Process Oriented
Design for Java -
Concurrency for All

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency Design and Practice
_ (y Desig) _

Motivation and Applications

s Thesis

¢ Natural systems are robust, efficient, long-lived and
continuously evolving. We should take the hint!

¢ Look on concurrency as a core design mechanism — not
as something difficult, used only to boost performance.
= Some applications
¢ Hardware design and modelling.
¢ Static embedded systems and parallel supercomputing.

¢ Field-programmable embedded systems and dynamic
supercomputing (e.g. SETI-at-home).

¢ Dynamic distributed systems, eCommerce, operating
systems and games.

¢ Biological system and nanite modelling.

Nature IS not organised as a
single thread of control:

|

joe.eatBreakfast ();

sue.washUp O:
joe.driveToWork (); .
sue.phone (sally);

US.government.sue (bill);
sun.zap (office);

|

Nature is not bulk synchronous:

|

bill._acquire (everything);
bill.invent (everything);
bill.run (the.NET);
bill.anti (trust);

bill.invade (canada); .
UNIVERSE.SYNC ();

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

@ ... hannite ... human ... astronomic ... ﬂ

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

@ ... hannite ... human ... astronomic ... ﬂ

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

@ ... hanite ... human ... astronomic ... ﬂ

The Real World and Concurrency

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency In
the system ... it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

This tradition 1Is WRONG!

... which has (radical) implications on how we
should educate people for computer science ...

... and on how we apply what we have learnt ...

What we want from Parallelism

A powerful tool for simplifying the description of
systems.

Performance that spins out from the above, but is not
the primary focus.

A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

Multi-Pong

(=2 Muiti Pong

Left 147 Right 196

MEW GAME RELEASE]

left right .
k Multi-
scorer P n
: < 7 N A > :
- A > e
s
keycontrol
collision
detect
95959555909000000E95950:°:°29295950595950000009595959:°:09295950555950000000:59:0950:°:°59595055595900000009:0:09:°:°592959555959500000095959:°:°5929592055295900509005 Canvas
control |« > | flasher
! mouse | >
new game freeze 3 '

Good News!

The good news is that we can worry about each process
on its own. A process interacts with its environment
through its channels. It does not interact directly
with other processes.

Some processes have serial implementations - these
are just like traditional serial programs.

Some processes have parallel implementations -
networks of sub-processes (think hardware).

Our skills for serial logic sit happily alongside our
new skills for concurrency - there is no conflict.
This will scale!

Java Monitors - CONCERNS

Easy to learn - but very difficult to apply ... safely ...

Monitor methods are tightly interdependent - their
semantics compose in complex ways ... the whole skill
lies in setting up and staying in control of these complex
Interactions ...

Threads have no structure ... there are no threads within
threads ...

Big problems when it comes to scaling up complexity ...

Objects Considered Harmful

Most objects are
dead - they have
no life of their own. / s

All methods have to /
be invoked by an
external thread of
control - they have to \
be caller oriented ... count

... asomewhat curious state
property of so-called ready
object oriented design.

Objects Considered Harmful

The object is at the

mercy of any thread / s
that sees it. C
Nothing can be dONQ_

to prevent method
Invocation ...

count

. even If the object IS
not In a fit state to service
it. The object is not in
control of its life.

st /Q\

ready

Objects Considered Harmful

Each single thread of —_— v/
control snakes around |
objects in the system, "
\/
bringing them to life ” /‘ ‘ ‘

transiently as their
methods are executed.

-
D ¢
Threads cut across object

boundaries leaving

spaghetti-like trails, ‘/ |
paying no regard to the \ .‘_A J\

underlying structure.

left right .
k Multi-
scorer P n
: < 7 N A > :
- A > e
s
keycontrol
collision
detect
95959555909000000E95950:°:°29295950595950000009595959:°:09295950555950000000:59:0950:°:°59595055595900000009:0:09:°:°592959555959500000095959:°:°5929592055295900509005 Canvas
control |« > | flasher
! mouse | >
new game freeze 3 '

Java Monitors - CONCERNS

Almost all multi-threaded codes making direct use of the
Java monitor primitives that we have seen (including our
own) contained race or deadlock hazards.

Sun’s Swing classes are not thread-safe ... why not?

One of our codes contained a race hazard that did not
trip for two years. This had been in daily use, its
sources published on the web and its algorithms
presented without demur to several Java literate
audiences.

Java Monitors - CONCERNS

<java.sun.com/products/jfc/tsc/articles/threads/threadsl.html>

“If you can get away with it, avoid using threads. Threads
can be difficult to use, and they make programs harder to
debug.”

“Component developers do not have to have an in-depth
understanding of threads programming: toolkits in which
all components must fully support multithreaded access,
can be difficult to extend, particularly for developers who
are not expert at threads programming.”

Java Monitors - CONCERNS

<java.sun.com/products/jfc/tsc/articles/threads/threadsl.html>

“It Is our basic belief that extreme caution is warranted
when designing and building multi-threaded applications

. use of threads can be very deceptive ... in almost all
cases they make debugging, testing, and maintenance
vastly more difficult and sometimes impossible. Neither
the training, experience, or actual practices of most
programmers, nor the tools we have to help us, are
designed to cope with the non-determinism ... thisis
particularly true in Java ... we urge you to think twice
about using threads in cases where they are not
absolutely necessary ...”

Java Monitors - CONCERNS

No guarantee that any synchronized method will ever
be executed ... (e.g. stacking JVMSs)

Even if we had above promise (e.g. queueing JVMSs),
standard design patterns for wait() / notity() fail to

guarantee liveness (“Wot, no chickens?”)

See:

http://www.hensa.ac.uk/parallel/groups/wotug/java/discussion/3.html

http://www.nist.goV/itl/div896/emaildir/rt-j/msg00385.html

http://www. nist.qoV/itl/div896/emaildir/rt-j/msq00363.html

Java Monitors - CONCERNS

Threads yield non-determinacy (and, therefore, scheduling
sensitivity) straight away ...

No help provided to guard against race hazards ...
Overheads too high (> 30 times ?7??)
Tyranny of Magic Names (e.g for listener callbacks)
Learning curve is long ...
Scalability (both in logic and performance) ?7?
Theoretical foundations ???

¢ (deadlock / livelock / starvation analysis ??7?)

¢ (rules / tools ??77?)

Java Monitors - CONCERNS

So, Java monitors are not something with which we want to
think - certainly not on a daily basis.

But concurrency should be a powerful tool for simplifying
the description of systems ...

So it needs to be something | want to use - and am
comfortable with - on a daily basis!

Communicating Sequential
Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
Interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the

way things work.

Why CSP?

Encapsulates fundamental principles of communication.

Semantically defined in terms of structured mathematical
model.

Sufficiently expressive to enable reasoning about deadlock
and livelock.

Abstraction and refinement central to underlying theory.

Robust and commercially supported software
engineering tools exist for formal verification.

Why CSP?

CSP libraries available for Java (JCSP, CTJ).

Ultra-lightweight kernels™ have been developed yielding
sub-microsecond overheads for context switching,
process startup/shutdown, synchronized channel
communication and high-level shared-memory locks.

Easy to learn and easy to apply ...

* not yet available for JVMs (or Core JVMs!)

Why CSP?

After 5 hours teaching:
¢ exercises with 20-30 threads of control
¢ regular and irregular interactions
¢ appreciating and eliminating race hazards, deadlock, etc.

CSP is (parallel) architecture neutral:

4 message-passing
¢ shared-memory

So, what 1s CSP?

CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is pre-engineered
Into the model. We benefit from this simply by using it.

Processes myProcess

A process Is a component that encapsulates some data
structures and algorithms for manipulating that data.

Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [They are not objects.]

The algorithms are executed by the process in its own
thread (or threads) of control.

So, how does one process interact with another?

L
Processes | merocess |-

The simplest form of interaction is synchronised message-
passing along channels.

The simplest forms of channel are zero-buffered and
point-to-point (i.e. wires).

But, we can have buffered channels (blocking/overwriting).
And any-1, 1-any and any-any channels.
And structured multi-way synchronisation (e.g. barriers) ...

And high-level (e.g. CREW) shared-memory locks ...

Synchronised Communication

A - B
Cc?x

A may write on ¢ at any time, but has to wait for a read.

B may read from c at any time, but has to wait for a write.

@)HB«))\E

Synchronised Communication

A - B
Cc?x

Only when both A and B are ready can the communication
proceed over the channel c.

@)HB«))\E

‘Legoland’ Catalog

in

IdInt

idint (in, out)

in0

inl

Plusint (inO, inl, out)

Prefixint (n, in, out)

out

out

in

Succint

out

Succlint (in, out)

in

outO

——

ﬁ

outl

Delta2int (in, outO, outl)

Taillnt

out

Taillnt (in, out)

‘Legoland’ Catalog

= This Is a catalog of fine-grained processes -

think of them as pieces of hardware (e.qg.
chips). They process data (ints) flowing

through them.

They are presented not because we suggest
working at such fine levels of granularity ...

They are presented in order to build up
fluency in working with parallel logic.

‘Legoland’ Catalog

» Parallel logic should become just as easy to
manage as serial logic.

This Is not the traditionally held view ...
But that tradition is wrong.

CSP/occam people have always known this.

&

Let’s look at some CSP pseudo-code for these
processes ...

~— ldInt —*

Idint (in, out) = In?X --> out!x --> IdInt (in, out)

out

— Succlnt—

Succlnt (in, out) = In?Xx --> out!(x + 1) --> Succlnt (in, out)

inl
Note the parallel input

Plusint (in0O, 1nl, out) =
(in0?x0 --> SKIP |] inlI?x1 --> SKIP);
out!(x0O + x1) --> Plusint (in0O, Inl, out)

_ outO
— Note the parallel output
-

outl

Deltazint (in, outO, outl) =
In?x --> (outO!x --> SKIP || outl!x --> SKIP);
Deltaz2int (in, outO, outl)

n__ () ou
—{n

PrefixInt (n, 1n, out) = out!n --> IdInt (in, out)

in] out
— Tailllnt ——

Tarllnt (in, out) = In?X --> IdInt (in, out)

A Blocking FIFO Buffer

—— |dInt

c[O]

- ldInt

- 1dint

Fifolnt (n)

Fifolnt (n,

in, out) =

Idint (in, c[O0])]I
([1]l7 = 0 FOR n-2] IdInt (c[1], c[i+1])) |I
Idint (c[n-2], out)

Note: this Is such a common idiom that it
IS provided as a (channel) primitive in JCSP.

out

A Simple Equivalence

in

(Prefixint (n,

In

-
= N >

Taillnt

out

IdIint |—

IdInt

in, c) || Tailint (c, out)) \ {c}

out

(i1dint (in, c¢) || tdInt (c, out)) \ {c}

The outside world can see no difference between
these two 2-place FIFOs ...

A Simple Equivalence

in

(Prefixint (n,

In

-
= N >

Taillnt

out

IdIint |—

IdInt

in, c) || Tailint (c, out)) \ {c}

out

(i1dint (in, c¢) || tdInt (c, out)) \ {c}

The proof that they are equivalent is a two-liner from
the definitions of !, ?, ——>, \ and ||.

Good News!

The good news is that we can ‘see’ this
semantic equivalence with just one glance.

[CLAIM] CSP semantics cleanly reflects
our intuitive feel for interacting systems.

This quickly builds up confidence ...

Wot - no chickens?!!

S
S—

[

Some Simple Networks

out

Succlnt

Numbersint

Numbersint (out) = Prefixint (0, c, a) ||

Delta2int (a, out, b) ||
Succlnt (b, ©)

_

A W N B O

Note: this pushes numbers out so long as the receiver is willing to take it.

Some Simple Networks

In

Integratelnt

Integratelnt (out) = Plusint (in, c, a) ||
Delta2lnt (a, out, b) ||
Prefixint (0, b, c©)

Note: this outputs one number for every input it gets.

Some Simple Networks

in

a ~ Talllnt ~k_p

out

Pairsint

> y+X

zZ+ty

Pairsint (in, out) = Delta2lnt (in, a, c) ||

Taillnt (a, b) ||
Plusint (b, c, out)

Note: this needs two inputs before producing one output. Thereafter, it
produces one number for every input it gets.

Some Layered Networks

out

Pairsint

Fibonaccilnt

Fibonaccilnt (out) = Prefixint (1, d, a) ||
PrefixInt (0, a, b) ||
Delta2int (b, out, c) ||
Pairsint (b, c©)

Note: the two numbers needed by PairsiInt to get started are provided
by the two PrefixInts. Thereafter, only one number circulates on the
feedback loop. If only one PrefixInt had been in the circuit, deadlock

would have happened (with each process waiting trying to input).

Some Layered Networks

b

Numbersint — Integrateint —— Pairsint - 1

Squaresint 4

9

16

Squaresint (out) = Numbersint (a) || 25

Integratelnt (a, b) ||

Pairsint (b, out) 36

49

Note: the traffic on individual channels: 64

<a> = [0, 1, 2, 3, 4, 5, 6, 7, 8, ...] 81
 = [o, 1, 3, 6, 10, 15, 21, 28, 36, ...]
<out> = [1, 4, 9, 16, 25, 36, 49, 64, 81, ...]

Quite a Lot of Processes

Numbersint (a[0]) ||
Squaresint (a[1]) 1|1
Fibonaccilnt (a[2]) ||
ParaPlexint (a, b) ||
Tabulatelnt (b)

Numbersint

Squaresint

af[o0]

a[l]i | Fibonaccilnt

/a[z]

ParaPlexInt

lb

Tabulatelnt

Quite a Lot of Processes

Numbersint

At this level, we have a network

Squaresint

of 5 communicating processes.

In fact, 28 processes are involved.:
18 non-terminating ones and 10
low-level transients repeatedly
starting up and shutting down for
parallel input and output.

Fibonaccilnt

/

ParaPlexInt

|

Tabulatelnt

Quite a Lot of Processes

Fortunately, CSP semantics
are compositional - which
means that we only have to
reason at each layer of the
network in order to design,
understand, code, and
maintain it.

Numbersint

Squaresint

Fibonaccilnt

v/

ParaPlexInt

|

Tabulatelnt

Putting CSP Into practice ...

b~

Google: JCSP

1-Apr-08 Copyright P.H.Welch

- CSP for Java [JCSP] 1.0-rc1 APl Specification - Netscape

FEile Edit “iew Go Communicator Help

R O T TR TP T

Back Forward Heload Harme Search Metzcape Print SecLrity S.tn:np

Wt' Bookmarkz J’{. Lu:u:ati-:un:Ifile:a’h"FIa’phwfdevficsp-ducsx’inde:-c.html

j ﬁ' Wwihat's A elated

Instant Message WiebM ail Members Connections Bizdournal Srnartll pdate MEtplace

CSP for Java I Package Class Tree Deprecated Index Help CSP for Java T
(JCSP) 1.0-recl PREW NEXT FRAMES MO FRAMES (JCSF) 1.0-rcd
A1 Classes
Packages CSP for Java™ (JCSP) 1.0-rc1 API Specification L
csp. awt
irat lane T This document is the spectication for the JOSP core APL
Any R Onel” allChanne] [See:
Ay OneChannel) Description
Any20ne Channellnt =S
Barrier
BlackHoleChannel Packages
glacllcd;l oleChannellnt om awt This prowdes C5F extensions for all java awt components -- GUI events and widget
ﬁ 1£5p. 292 configuration map to channel communications.
| . This prowdes classes and interfaces corresponding to the fundamental prirtives of
e jcsp.lang
One2AnyCalChannel CEP.
Cnes AnyChanne] This id - -

. prowdes an assortment of plug-and-play C5P components to wire together (with
One2 AnyChannellnt lcsp-plugNplay Ob ject-carrying wires) and reuse.
OneZOneCalChannel
e I |icsp.plugi¥play.ints Thus promilzies an assortment of plug-and-play C5P components to wire together (with
One2OneChanneTnt int-cartying wires) and reuse.
Parallel jcsp.util This prowdes classes and interfaces to customise the setnantics of Object chatnels.
PriParallel
Proca;sslfianaaer =] jcsp.util.ints This prowdes classes and interfaces to customise the semantics of int channels.

& == |

\Document; Dore

CSP for Java (JCSP)

= A process is an object of a class
Implementing the CSProcess interface:

interface CSProcess {
public void run();

}

» The behaviour of the process is determined
by the body given to the run() method In
the implementing class.

JCSP Process Structure

class Example implements CSProcess {

... private shared synchronisation objects
(channels etc.)
..- private state information

-.-- public constructors
... public accessors(gets)/mutators(sets)
(only to be used when not running)

... private support methods (part of a run)
... public void run() (process starts here)

Two Channel Interfaces
(classes are hidden)

Object channels

- carrying (references to) ‘
\&rbitrary Java objects

int channels
\-carrying Javay

Channel-End Interfaces

» Channel-end interfaces are what the processes
see. Processes only need to care what kind of
data they carry (ints or Objects) and whether
the channels are for output, input or ALTing (i.e.
choice) input.

2 It is the network builder’s concern to choose the
variety of channel (e.g. synchronous, buffered,
shared) to use when connecting processes
together.

1Nt Channels

The 1nt channels are convenient and secure.

As with occam-m, it's difficult to introduce race
hazards.

For completeness, JCSP should provide
channels for carrying all of the Java primitive
data-types. These would be trivial to add. So
far, there has been no pressing need.

Object Aliasing - Danger !

Java objects are
referenced through a

Thinga= ..., Db

variable names.

./

a and b are now aliases a
for the same object! a

o |

L
»

o

q

&

»

?»

»

Object Channels - Danger !!

= Object channels
expose a danger not
present in occam-T.

« Channel communication
only communicates the
Object reference.

Thing t = ..

use t

c.write (t); // clt

Thing t;
t = (Thing) c.read();
use t

// c?t

Object Channels - Danger !!

= After the communication, Thing t = ..

each process has a c.write (v); // clt
reference (in its variable t) ... use t

to the same object.

» If one of these processes 1 C
modifies that object (its t),

the other one had better

forget about it! Thing t;

t = (Thing) c.read(); /7 c?t
use t

Object Channels - Danger !!

» Otherwise, occam-7's
parallel usage rule is
violated and we will be at
the mercy of when the
processes get scheduled
for execution - a RACE
HAZARD!

We have design
patterns to prevent

this.

Thing t = ..
c.write (t); // clt
use t
, C
Thing t;
t = (Thing) c.read(); /7 c?t
use t

Reference Semantics

before

Reference Semantics

Red and brown objects are parallel compromised!

Reference Semantics

Even If the source variable is nulled, brown I1s done for!!

Classical occam

Different in-scope variables implies different pieces of data
(zero aliasing).

Automatic guarantees against parallel race hazards on
data access ... and against serial aliasing accidents.

Overheads for large data communications:
- space (needed at both ends for both copies);

- time (for copying).

Java/ JCSP

Hey ... iIt's Java ... so aliasing Is endemic.

No guarantees against parallel race hazards on data
access ... or against serial aliasing accidents. We must

look after ourselves.

Overheads for large data communications:
- space (shared by both ends);
- time is O(1).

Object and Int Channels
(interfaces)

interface ChannelOutput { interface ChannelOutputint {
public void write (Object 0); public void write (int 1);

+ +

interface Channellnput { interface Channellnputint {
public Object read (); public Int read ();

+ +

1-Apr-08 Copyright P.H.Welch 67

Channel-End Interfaces

» Channel-ends are what the processes see —
they only care what kind of data they carry
(ints or Objects) and whether the channels
are for output, input or ALTing (i.e. choice)
input.

» It will be the network builder’'s concern to
decide the kinds of channels to be used and
construct them for connecting processes.

s Let’s review some of the Legoland processes -
this time in JCSP.

JCSP Process Structure

class Example implements CSProcess {

... private shared synchronisation objects
(channels etc.)
..- private state information

-.-- public constructors
... public accessors(gets)/mutators(sets)
(only to be used when not running)

... private support methods (part of a run)
... public void run() (process starts here)

out

— Succlnt—

class Succlint implements CSProcess {

private final Channellnputint in;
private final ChannelOutputint out;

public Succint (Channellnputint in,
ChannelOutputint out) {
this.in = in;
this.out = out;

}

public void run () {
while (true) {
intn = in.read ();
out.write (n + 1);
1
}

inl
class Plusint implements CSProcess {

private final Channellnputint inO;
private final Channellnputint inl;
private final ChannelOutputint out;

public Plusint (Channellnputint inO,
Channel Inputint inl,
ChannelOutputint out) {

this.in0 = in0;
this.inl = inl;
this.out = out;

}

--- public void run O

inl
class Plusint implements CSProcess {

private final channels (in0O, inl, out)
public Plusint (Channellnputint inO, ...)
public void run O {

whille (true) {
int N0 = in0O.read (); - -
int nl < inl.read O serial ordering
out.write (nO + nl);

¥
}

}

Note: the inputs really need to be done in parallel - later!

>

n (") ou
\?

class Prefixint implements CSProcess {

}

private final int n;
private final Channellnputint in;
private final ChannelOutputint out;

public Prefixint (int n, Channellnputint in,
ChannelOutputint out) {
this.n = n;
this.in = in;
this.out = out;

}

public void run Q {
out.write (n);
new ldint (in, out).run ;

}

Process Networks

We now want to be able to take instances of
these processes (or components) and connect
them together to form a network.

The resulting network will itself be a process.

To do this, we need to construct some real wires -
these are instances of (JCSP internal) channel
classes — we only get (Java) interfaces to them.

We also need a way to compose everything
together — the Paral lel constructor.

Parallel

Parallel is a CSProcess whose constructor
takes an array of CSProcesses.

Its run() method is the parallel composition of
Its given CSProcesses.

The semantics Is the same as for the occam-=-7
PAR (or CSP |)).

The run() terminates when and only when all of
ItsS component processes have terminated.

out

Succlint

Numbersint

class Numbersint implements CSProcess {

private final ChannelOutputint out;

public Numbersint (ChannelOutputint out) {
this.out = out;

}

--- public void run OO

a out

Succlint

Numbersint

public void run Q {

One20neChannellnt a
One20neChannellnt b
One20neChannellnt c

Channel .one2onelnt ();
Channel .one2onelnt ();
Channel .one2onelnt ();

new Parallel (
new CSProcess[] {
new Prefixint (0, c.in(), a.out()),
new Delta2int (a.in(), out, b.out()),
new Succlnt (b.in(), c.out())

>
)-run Q;

}

In out

Integratelnt

class Integratelnt implements CSProcess {

private final Channellnputint in;
private final ChannelOutputint out;

public Integratelnt (Channellnputint in,
ChannelOutputint out) {
this.in = In;
this.out = out;

}

--- public void run O

in out

Integratelnt

public void run Q {

Channel .one2onelnt ();
Channel .one2onelnt ();
Channel .one2onelnt ();

One20neChannellnt a
One20neChannellnt b
One20neChannelInt c

new Parallel (
new CSProcess[] {
new Plusint (in, c.in(), a.out()),
new Delta2int (a.in(), out, b.out()),
new Prefixint (0, b.in(), c.out())

>
)-run QO;

}

Numbersint —— Integratelnt — Pairsint

out

Squaresint

class Squaresint implements CSProcess {

private final ChannelOutputint out;

public Squaresint (ChannelOutputint out) {
this.out = out;
}

--- public void run ()

16
25
36
49
64
81

Numbersint —— Integratelnt — Pairsint

out

Squaresint

public void run () {

One20neChannellint a
One20neChannellint b

Channel .one2onelnt ();
Channel .one2onelnt ();

new Parallel (
new CSProcess[] {
new Numbersint (a.out()),
new Integratelnt (a.in()., b.out(Q)),
new Pairsint (b.in(), out)

¥
)-run Q;

16
25
36
49
64
81

Quite a Lot of Processes

One20neChannel Int[] a = Numbersint
Channel .one2onelntArray(3);

One20neChannel b =
Channel .one2one();

Squaresint

Channellnputint[] a_in = afo
Channel .getlinputintArray(a);

new Parallel (
new CSProcess[] {
new Numbersint (a[0].out()),
new Squaresint (a[1].out()).,
new Fibonaccilnt (a[2].out()),
new ParaPlexint (a_in, b.out()),
new Tabulatelnt (b.in())

}
)-run Q;

al1ll | Fibonaccilnt

|/

ParaPlexInt

lb

Tabulatelnt

inl
class Plusint implements CSProcess {

private final channels (in0O, inl, out)
public Plusint (Channellnputint inO, ...)
public void run O {

whille (true) {
int N0 = in0O.read (); - -
int nl < inl.read O serial ordering
out.write (nO + nl);

¥
}

}

Note: the inputs really need to be done in parallel - now!

In0 out

inl

public void run () {

ProcessReadlnt readlnO
ProcessReadlnt readinl

new ProcessReadlint (in0);
new ProcessReadint (inl);

CSProcess parRead =
new Parallel (new CSProcess|[] {readlnO, readlnl});

while (true) {
parRead.run ();
out.write (readlnO.value + readinl.value);

}

Note: the inputs are now done in parallel.

Implementation Note

As In the transputer (and KRoC occam-m etc.), a JCSP
Paral lel object runs its first (n-1) components in

separate Java threads and its last component in its own
thread of control.

When a Paral lel . run() terminates, the Parallel

object parks all its threads for reuse in case the
Parallel is run again.

So processes like Pluslint incur the overhead of Java
thread creation only during its first cycle.

That’s why we named the parRead process before loop

entry, rather than constructing it anonymously each time
within the loop.

Channel “Ends” in occam-m

3 P out

i_".Q':

Wess gets its own “ends” of its exterm

7

\

PROC P (CHAN STUFF out!, ...)
... local state
SEQ
... OInitialise state
WHILE running
SEQ
... do stuff
out ! value
... Mmore stuff

PROC Q (CHAN STUFF in?, ...)
... [local state
SEQ
... initialise state
WHILE running

SEQ
... do stuff
in ? X
... Mmore stuff

Channel “Ends” in occam-m

@(;ess gets its own “ends” of its exterm

CHAN STUFF c: /
.= = OthW
/

PAR

other processes

Channel “Ends” in JCSP

3 P out

class P implements CSProcess { |

private final ChannelOutput out;
... other channels and local state
Each
—
public P (ChannelOutput out, ...) { _process gets
this.out = out: its own “ends”
- of its external
} channels
public void run () {...}
}

Channel “Ends” in JCSP

3 P out

class P implements CSProcess {

... external channels and local state

public P (ChannelOutput out, ...) {...}

Each
process gets
its own “ends”
of its external
channels

public void run () {
... OInitialise local state
while (running) {
... do stuff
out.write (value);
... Mmore stuff

Channel “Ends” in JCSP

Each
process gets
its own “ends”
of its external
channels

i_".Q':

class Q implements CSProcess {

=y,
private final Channellnput in;

——<-._other channels and local state

public Q (Channellnput in, ...) {
this.in = in;

}
public void run () {--.}

Channel “Ends” in JCSP

Each
process gets
its own “ends”
of its external
channels

i_".Q':

class Q implements CSProcess {

... external channels and local state

\
public Q (Channellnput in, ...) {...}

public void run () {
... OInitialise local state
while (running) {
... do stuff
X = (Stuff) in.read (;
... Mmore stuff

Channel “Ends” in JCSP 1.1

=° ° Ns
@?ess gets its own “ends” of its exterm

final One20neChannel c = Channel.one2one ();
... other channels

new Parallel (
new CSProcess[] {
new P (c.out (), ..
new Q (c.in Oy ...),
... other processes
}
).run ();

Channel Interfaces in JCSP 1.1

ChannelOutput Channel Input

public void write (Object o) public Object read ()

One20neChannel

public ChannelOutput out ()
* public Channellnput 1n ()

NO DANGER: users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cast
into each other. Processes must be given correct channel “ends”.

* Ignoring Alting

Channel Interfaces in JCSP 1.1

ChannelOutputint Channel Inputlint

public void write (Int 1) public Int read ()

One20neChannel Int

public ChannelOutputint out ()
* public Channellnputint 1n ()

NO DANGER: users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cast
into each other. Processes must be given correct channel “ends”.

* Ignoring Alting

Channel Interfaces in JCSP 1.1

ChannelOutput Channel Input

public void write (Object o) public Object read ()

One20neChannel

public ChannelOutput out ()
* public Channellnput 1n ()

NO DANGER: users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cast
into each other. Processes must be given correct channel “ends”.

* Ignoring Alting

Channel “Ends” in JCSP 1.1

=° ° Ns
@?ess gets its own “ends” of its exterm

final One20neChannel c = Channel.one2one ();
... other channels

new Parallel (
new CSProcess[] {
new P (c.out),
new Q (c.in Q5 ...), channel
... other processes manufacture
3
).run O;

Channel Manufacture

All channels are made using static methods of the Channel class.

Decide whether the “ends” are to be shared:

Channel .one2one () ————

Channel .any2one () M
Channel .one2any () 1 I I I I

Channel .any2any () —rLrLrLrLlJ—

Channel Manufacture

All channels are made using static methods of the Channel class.

Decide whether the channels are to be buffered and, if so, how:

Channel .one2one (new Buffer (42))
Channel .any2one (new OverWriteOldestBuffer (8))
Channel .one2any (new OverFlowingBuffer (100))

Channel .any2any (new InfiniteBuffer ())

Channel Manufacture

All channels are made using static methods of the Channel class.

Decide whether the channels are poisonable and, if so, their immunity:

Channel .one2one (10) .

Immunity Level:
the channel is
Immune to
poisons up to
this strength ...

Channel .any2one (5) ;

Channel .one2any (1000) -

Channel .any2any (0) '

Channel Manufacture

All channels are made using static methods of the Channel class.

The channels may be buffered and poisonable:

Channel .one2one (new Buffer (42), 10)
/

buffer type

: immunity level ...
and capacity ... v

Channel Manufacture

All channels are made using static methods of the Channel class.

Arrays of channels — all kinds — may be built in one go:

Channel .one2oneArray (100)
/

buffer type

array size ... :
y and capacity ...

immunity level ...

\

SN A\ A
Channel .any2oneArray (200, new Buffer (42), 10)

Channel Manufacture

All channels are made using static methods of the Channel class.

Channels may be specialised to carry ints:
Channel .one2onelnt ()

Channel .any2onelntArray (200, new Buffer (42), 10)

In future, channels will be specialised using Java generics ...

Channel Summary

The JCSP process view and use of its external channels:

Sees: Channel Input, AltingChannel lnput,
ChannelOutput, Channel lnputint, etc.

Increased safety — cannot violate “endianness” ...

A process does not (usually*) care about the kind of channel
— whether it is shared, buffered, poisonable, ...

* |f a process needs to share an external channel-end

between many sub-processes, it must be given one that is
shareable — i.e. an Any end. JCSP 1.1 does cater for this.

Channel Summary

The JCSP network view of channels:

The correct channel “ends” must be extracted from channels
and plugged into the processes using them ...

Increased safety — cannot violate “endianness” ...

A wide range of channel kinds (fully synchronised, buffered,
poisonable, typed) are built from the Channel class...

JCSP processes work only with interfaces both for channels
(whatever their kind) and for channel-ends. We think this will
prove safer than providing classes.

Deterministic Processes (CSP)

So far, our parallel systems have been deterministic:
the values in the output streams depend only on
the values in the input streams;
the semantics is scheduling independent;
no race hazards are possible.

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.

Non-Deterministic Processes (CSP)

In the real world, It IS sometimes the case that
things happen as a result of:

what happened in the past;
when (or, at least, in what order) things happened.

In this world, things are scheduling dependent.

CSP (and JCSP) addresses these issues explicitly.

Non-determinism does not arise by default.

&

A Control Process

? | inject
in out

Replacelnt (in, out, Inject)

Coping with the real world - making choices ...

In Replacelnt, data normally flows from In to out
unchanged.

However, if something arrives on inject, it is
output on out - instead of the next input from in.

A Control Process
: B

Replacelnt (in, out, Inject)

- D OO X 9
- D QX TY

® X O T oD
- X OO0 T YD

The out stream depends upon:

The values contained in the 1n and 1nject streams;
the order in which those values arrive.

The out stream is not determined just by the In and
Inject streams - it iIs non-deterministic.

A Control Process

7/E*Ejfct
a X
b in out b
C 2 '\\~‘/[' C
d d
2 2

Replacelnt (in, out, Inject)

® QO X 9
D O X T QD
® X O T oD

Replacelnt (in, out, Inject) =
(inject?x --> ((in?a --> SKIP) || (out!x --> SKIP))
[PRI]
in?7a --> outl!a --> SKIP
)

Replacelnt (in, out, Inject)

Note:[] is the (external) choice operator of CSP.
[PRI1] is a prioritised version - giving priority to the event on its left.

X OO0 TOo

Another Control Process

? | inject

in out
?

Scalelnt (s, In, out, Inject)

Coping with the real world - making choices ...

In Scalelnt, data flows from In to out, getting
scaled by a factor of s as it passes.

Values arriving on inject, reset that s factor.

Another Control Process

n*a s*a Ss*a
n*b n* s*b
nN*c nNn*C n*c
n*d n*d n*d
Scalelnt (s, In, out, Inject) n*e n*e n*e

a
b
C
d
e

The out stream depends upon:

The values contained in the 1n and Inject streams;
the order in which those values arrive.

The out stream is not determined just by the In and
Inject streams - it iIs non-deterministic.

Another Control Process

a n*a s*a
b n*b n*b
C n*c n*c
d n*d n*d
e Scalelnt (s, In, out, Inject) n*e n%e

Scalelnt (s, In, out, Inject) =
(inject?s --> SKIP
[PRI]
Iin?7a --> out!s*a --> SKIP
);

Scalelnt (s, In, out, Inject)

Note:[] is the (external) choice operator of CSP.
[PRI] is a prioritised version - giving priority to the event on its left.

s*a
S*b
n*c
n*d
n*e

Some Resettable Networks

inject

P out__
Q -
Succint

ReNumbersint

This Is a resettable version of the Numbersint
process.

If nothing Is sent down Inject, it behaves as before.

But it may be reset to count from any number
at any time.

Some Resettable Networks

inject

. | 7 t
n :/_I_\ >/\ ou -
Z/ u
0
S

Relntegratelnt

This Is a resettable version of the Integratelnt
pProcess.

If nothing Is sent down Inject, it behaves as before.

But its running sum may be reset to any number
at any time.

Some Resettable Networks

Taillnt
in out
><!/ :G:l)ia >

f RePairsint

inject

This Is a resettable version of the PairsiInt process.

By sending -1 or +1 down inject, we can toggle its
behaviour between Pairsint and Diffentiatelnt
(a device that cancels the effect of Integratelnt

If pipelined on to its output).

A Controllable Machine

Reset Nos Reset Int
0 0

ReNumbersint Relntegrateint RePairsint >

/

- ~

Tabulatelnt

An Inertial Navigation Component

velReset posReset
accln X ; ‘ ; posOut
=\ ‘| Relntegratelnt 4>< ‘| Relntegratelnt >
velOut
NEvEae accOut

accln: carries regular accelerometer samples;
velReset: velocity initialisation and corrections;
posReset: position initialisation and corrections;
posOut/velOut/accOut: regular outputs.

Deterministic Processes (JCSP)

So far, our JCSP systems have been determistic:
the values in the output streams depend only on
the values in the input streams;
the semantics is scheduling independent;
no race hazards are possible.

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.

Non-Deterministic Processes (JCSP)

In the real world, It IS sometimes the case that
things happen as a result of:

what happened in the past;
when (or, at least, in what order) things happened.

In this world, things are scheduling dependent.

CSP (JCSP) addresses these issues explicitly.

Non-determinism does not arise by default.

&

Alternation - the CSP Choice

public abstract class Guard {
package-only abstract methods (enable/disable)

}

Six JCSP classes are (i.e. extend) Guards:
AltingChannel Input (Objects)
AltingChannel Inputint (ints)
AltingChannelAccept (CALLS)
AltingBarrier (Barriers)
CSTimer (timeouts)
Skip (polling)

The 1n() methods of One20ne and Any20ne channels
return Alting (rather than ordinary) channel-ends.

The 1n() methods of One2Any and Any2Any channels
return ordinary channel-ends — no Alting on them.

Alternation’- the CSP Choice

public abstract class Guard {
package-only abstract methods (enable/disable)

}

Six JCSP classes are (i.e. extend) Guards:
AltingChannel Input (Objects)
AltingChannel Inputint (ints)
AltingChannelAccept (CALLS)
AltingBarrier (Barriers)
CSTimer (timeouts)
Skip (polling)

The 1n() methods of One20ne and Any20ne channels
return Alting (rather than ordinary) channel-ends.

* Alternation is named after theoc&am)

Ready/Unready Guards

. A channel guard is ready iff data is
pending - I.e. a process at the other end
has output to (or called) the channel and
this has not yet been input (or accepted).

= A timer guard is ready iff its timeout has
expired.

= A skip guard is always ready.

Alternation

For ALTing, a JCSP process must have a Guard|[]

array - this can be any mix of channel inputs, call
channel accepts, timeouts or skips:

final Guard[] guards = {...}:

It must construct an Alternative object for each such
guard array:

final Alternative alt =
new Alternative (guards);

The ALT Is carried out by invoking one of the three
varieties of select methods on the alternative.

alt.select()

This blocks passively until one or more of the guards
are ready. Then, it makes an ARBITRARY choice
of one of these ready guards and returns the index
of that chosen one. If that guard is a channel, the
ALTing process must then read from (or accept) it.

alt.priSelect()

Same as above - except that if there is more than

one ready guard, it chooses the one with the lowest
index.

alt.fairSelect()

Same as above - except that if there are more
than one ready guards, it makes a FAIR choice.

This means that, in successive invocations of
alt.fairSelect (), no ready guard will be chosen
twice If another ready guard is available. At worst,
no ready guard will miss out on n successive
selections (where n iIs the number of guards).

Fair alternation is possible because an Alternative
object is tied to one set of guards.

ALTIing Between Events

Ievent
out

> FreezeControl -

Button

In

- Button is a (GUI widget) process that outputs a
ping whenever it's clicked.

« FreezeControl controls a data-stream flowing
from its in to out channels. Clicking the Button
freezes the data-stream - clicking again resumes |It.

ALTIng Between Events

\event
in

out

—— FreezeControl

final Alternative alt =
new Alternative (

new Guard[] {event, in};

);

final Int EVENT = O, IN = 1;

A 1

while (true) {
switch (alt.priSelect ()) {

case EVENT:
event.read ();
event.read ();
break;

case IN:
out.write (in.read ());
break;

ALTIing Between Events
4 D \

In out

~ SpeedControl -~

= The slider (GUI widget) process outputs an integer
(0..100) whenever its slider-key is moved.

» SpeedControl controls the speed of a data-stream
flowing from its 1n to out channels. Moving the
slider-key changes that speed — from frozen (0O) to
some defined maximum (100).

ALTIng
Between
Events

‘event

in out
—= SpeedControl
final CSTimer tim =

new CSTimer ();

final Alternative alt =
new Alternative (
new Guard[] {event, tim};

):

final Int EVENT = O, TIM = 1;

long timeout = tim.read () + interval
tim.setAlarm (timeout);

while (true) {
switch (alt.priSelect ()) {

case EVENT:
... handle the slider event

case TIM:

handle the timeout event

ALTIng
Between
Events

‘event

—= SpeedControl ot

final CSTimer tim =
new CSTimer ();

final Alternative alt =
new Alternative (
new Guard[] {event, tim};

)’
final Int EVENT = O, TIM = 1;

long timeout = tim.read () + interval;
tim.setAlarm (timeout);

while (true) {
switch (alt.priSelect ()) {

case EVENT:
int position = event.read ();
whille (position == 0) {

position = event.read ();
¥
speed = (position*maxSpd)/maxPos
interval = 1000/speed; // ms
timeout = tim.read ();
// fTall through

case TIM:
timeout += interval;
tim.setAlarm (timeout);
out.write (in.read ());
break;

Another Control Process

a n*a s*a
b n*b n*b
C n*c n*c
d n*d n*d
e Scalelnt (s, In, out, Inject) n*e n’e

Scalelnt (s, In, out, Inject) =
(inject?s --> SKIP
[PRI]
Iin?7a --> out!s*a --> SKIP
);

Scalelnt (s, In, out, Inject)

Note:[] is the (external) choice operator of CSP.
[PRI] is a prioritised version - giving priority to the event on its left.

s*a
S*b
n*c
n*d
n*e

class Scalelnt implements CSProcess {

private int s;
private final AltingChannellnputint in, inject;
private final ChannelOutputint out;

public Scalelnt (int s, AltingChannellnputint in,
AltingChannellnputint inject,
ChannelOutputint out) {
this.s = s;
this.in = in;
this.inject = iInject;
this.out = out;

--- public void run O

public void run Q {

final Alternative alt =
new Alternative (new Guard[] {inject, in});

final int INJECT = 0, IN = 1; // guard indices

whille (true) {
switch (alt.priSelect () {
case INJECT:
s = inject.read ();
break;
case IN:
final int a = in.read ();
out.write (s*a);
break;
3
}

Real-Time Sampler

reset l

In out
— Sample(t) [—

= This process services any of 3 events (2 inputs and
1 timeout) that may occur.
» Its € parameter represents a time interval. Every t

time units, it must output the last object that arrived
on its in channel during the previous time slice. If

nothing arrived, it must output a nul I.

» The length of the timeslice, £, may be reset at any
time by a new value arriving on its reset channel.

l reset

in out
Sample (t)

\ 4

A 4

class Sample implements CSProcess {

private final long t;

private final AltingChannellnput in;
private final AltingChannellnputint reset;
private final ChannelOutput out;

public Sample (long t,

AltingChannel lnput in,
AltingChannellnputint reset,
ChannelOutput out) {

this.t = t;

this.in = in;

this.reset = reset;

this.out = out;

}

--- public void run ()

l reset

in out
Sample (t)

\ 4

A 4

public void run () {

final CSTimer tim = new CSTimer ();

final Alternative alt =
new Alternative (new Guard[] {reset, tim, in});

final int RESET =0, TIM =1, IN = 2; // indices

Object sample = null;
long timeout = tim.read () + t;
tim.setAlarm (timeout);

--.- main loop

l reset

in out

\ 4

Sample (t)

while (true) {
switch (alt.priSelect () {
case RESET:
t = reset.read);
break;
case TIM:
out.write (sample);
sample = null;
timeout += t;
tim.setAlarm (timeout);
break;
case IN:
sample = in.read ();
break;

by
}

A 4

l reset

in out
Sample (t)

\ 4

A 4

while (true) {
switch (alt.priSelect () {
case RESET:
t = reset.read ();
timeout = tim.read (); // fall through
case TIM:
out.write (sample);
sample = null;
timeout += t;
tim.setAlarm (timeout);
break;
case IN:
sample = in.read ();
break;

¥
}

Final Stage Actuator

reset panic

in

w

out

Sample (1) Monitor (m) "I Decide (n)

Actuator (t, m, n)

= Sample(t): every t time units, output latest input (or

nul I if none); the value of £ may be reset;

= Monitor(m): copy input to output counting null s - if min

a row, send panic message and terminate;

» Decide(n): copy non-null I input to output and remember
last n outputs - convert null Is to a best guess depending on

those last n outputs.

in

reset panic

A 4

A\ 4

Sample (t) [~ | Monitor (m)

out

A 4

Decide (n)

Actuator (t, m, n)

class Actuator implements CSProcess {

--.- private state (t, m and n)

-.- private interface channels
(in, reset, panic and out)

--- public constructor

(assign parameters t, m, n, in, reset,

panic and out to the above fields)

--- public void run ()

v

in

reset

panic

Sample (1)

a

— | Monitor (m)

b out

Decide (n)

Actuator (t, m, n)

public void run)

final One20neChannel a
final One20neChannel b

new Parallel (

new CSProcess[] {

Channel .One20ne ();
Channel .One20ne ();

new Sample (t, in, reset, a.out()),
new Monitor (m, a.in(), panic, b.out()),
new Decide (n, b.in(), out)

¥
)-run O;

Pre-conditioned Alternation

We may set an array of boolean pre-conditions on
any of the sellect operations of an Alternative:

switch (alt.fairSelect (depends)) {...}

'he depends array must have the same length as
the Guard array to which the alt is bound.

he depends array, set at run-time, enables/disables
the guards at corresponding indices. If depends[i]
is False, that guard will be ignored - even if ready.

This gives considerable flexibility to how we program
the willingness of a process to service events.

Shared Channels

» So far, all our channels have been point-to-point,
zero-buffered and synchronised (i.e. standard CSP

primitives);

» JCSP also offers multi-way shared channels (in the
style of occam-7);

-« JCSP also offers buffered channels of various well-
defined forms.

One20neChannel

Any20neChannel

9 © ©

o o O
-_—
\ 4 A 4

One2AnyChannel

o © ©
O O

Any2AnyChannel

? P 9 9

O O O ©
T oam I

Channel Interfaces in JCSP 1.1

ChannelOutput Channel Input

public void write (Object o) public Object read ()

One20neChannel

public ChannelOutput out ()
public AltingChannellnput 1n ()

The abstract class AltingChannel Input extends the abstract class
Guard and implements the interface Channel Input.

Channel Interfaces in JCSP 1.1

ChannelOutput

Channel Input

public void write (Object o)

public Object read ()

Any20neChannel

public SharedChannelOutput out ()
public AltingChannellnput 1n ()

The interface SharedChannelOutput extends the interface
ChannelOutput. It may be safely shared by internal processes.

Channel Interfaces in JCSP 1.1

ChannelOutput Channel Input

public void write (Object o) public Object read ()

One2AnyChannel

public ChannelOutput out ()
public SharedChannellnput 1n ()

The interface SharedChannel Input extends the interface
Channel Input. It may be safely shared by internal processes.

Channel Interfaces in JCSP 1.1

ChannelOutput Channel Input

public void write (Object o) public Object read ()

Any2AnyChannel

public SharedChannelOutput out ()
public SharedChannellnput 1n ()

Neither interface SharedChannel Input nor SharedChannelOutput
may be used for ALTing.

Channel Interfaces in JCSP 1.1

ChannelOutputint Channel Inputlint

public void write (Int 1) public Int read ()

One20neChannel Int

public ChannelOutputint out ()
public AltingChannellnputint in ()

The abstract class AltingChannel Inputlint extends the abstract
class Guard and implements the interface Channel Inputint.

Channel Interfaces in JCSP 1.1

ChannelOutputint Channel Inputlint

public void write (Int 1) public Int read ()

Any20neChannel Int

public SharedChannelOutputint out ()
public AltingChannellnputint 1n ()

The interface SharedChannelOutputlint extends the interface
ChannelOutputlnt. It may be safely shared by internal processes.

Channel Interfaces in JCSP 1.1

ChannelOutputint Channel Inputlint

public void write (Int 1) public Int read ()

One2AnyChannel Int

public ChannelOutputint out ()
public SharedChannellnputint in ()

The interface SharedChannel Inputint extends the interface
Channel Inputlnt. It may be safely shared by internal processes.

Channel Interfaces in JCSP 1.1

ChannelOutputint Channel Inputlint

public void write (Int 1) public Int read ()

Any2AnyChannel Int

public SharedChannelOutputint out ()
public SharedChannellnputint in ()

Neither interface SharedChannel Inputlint nor
SharedChannelOutputlint may be used for ALTing.

Graphics and GUIs

GUI events —— channel communications
Widget configuration —— channel communications

Graphics commands —— channel communications

1-Apr-08 Copyright P.H.Welch 154

event _
(String)
componentEvent
(ComponentEvent) -
focusEvent
s
- (FocusEvent)
configure !
—— ActiveButton
learie) keyEvent
(Boolean) ovEvert -
(Poison) LiayEvenL)
(Configure)
mouseEvent
s
(MouseEvent)
mouseMotionEvent
e
(MouseEvent)

general T
purpose _

displayL.ist

(GraphicsCommand)

/

general

toGraphics

=
(GraphicsProtocol)

fromGraphics

A

(Object)

house-keeping

ActiveCanvas

componentEvent

(ComponentEvent) -
focusEvent

s
(FocusEvent)
keyEvent

s
(KeyEvent)
mouseEvent

s
(MouseEvent)
mouseMotionEvent

e

(MouseEvent)

|

Infection

LMNFREEZE

1-Apr-08 Copyright P.H.Welch 157

Infection

centre

reset

random

freeze

pseudoButton

|-

S\

!

7

infectionControl

|

infection ;»
R

Info

‘Ild

f

canvas

rate

E%i Mandelbrot Set

0.05695197234437513 -1.7T692641841350003 4.334203125000002E-10

e e e e e

Mandelbrot

Set

Top -0.326868724995994923 Left -0.66452714 Scale 4. 7250000000000003E-7F

g

e G i

: : : ‘: ' ! T . ok '
Elackward| |5crn|ling Silent |[= |} Merations {1k |=| Target |[vwhite =| Colodrs (Step =

Mandelbrot

scrolling cancel —> farmer |-
- - ‘
iterations
colours
S>> harvester |«
<<<
top
left graphic

scale mouseMovemen canvas
key

mouse

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

@ ... huclear ... human ... astronomic ... ﬂ

|—|—>o@

Good News!

The good news is that we can worry about
each process on its own. A process interacts
with its environment through its channels. It
does not interact directly with other processes.

Some processes have serial implementations -
these are just like traditional serial programs.

Some processes have parallel implementations -
networks of sub-processes.

Our skills for serial logic sit happily
alongside our new skills for concurrency -
there is no conflict. This will scale!

Other Work

A CSP model for the Java monitor mechanisms
(synchronized, wait, notify, notifyAll)
has been built.

This enables any Java threaded system to be
analysed in CSP terms - e.g. for formal verification
of freedom from deadlock/livelock.

Confidence gained through the formal proof of
correctness of the JCSP channel implementation:

¢ a JCSP channel is a non-trivial monitor - the CSP model for
monitors transforms this into an even more complex system
of CSP processes and channels;

¢ using FDR, that system has been proven to be a refinement
of a single CSP channel and vice versa - Q.E.D.

Other Work

Higher level synchronisation primitives (e.g. JCSP
CALL channels, barriers, buckets, ...) that capture
good patterns of working with low level CSP events.

Proof rules and design tool support for the above.

CSP kernels and their binding into JVMs to support
JCSP.

Communicating Threads for Java (CTJ):

¢ this is another Java class library based on CSP principles;

¢ developed at the University of Twente (Netherlands) with
special emphasis on real-time applications - it's excellent;

¢ CTJ and JCSP share a common heritage and reinforce each
other’s on-going development - we do talk to each other!

Distributed JCSP.net

Network channels + plus simple brokerage service
for letting JCSP systems find and connect to each
other transparently (from anywhere on the Internet).

Virtual channel infrastructure to support this. All
application channels auto-multiplexed over single
(auto-generated) TCP/IP link between any two JVMSs.

Channel Name Server (CNS) provided. Participating
JCSP systems just need to know where this is. More
sophisticated brokers are easily bootstrapped on top
of the CNS (using JCSP).

Killer Application Challenge:

¢ second generation Napster (no central control or database) ...

Summary

< =
CSP has a compositional semantics.

CSP concurrency can simplify design:

¢ data encapsulation within processes does not break down
(unlike the case for objects);

¢ channel interfaces impose clean decoupling between
processes (unlike method interfaces between objects).

JCSP enables direct Java implementation of CSP
design.

Summary @

CSP kernel overheads are sub-100-nanosecond
(KRoC/CCSP). Currently, JCSP depends on the
underlying Java threads/monitor implementation.

Rich mathematical foundation:

¢ 20 years mature - recent extensions include simple priority
semantics;

¢ higher level design rules (e.g. client-server, resource
allocation priority, 10-par) with formally proven guarantees
(e.g. freedom from deadlock, livelock, process starvation);

¢ commercially supported tools (e.g. FDR).

We don’t need to be mathematically sophisticated
to take advantage of CSP. It's built-in. Just use it!

Summary

Process Oriented Design (processes, syncs,
alts, parallel, layered networks).

WYSIWYG:

¢ each process considered individually (own data, own control
threads, external synchronisation);

¢ leaf processes in network hierarchy are ordinary serial
programs - all our past skills and intuition still apply;

¢ concurrency skills sit happily alongside the old serial ones.

Race hazards, deadlock, livelock, starvation
problems: we have a rich set of design patterns,
theory, intuition and tools to apply.

Conclusions

We are not saying that Java’s threading
mechanisms need changing.

Java Is sufficiently flexible to allow many
concurrency paradigms to be captured.

JCSP is just a library - Java needs no language
change to support CSP.

CSP rates serious consideration as a basis for any
real-time specialisation of Java:

¢ quality (robustness, ease of use, scalability, management of
complexity, formalism);

¢ lightness (overheads do not invalidate the above benefits -
they encourage them).

Acknowledgements

Paul Austin - the original developer of JCSP
(p_d_austin@hotmail .com).

Andy Bakkers and Gerald Hilderink - the CTJ library
(bks@el .utwente.nl, G.H.Hilderink@el.utwente.nl).

Jeremy Martin - for the formal proof of correctness of the
JCSP channel (Jeremy._.Martin@comlab.ox.ac.uk)

Nan Schaller (ncs@cs.rit.edu), Chris Nevison
(chris@cs.colgate.edu) and Dyke Stiles
(dyke.stiles@ece.usu.edu) - for pioneering the teaching.

The WoTUG community - its workshops, conferences and
people.

URLS

@SP) www.comlab.ox.ac.uk/archive/csp.html
@ESP www.cs.ukc.ac.uk/projects/ofaljcsp/

@19 www.rt.el.utwente.nljjavapp/

@RO® \www.cs.ukc.ac.uk/projects/ofa/kroc/

WWW.CS.ukc.ac.uk/projects/ofa/java-threads/

wotug.ukc.ac.uk/

1-Apr-08 Copyright P.H.Welch 172

Stop Press

JCSP Networking Edition

www.quickstone.com

