobile Network Channels
� Consider a process, x, on node Q, currently

servicing the CNS-registered channel “foo”.
� It wants to pass on this responsibility to a (willing)

process, y, in node R, with whom it is in contact.

Q

x
“foo”

R

y

P1P0

30-Jan-04 Copyright P.H.Welch 99

Mobile Network ChannelsMobile Network Channels
� Processes writing to “foo” are to be unaware of this

channel migration.

Q

x
“foo”

R

y

P1P0

“foo”

30-Jan-04 Copyright P.H.Welch 100

Q

x

Mobile Network ChannelsMobile Network Channels

“foo”
R

y

P1P0

� Processes writing to “foo” are to be unaware of this
channel migration.

30-Jan-04 Copyright P.H.Welch 101
NETWORK

“foo”
Q

x

R

y

P1

Mobile Network ChannelsMobile Network Channels
� Let’s get back to the initial state (“foo” being

serviced by x on node Q).

CNS
“foo”,Q,42

� Let’s show the network … and the CNS …

42

30-Jan-04 Copyright P.H.Welch 102

“foo”
Q

x

R

y

P1

NETWORK

CNS
“foo”,Q,42

42

Mobile Network ChannelsMobile Network Channels
� First, process x freezes the name “foo” on the

CNS …

???

“foo”

30-Jan-04 Copyright P.H.Welch 103

Q

x

R

y

P1

NETWORK

CNS
“foo”,Q,42

42

Mobile Network ChannelsMobile Network Channels
� First, process x freezes the name “foo” on the

CNS …

“foo”

� The CNS returns an unfreeze key to process X …

30-Jan-04 Copyright P.H.Welch 104
NETWORK

Mobile Network ChannelsMobile Network Channels
� The CNS no longer resolves “foo” for new writers

and also disallows new registrations of the name.

Q

x

R

y

P1

NETWORK

CNS
“foo”,Q,42“foo”

42

� The network channel is deleted from processor Q.

30-Jan-04 Copyright P.H.Welch 105

P1CNS
“foo”

Q

x

R

y

NETWORK

Mobile Network ChannelsMobile Network Channels
� The network channel is deleted from processor Q.

� Any pending and future messages for that channel
(42) on Q are bounced (NetChannelIndexException).

30-Jan-04 Copyright P.H.Welch 106

P1CNS
“foo”

Q

x

R

y

NETWORK

Mobile Network ChannelsMobile Network Channels
� The write() method at P1 handles that bounce

by appeal to the CNS for the new location of “foo”.
� This will not succeed until …

30-Jan-04 Copyright P.H.Welch 107

P1CNS
“foo”

Q

x

R

y

NETWORK

Mobile Network ChannelsMobile Network Channels
� … process x (on node Q) passes on the channel

name (“foo”) and CNS unfreeze key …

30-Jan-04 Copyright P.H.Welch 108

P1CNS
“foo”

Q

x

R

y

NETWORK

Mobile Network ChannelsMobile Network Channels
� … process x (on node Q) passes on the channel

name (“foo”) and CNS unfreeze key …
� … and the receiver (process y on R) unlocks the

name “foo” (using the key) and re-registers it.

???

99
“foo”,R,99

30-Jan-04 Copyright P.H.Welch 109

P1CNS
“foo”

Q

x

R

y“foo”,R,99

NETWORK

Mobile Network ChannelsMobile Network Channels
� … and the receiver (process y on R) unlocks the

name “foo” (using the key) and re-registers it.
� The write() method at P1 now hears back from

the CNS the new location of “foo” …

“foo”

30-Jan-04 Copyright P.H.Welch 110

Mobile Network ChannelsMobile Network Channels
� … and resends the message that was bounced.

NETWORK

� The writing process(es) at P1 (and elsewhere) are
unaware of the migration.

P1CNS
“foo”,R,99

“foo”

Q

x

R

y

30-Jan-04 Copyright P.H.Welch 111

Mobile Network ChannelsMobile Network Channels
� … and resends the message that was bounced.
� The writing process(es) at P1 (and elsewhere) are

unaware of the migration.

Q

x

R

y

P1P0

“foo”

30-Jan-04 Copyright P.H.Welch 112

Mobile Network ConnectionsMobile Network Connections
� Connection ends may be moved around a network.
� This is potentially dangerous as we are changing

network topology, which may introduce deadlock -
considerable care must be taken.

� There is nothing special to do to migrate connection
client-ends. Network connections are naturally
any-one. All that is needed is to communicate the
CNS connection name (or NetConnectionLocation)
to the new writer process.

� Migrating server-ends safely requires a special
protocol … the same as for channel write-ends.

30-Jan-04 Copyright P.H.Welch 113

� JCSP.net enables virtual channel communication
between processes on separate machines (JVMs).

� Application channels/connections between
machines are set up (and taken down) dynamically.

� Channels/connections are multiplexed over links.
� Links can be developed for any network protocol

and plugged into the JCSP.net infrastructure.
� No central management – peer-to-peer connections

(bootstrapped off a basic Channel Name Server).
� Brokers for user-definable matching services are

easy to set up as ordinary application servers.

SummarySummary

30-Jan-04 Copyright P.H.Welch 114

� Processes can migrate between processors (with
classes loaded dynamically as necessary) – hence
mobile agents, worker farms, grid computation …

� JCSP.net provides exactly the same (CSP/occam)
concurrency model for networked systems as JCSP
provides within each physical node of that system.

� Network logic is independent of physical
distribution (or even whether it is distributed).

� Major emphasis on simplicity – both in setting up
application networks and in reasoning about them.

� Lot’s of fun to be had – but still some work to do.

SummarySummary

30-Jan-04 Copyright P.H.Welch 115

AcknowledgementsAcknowledgements

The application slides (71- 80 inclusive) report
joint work with Brian Vinter of the Department of
Mathematics and Computer Science, University

of Southern Denmark, Odense, Denmark -
<vinter@imada.sdu.dk>

These results are reported in: “Cluster Computing and JCSP
Networking”, B.Vinter and P.H.Welch, in ‘Communicating Process
Architectures 2002’, vol. 60 Concurrent Systems Engineering, pp.
203-222, IOS Press, Amsterdam, September 2002.

These results are reported in: “Cluster Computing and JCSP
Networking”, B.Vinter and P.H.Welch, in ‘Communicating Process
Architectures 2002’, vol. 60 Concurrent Systems Engineering, pp.
203-222, IOS Press, Amsterdam, September 2002.

30-Jan-04 Copyright P.H.Welch 116

URLsURLs

www.cs.ukc.ac.uk/projects/ofa/jcsp/

www.rt.el.utwente.nl/javapp/

www.cs.ukc.ac.uk/projects/ofa/java-threads/

www.comlab.ox.ac.uk/archive/csp.html

www.cs.ukc.ac.uk/projects/ofa/kroc/

wotug.ukc.ac.uk/

CSPCSP

JCSPJCSP

CTJCTJ

KRoCKRoC

java-threads@ukc.ac.ukjava-threads@ukc.ac.uk

WoTUGWoTUG

30-Jan-04 Copyright P.H.Welch 117

Stop PressStop Press

www.quickstone.com
JCSP.netJCSP.net

JCSP Networking EditionJCSP Networking Edition

