
Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 4-May-1998

-DYD�&RPPXQLFDWLQJ
6HTXHQWLDO�3URFHVVHV
‘Design Of JCSP AWT Classes’

Paul Austin
pda1@ukc.ac.uk
University Of Kent Canterbury
BSc Computer Science with an Industrial Year
3rd Year Project



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin i 4-May-1998

Contents

1 Introduction ________________________________________________________________ 1

2 Functionality _______________________________________________________________ 2

2.1 CSP Model _____________________________________________________________________ 2

3 Design and Implementation ___________________________________________________ 3

3.1 Event Handling _________________________________________________________________ 3
3.1.1 Java Event Model ___________________________________________________________________ 3

3.1.1.1 JDK 1.0 Model ___________________________________________________________________ 3
3.1.1.2 JDK 1.1 Delegation Model__________________________________________________________ 8
3.1.1.3 Comparison & Summary __________________________________________________________ 10

3.1.1.3.1 JDK 1.0 API _______________________________________________________________ 10
3.1.1.3.2 JDK 1.1 API _______________________________________________________________ 10

3.1.2 Implementation ____________________________________________________________________ 11
3.1.2.1 Event Notification _______________________________________________________________ 11

3.1.2.1.1 Passive Approach ___________________________________________________________ 11
3.1.2.1.2 Active Approach With A Polling Loop___________________________________________ 12
3.1.2.1.3 Active Approach With wait/notify ______________________________________________ 13
3.1.2.1.4 Active Approach with Channels ________________________________________________ 14

3.1.2.2 Class Design ____________________________________________________________________ 15
3.1.2.2.1 ActionEventHandler _________________________________________________________ 16
3.1.2.2.2 AdjustmentEventHandler _____________________________________________________ 17
3.1.2.2.3 ItemEventHandler ___________________________________________________________ 18
3.1.2.2.4 TextEventHandler ___________________________________________________________ 19
3.1.2.2.5 ComponentEventHandler _____________________________________________________ 20
3.1.2.2.6 ContainerEventHandler_______________________________________________________ 20
3.1.2.2.7 FocusEventHandler__________________________________________________________ 20
3.1.2.2.8 KeyEventHandler ___________________________________________________________ 21
3.1.2.2.9 MouseEventHandler _________________________________________________________ 21
3.1.2.2.10 MouseMotionEventHandler ___________________________________________________ 21
3.1.2.2.11 WindowEventHandler________________________________________________________ 21

3.2 Configuration __________________________________________________________________ 22
3.2.1 AWT Configuration ________________________________________________________________ 22
3.2.2 Implementation ____________________________________________________________________ 24

3.2.2.1 Configuration ___________________________________________________________________ 25
3.2.2.1.1 One Channel per Component __________________________________________________ 25
3.2.2.1.2 One Channel per configuration _________________________________________________ 27

3.2.2.2 Class Design ____________________________________________________________________ 29

3.3 Active Components _____________________________________________________________ 30
3.3.1 Implementation ____________________________________________________________________ 30



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin ii 4-May-1998

Figures

Diagrams

Figure 1 - Button Model......................................................................................................................................................2
Figure 2 - Relationship between 1.0 AWT Components......................................................................................................4
Figure 3 - Interaction between event handling methods .....................................................................................................5
Figure 4 - Relationship between 1.1 AWT Components......................................................................................................9
Figure 5 – Process Diagram – event notification .............................................................................................................11
Figure 6 – Process Diagram – single channel configuration ...........................................................................................26
Figure 7 – Process Diagram – multiple channel configurations ......................................................................................27
Figure 8 – Process diagram – active components ............................................................................................................30

Code Fragments

Code 1 - Event handling using 1.0 Event Model (Example 1) ............................................................................................6
Code 2 - Event handling using 1.0 Event Model (Example 2) ............................................................................................7
Code 3 - Event handling using 1.1 Event Model (Example 1) ..........................................................................................10
Code 4 – Event Handling – Passive Approach .................................................................................................................12
Code 5 – Event Handling – Active Approach with A Polling Loop ..................................................................................13
Code 6 – Event Handling – Active Approach with wait/notify..........................................................................................14
Code 7 – Event Handling – Active Approach with Channels............................................................................................15
Code 8 – ActionEventHandler ..........................................................................................................................................17
Code 9 – AdjustmentEventHandler ...................................................................................................................................18
Code 10 – ItemEventHandler............................................................................................................................................19
Code 11 – TextEventHandler ............................................................................................................................................20
Code 12 – Configuration – Single Channel ......................................................................................................................26
Code 13 – Configuration – Multiple Channels .................................................................................................................28
Code 14 – ActiveButton class............................................................................................................................................31
Code 15 – ActiveButton – Configure class........................................................................................................................31
Code 16  - ActiveButton – addXXXEventChannel() methods............................................................................................32



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 1 4-May-1998

1 Introduction
This document describes the functionality and design of the classes in the Java Communicating
Sequential Processes [1] package that are used to provide a CSP [2] Channel interface to the Java [3]

Abstract Window Toolkit (AWT) user interface components. The design will be described using the
Unified Modelling Language [4] (UML) notation with descriptive text describing why certain
decisions were made. The discussion will assume knowledge of the facilities and concepts of the
CSP model in the OCCAM [5] programming language and of programming in the Java programming
language.

Previous work was done at the University of Kent at Canterbury by David Beckett to provide
Channel interfaces to two of the AWT Components, Button and Scrollbar. These are used as
a starting point to developing Channel interfaces for most of the classes in the jcsp.awt package.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 2 4-May-1998

2 Functionality
This section describes the functionality that the library must implement to provide features similar
to those offered by the AWT but using the JCSP Channel for event notification and configuration.

The following list summarises the components that should be implemented.
• Applet
• Button
• Canvas
• Checkbox
• CheckboxMenuItem
• Choice
• Component
• Container
• Dialog
• FileDialog
• Frame
• Label
• List
• MenuItem
• Panel
• ScrollPane
• Scrollbar
• TextArea
• TextField
• Window

2.1  CSP Model
In the CSP model, channels are used instead of methods to send messages to an object. The
advantages of this approach are.
1. The state of the object cannot be changed behind its back.
2. Objects can be joined together without each one knowing each others type.

Channels are also used to send event notifications for a component. When an event is generated, an
object representing that event is sent down a channel by the component. This can then be used by
other processes to handle the event.

ActiveButton

Figure 1 - Button Model



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 3 4-May-1998

3 Design and Implementation
The design of the new CSP style components is discussed below in three sections.
1. How to convert the Java Event Model into a Channel model.
2. How to convert the Java method based configuration model into a Channel model.
3. How to bring both parts together to implement the full components in an extendible way.

3.1 Event Handling

3.1.1 Java Event Model
This section serves as an introduction to event handling in the Java programming language. This
will be used as a base for the discussions later in this document on how to implement the CSP
channel model over the top of the Java model.

There are three parts to this section.
1. Description of the original model used in Java 1.0 API.
2. Description of the new event model introduced in the Java 1.1 API
3. A comparison of the two approaches, with the reasons for choosing one above the other.

3.1.1.1 JDK 1.0 Model
In the Java 1.0 library, the event handling is performed using an inheritance-based model for event
handling. Each Component (i.e. Button, Frame, TextField etc) in the AWT is a subclass of
the class Component which defines the methods required to handle events. To handle events for a
Component using this model it is necessary to subclass either the actual Component or it’s
parent Container and override the event methods with the event handling code.

The diagram below shows part of the AWT inheritance hierarchy. Note all the classes inherit from
the Component class, which defines the event handling methods with no implementation. The
Container class is the super class of all the Component subclasses that contain other
Components. The OKButton class is a Button with the action() method overridden to
handle the button press events.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 4 4-May-1998

W i n d o w

Fra m e

Te xtF ie ldB u tto n C o n ta in e r

C o m p o n e n t

p o s tE ve n t()
h a n d le E ve n t()
a c tio n ()
m o u s e U p ()

O K B u t to n

a c tio n ()

Figure 2 - Relationship between 1.0 AWT Components

The diagram below shows which methods are called for different event types.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 5 4-May-1998

 : Com ponent  : Container

postEvent( )

mouseEnter( )

mouseExit( )

mouseDown( )

mouseMove( )

mouseDrag( )

mouseUp( )

keyDown( )

keyUp( )

action( )

gotFocus( )

lostFocus( )

handleEvent( )

[id == MOUSE_ENTER]

[id == MOUSE_EXIT]

[id == MOUSE_MOVE]

[id == MOUSE_DOWN]

[id == MOUSE_DRAG]

[id == MOUSE_UP]

[id IN (KEY_PRESS,
 KEY_ACTION)]

[id IN (KEY_RELEASE,
 KEY_ACTION_RELESE)]

[id == ACTION_EVENT]

[id == GOT_FOCUS]

[id == LOST_FOCUS]

[eventHandled == false]

Figure 3 - Interaction between event handling methods

When an event happens to a component a new Event object is generated and the event handling
thread invokes the postEvent() method on that component. The role of this method is co-
ordinate the event handling process. First, it invokes the handleEvent() method on itself to
give the subclass of the component a chance to handle the event. If the event if not fully handled
and the component has a parent container the handleEvent() method is invoked on the parent
container. The handleEvent() method contains a switch statement which will invoke utility
methods to handle different events depending on the type of the event. For example, if the event
type is MOUSE_UP the mouseUp(e, e.x, e.y) method will be invoked.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 6 4-May-1998

In this model, there are two options if you want to handle an event for a component in an
application. Both examples will assume we are handling events for two buttons ‘OK’ and ‘Cancel’
contained within a Frame.

The first option is to create a new subclass of Button for each of the two buttons. With this
option, two methods can be overridden to provide the event handling code. The two methods are
action(Event, Object) or handleEvent(Event). For the OKButton the
action(…)  method will be overridden with the code to perform the ’OK’ functionality. For the
CancelButton the handleEvent(…)  method will be overridden. The body of this method
will check to see if the Event was for an action if so the code to perform the ’Cancel’ button will be
executed otherwise propagate it up the containment hierarchy will be executed. The following Code
example demonstrates how to do this.

public class DemoFrame extends Frame {
  public DemoFrame() {
    super("Event Handling Demo");
    setLayout(new FlowLayout());
    add(new OKButton());
    add(new CancelButton());
    pack();
    show();
  }
}

class OKButton extends Button {
  public OKButton() {
    super("OK");
  }

  public boolean action(Event e, Object arg) {
    // Perform the ok action here
    return true; // the event has been fully handled
  }
}

class CancelButton extends Button {
  public CancelButton() {
    super("Cancel");
  }

  public boolean handleEvent(Event e) {
    if (e.id == ACTION_EVENT) {
      // Perform the cancel action here
      return true; // the event has been fully handled
    }
    return super.handleEvent(); // call the standard event handling
  }
}

Code 1 - Event handling using 1.0 Event Model (Example 1)



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 7 4-May-1998

The second option is to handle the events for both buttons in a subclass of the Frame that contains
the two buttons. We can either handle the events in the action() or handleEvent() methods
in the same way as we did for the buttons. In the example we are going to override the action()
method as it produces cleaner code.

public class DemoFrame extends Frame {
  public DemoFrame() {
    super("Event Handling Demo");
    setLayout(new FlowLayout());
    add(new Button("OK"));
    add(new Button("Cancel"));
    pack();
    show();
  }

  public boolean action(Event e, Object arg) {
    if (arg.equals("OK") {
      // Perform the continue action here
      return true; // the event has bee fully handled
    }
    if (arg.equals("Cancel") {
      // Perform the cancel action here
      return true; // the event has bee fully handled
    }
    return super.action(e, arg);
  }
}

Code 2 - Event handling using 1.0 Event Model (Example 2)



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 8 4-May-1998

3.1.1.2 JDK 1.1 Delegation Model
The Java 1.1 library introduced a radically different model for handling events1, which separates the
Application logic from the GUI. The new model uses the Observer design pattern to notify one or
more event handlers that have been registered with the component.

In the new model, there is one event object for each type of event rather than just one event object.
The event objects contain the relevant information about the event and the source component that
generated it. The types of event are split into two conceptual groups shown below.
1. Semantic events

• ActionEvent
• AdjustmentEvent
• ItemEvent
• TextEvent

2. low-level events
• ComponentEvent - component moved, resized, shown or hidden
• FocusEvent - component lost focus or gained focus
• KeyEvent - key pressed, key released or key typed on the component
• MouseEvent - mouse clicked, pressed, released, entered, exited, dragged or moved
• ContainerEvent - component added or removed from the container
• WindowEvent - window opened, closed, closing, activated, deactivated, activated,

deiconified or iconified

For each event type there is an event listener interface that defines the methods that event handlers
must define. Each component has a method to register an event listener of the form
addXXXEventListener(XXXListener) for each event type it generates. The low-level
events are generated for all components and the addXXXEventListener(…)  methods for these
are defined in the Component class.

To handle an event the developer must create a class (or use an existing class) that implements the
required event listener. The class must then define the body of the relevant methods to handle the
events. The event listener must then be registered with the component using the appropriate method.

The following class diagram shows the relationships between the components and the event
listeners.

                                                
1 The 1.1 Java library still retains the compatibility with the 1.0 inheritance based model, but for the purpose of this
discussion we will assume that the 1.0 model is not available in the 1.1 library.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 9 4-May-1998

Fra m e

E ve n tL is te n e r
<< In te r fa c e >>

A ctio n L is te n e r
<< In te rfa ce > >

B u tto n

a d d Actio n L is te n e r()
re m o ve Actio n L is te n e r()

1 0 ..*

C o n ta in erL is te n e r
<< In te rfa ce > >

C o n ta in e r

a d d C o n ta in e rL is te n e r( )
rem o ve C o n tai n e rL is t e n er ()

1 0 .. *

W in d o wL is te n e r
<< In te rfa ce > >

W in d o w

a d d W in d o w L is te n e r()
re m o ve W in d o w L is te n e r() 1 0 ..*

1 0 ..*

Mo u se L is te n e r
<< In te rfa ce > >

C o m p o n e n t

d is p a tch E ve n t()
a d d Mo u s e L is te n e r()
re m o ve Mo u s e L is te n e r()
a d d ...L is te n e r()
re m o ve ...L is te n e r()

1

0 .. * 1 0 ..*1 0 ..*

1 0 .. *

1 0 ..*

1

0 .. *

p a re n t

Figure 4 - Relationship between 1.1 AWT Components

The following example shows how to use event listeners to handle events.

public class DemoFrame extends Frame {
  public DemoFrame() {
    super("Event Handling Demo");
    setLayout(new FlowLayout());
    Button ok = new Button("OK");
    ok.addActionListener(OKListener);
    add(ok);
    Button cancel = new Button("Cancel");
    cancel.addActionListener(CancelListener);
    add(cancel);
    pack();
    show();
  }
}

class OKListener implements ActionListener {
  public OKListener () {
  }

continued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 10 4-May-1998

  public void actionPerformed(ActionEvent e) {
    // Perform the continue action here
    return true; // The event has bee fully handled
  }
}

class CancelButton extends Button {
  public CancelButton() {
  }

  public void actionPerformed(ActionEvent e) {
    // Perform the cancel action here
  }
}

Code 3 - Event handling using 1.1 Event Model (Example 1)

3.1.1.3 Comparison & Summary

3.1.1.3.1 JDK 1.0 API

3.1.1.3.1.1 Advantages
1. All Java enabled web browsers, Java development environments support the 1.0 API and

therefore the developer and user base would be larger.

3.1.1.3.1.2 Disadvantages
1. The code to handle the event notification must be duplicated for each component.
2. Adding new components requires a new subclass to be created with the event handling code.
3. It does not scale to large applications.

3.1.1.3.2 JDK 1.1 API

3.1.1.3.2.1 Advantages
1. Only one class is requires per type of event (i.e. ActionEvent, AdjustableEvent) rather

than one per component.
2. Adding a new component does not require a new subclass to be created to handle the event

notification, instead an EventListener can be registered with the component.
3. The method can be scaled to large applications that may change during execution.

3.1.1.3.2.2 Disadvantages
1. There are only two browsers that support the 1.1 API, the ’SunSoft Hot Java Browser’ and the

’Microsoft Internet Explorer 4.0’.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 11 4-May-1998

3.1.2 Implementation
The implementation of the CSP event notification will use the JDK 1.1 API. This is because it
reduces the duplication of code and enables the reuse of the event handlers for new components
such as the new swing library, which is being introduced in the 1.2 API.

3.1.2.1 Event Notification
This section discusses the various stages the design of the general method of event notification
using a Channel was developed.

All the examples in this section discus the implementation for a subclass of Button, the
ActiveButton class. The examples are a simplified version of what was implemented; this
serves to highlight the approach and any undesirable features. The diagram below shows the
process diagram for an active component.

ActiveButton event

Figure 5 – Process Diagram – event notification

3.1.2.1.1 Passive Approach
The simplest approach is passive and does not require an extra CSProcess. In this approach, the
constructor has an extra parameter event of type ChannelOutput that will be used to send the
event notifications down. This parameter is stored as a private attribute in the class so it can be
used by the other methods. As the class uses the 1.1 API it implements the ActionListener
interface and defines the actionPerformed(ActioneEvent) method that will be invoked
when the button is pressed. The constructor registers this class as an action listener using the
addActionListener(ActionListener) method.

The body of the actionPerformed(…)  method implements the event notification down the
Channel. This is done by getting the action command name from the ActionEvent instance
and writing this to the event Channel.

import java.awt.*;
import java.awt.event.*;
import jcsp.lang.*;

public class ActiveButton extends Button implements ActionListener {
  private ChannelOutput event;
  public ActiveButton(ChannelOutput event, String s) {
    super(s);
    this.event = event;
    addActionListener(this);
  }

continued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 12 4-May-1998

  public synchronized void actionPerformed(ActionEvent e) {
    event.write(e.getActionCommand());
  }
}

Code 4 – Event Handling – Passive Approach

The main problem with this method is that the main Java event thread that is executing the
actionPerformed(…)  method is blocked until the process that is reading from the event
Channel reads the request. As one of the design goals of using a Channel interface is to not stop
further event notifications being blocked while the code for the event is being executed, this
approach is not acceptable.

3.1.2.1.2 Active Approach With A Polling Loop
The next approach attempts to solve the problem of blocking the event thread. It is based on the
implementation of the ButtonCh class developed by David Beckett.

The class implements the CSProcess interface and therefore is an active process and should be
executed as part of a Parallel construct.

A private attribute clicked  of type boolean  is added to the class that indicates that the button
has been pressed. Another private attribute e of type ActionEvent is also added to store a
reference to the event. The actionPerformed(…)  method will store the reference to the event
in the e attribute and set clicked  to true. The method is synchronised.

The testAndResetClicked()  will return true if clicked  is true and set clicked  to false,
this is used to provide the notification. The method is synchronised.

The body of the process in the run()  method has an infinite loop that uses
testAndResetClicked()  to check if an event has occurred, if it has the action command from
the event will be sent down the event  Channel. In either case, the process will then sleep for a
tenth of a second before looping.

import java.awt.*;
import java.awt.event.*;
import jcsp.lang.*;

public class ActiveButton extends Button
    implements CSProcess, ActionListener {
  private boolean clicked = false;
  private Channel event;
  private ActionEvent e;

  public ActiveButton(Channel event, String s) {
    super(s);
    this.event = event;
    addActionListener(this);
  }

continued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 13 4-May-1998

  public synchronized void actionPerformed(ActionEvent e) {
    this.e = e;
    clicked = true;
  }

  public synchronized boolean testAndResetClicked() {
    boolean result = clicked;
    clicked = false;
    return result;
  }

  public void run () {
    while (true) {
    if (testAndResetClicked()) {
      event.write(e.getActionCommand());

 }

      try {
   Thread.sleep(100);
 }

      catch (InterruptedException ie)
 {
 }

    }
  }
}

Code 5 – Event Handling – Active Approach with A Polling Loop

The main problem with this approach is that the body of the process has a polling loop that is
executed 10 times a second. This has two undesirable effects. The first is it consumes processing
power even when the button has not been pressed. The second is that only a maximum of 10 event
notifications can be sent a second, this could be solved by decreasing the sleep time but this would
then effect the performance.

3.1.2.1.3 Active Approach With wait/notify
The next approach builds on the previous one but removes the polling approach by using the
wait/notify synchronisation on the object monitor.

The clicked attribute and the testAndResetClicked() method are removed.

The actionPerformed(…)  method sets the e attribute to the event parameter and then invokes
notify()  on the monitor for this Object.

The run()  method has an infinite loop that invokes wait()  on the monitor for this Object. The
method will block until the notify()  method has been called. Upon waking up the process will
output the e attribute down the event Channel and then loop.

NOTE: The wait()  method is wrapped in a try catch block that ignores the
InterruptedException. This is safe, as this will never be raised when using the
Parallel construct to execute the process.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 14 4-May-1998

import java.awt.*;
import java.awt.event.*;
import jcsp.lang.*;

public class ActiveButton extends Button
    implements CSProcess, ActionListener {
  private ChannelOutput event;
  private ActionEvent e;

  public ActiveButton(ChannelOutput event, String s) {
    super(s);
    this.event = event;
  }

  public synchronized void actionPerformed(ActionEvent e) {
    this.e = e;
    notify();
  }

  public void run () {
    while (true) {
      try {

   wait();
 }

      catch (InterruptedException ie)
 {
 }

      event.write(e);
    }
  }
}

Code 6 – Event Handling – Active Approach with wait/notify

3.1.2.1.4 Active Approach with Channels
The final method came from a realisation of what was actually trying to be achieved here was a
synchronised communication between two processes. The obvious mechanism available to perform
this kind of synchronisation provided by the Channel classes developed as part of this package.
This was so obvious it took four versions and about three months to notice it. This is however
reassuring in the respect that the Channel does have a very practical use that simplifies a design.

The synchronisation required between the processes is for the event handling process in the
ActiveButton to wait for the event thread to notify it when an event has happened and to pass it
the event parameter to it. The implementation does not want to block while the event handling
process is writing to the event Channel so that any notifications should be discarded in this case.
This functionality can be implemented by using a Channel that has an OverWrittingBuffer
that only stores one Object and overwrites this if it has not been read.

The implementation of the event handling is now simplified to have an extra attribute
eventNotify that is an instance of an One2OneChannel with an OverWritingBuffer of



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 15 4-May-1998

size 1. The actionPerformed(…)  method will write the ActionEvent instance down the
eventNotify  Channel. The process body reads from the eventNotify  Channel and the
writes the action command down the event  Channel. Any further calls to
actionPerformed(…)  while the even handling process is writing will be discarded.

As the synchronisation is being performed by the Channel, it is safe to remove the method
synchronisation.

NOTE: This does assume that the process is executed in one thread only and that the event thread
is the only one to call the actionPerformed(…)  method. As the actual
implementation does not reveal a reference to the process or the method this cannot occur
therefore it is safe.

import java.awt.*;
import java.awt.event.*;
import jcsp.lang.*;
import jcsp.util.*

public class ActiveButton extends Button implements CSProcess,
    ActionListener {
  private Channel eventNotify =
    new One2OneChannel(new OverWritingBuffer(1));
  private ChannelOutput event;

  public ActiveButton(ChannelOutput event, String s) {
    super(s);
    this.event = event;
  }

  public void actionPerformed(ActionEvent e) {
    eventNotify.write(e);
  }

  public void run () {
    while (true) {

ActionEvent e = (ActionEvent)eventNotify.read();
      event.write(e.getActionCommand());
    }
  }
}

Code 7 – Event Handling – Active Approach with Channels

3.1.2.2 Class Design
After implementing the ActiveButton class, it became apparent that it would not be necessary
to implement the event handling code for each component. Instead, it was possible to develop one
event handler for each type of event. The subclasses of the components would then only need to
create an instance of this class and register it as a listener and add it to the Parallel construct for
the class (see section 3.1.3).



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 16 4-May-1998

The rest of this section describes each of the event handlers for the different event types. There is
one handler per EventListener interface provided in the java.awt.event package. If a
new event Listener were added then a new event handler class would be required. The following
table summarises the event handlers.

Class Listener Event Components
ActionEventHandler ActionListener ActionEvent Button,

List,
MenuItem,
TextField

AdjustmentEventHandler AdjustmentListener AdjustmentEvent Scrollbar
ItemEventHandler ItemListener ItemEvent Checkbox,

CheckboxMenuItem,
Choice,
List

TextEventHandler TextListener TextEvent TextArea,
TextField

ComponentEventHandler ComponentListener ComponentEvent Component
ContainerEventHandler ContainerListener ContainerEvent Container
FocusEventHandler FocusListener FocusEvent Component
KeyEventHandler KeyListener KeyEvent Component
MouseEventHandler MouseListener MouseEvent Component
MouseMotionEventHandler MouseMotionListener MouseMotionEvent Component
WindowEventHandler WindowListener WindowEvent Window

In general, the event handlers for the semantic events send data that is associated with the event
(such as the name of the button) down the event Channel. The event handlers for the low-level
events send the event object down the event Channel.

3.1.2.2.1 ActionEventHandler
The ActionEventHandler class is a process that can be used to send event notifications down
the event Channel when a component generates an ActionEvent. The class implements the
ActionListener interface so that it can be registered with any component that has an
addActionListener(ActionListener) method. The class implements the CSProcess
so the process can be run as part of a Parallel construct.

The data that is sent down the event Channel is the action command for the event obtained using
the getActionCommand() method on the ActionEvent instance for the event.

package jcsp.awt.event;
import java.awt.event.*
import jcsp.lang.*;
import jcsp.util.*;

public class ActionEventHandler implements CSProcess, ActionListener {
  private Channel eventNotify =
    new One2OneChannel(new OverWrittingBuffer(1));
  private ChannelOutput event;

  public ActionEventHandler(ChannelOutput event) {
    this.event  = event;
  }

continiued…
  public void actionPerformed(ActionEvent e) {



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 17 4-May-1998

   eventNotify.write(e);
  }

  public void run () {
    while (true) {
      ActionEvent e = (ActionEvent)eventNotify.read();
      event.write(e.getActionCommand());
    }
  }
}

Code 8 – ActionEventHandler

3.1.2.2.2 AdjustmentEventHandler
The AdjustmentEventHandler class is a process that can be used to send event notifications
down the event Channel when a component generates an ActionEvent. The class
implements the AdjustmentListener interface so that it can be registered with any component
that has an addAdjustmentListener(AdjustmentListener) method. The class
implements the CSProcess so the process can be run as part of a Parallel construct.

The data that is sent down the event Channel is an Integer representing the value of the
adjustable component that generated the event. The value is obtained using the getValue()
method on the AdjustmentEvent instance for the event.

The value is sent down the channel rather than the AdjustmentEvent instance to simplify the
implementation of processes that perform some action based on this value. This does mean some
information about the event is lost but generally, this information is not required.

package jcsp.awt.event;
import java.awt.event.*
import jcsp.lang.*;
import jcsp.util.*;

public class AdjustmentEventHandler
    implements CSProcess, AdjustmentListener {
  private ChannelOutput event;
  private Channel eventNotify =
    new One2OneChannel(new OverWritingBuffer(1));

  public AdjustmentEventHandler(Channel event) {
    this.event  = event;
  }

  public void adjustmentValueChanged(AdjustmentEvent e) {
    eventNotify.write(e);
  }

continiued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 18 4-May-1998

  public void run () {
    while (true) {
      AdjustmentEvent e = (AdjustmentEvent)eventNotify.read();
      event.write(new Integer(e.getValue()));
    }
  }
}

Code 9 – AdjustmentEventHandler

3.1.2.2.3 ItemEventHandler
The ItemEventHandler class is a process that can be used to send event notifications down the
event Channel when a component generates an ItemEvent. The class implements the
ItemListener interface so that it can be registered with any component that has an
addItemListener(ItemListener) method. The class implements the CSProcess so the
process can be run as part of a Parallel construct.

The data that is sent down the event Channel consists of two separate objects. The first is a
Boolean that either has the value Boolean.TRUE or Boolean.FALSE depending on whether
the event was for an item being selected or deselected. The second is an object that was selected or
deselected. The item is obtained using the getItem() method on the ItemEvent instance for
the event.

As the channel communication sends two objects per event, the Channel should only be an
One2OneChannel, otherwise the objects may be read by different processes thus causing non-
determinism.

package jcsp.awt.event;
import java.awt.event.*
import jcsp.lang.*;
import jcsp.util.*;

public class ItemEventHandler
    implements CSProcess, ItemListener {
  private ChannelOutput event;
  private Channel eventNotify =
    new One2OneChannel(new OverWritingBuffer(1));

  public ItemEventHandler(ChannelOutput event) {
    this.event  = event;
  }

  public void itemStateChanged(ItemEvent e) {
    eventNotify.write(e);
  }

continiued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 19 4-May-1998

  public void run () {
    while (true) {
      ItemEvent e = (ItemEvent)eventNotify.read();
      if (e.getStateChange() == ItemEvent.SELECTED) {
        event.write(Boolean.TRUE);
      }
      else {
        event.write(Boolean.FALSE);
      }
      event.write(e.getItem());
    }
  }
}

Code 10 – ItemEventHandler

3.1.2.2.4 TextEventHandler
The TextEventHandler class is a process that can be used to send event notifications down the
event Channel when a component generates a TextEvent. The class implements the
TextListener interface so that it can be registered with any component that has an
addTextListener(TextListener) method. The class implements the CSProcess so the
process can be run as part of a Parallel construct.

The data that is sent down the event Channel is the current text value from the component. The
text is obtained using the getText() method on the source component from the TextEvent
instance for the event.

NOTE: This is currently the way it is implemented, this in not necessarily the best way to handle
text events as a lot of information about the event is lost and it may be useful to software
constructors. A future version may send the source component down the Channel.

package jcsp.awt.event;
import java.awt.event.*
import jcsp.lang.*;
import jcsp.util.*;

public class TextEventHandler
    implements CSProcess, TextListener {
  private ChannelOutput event;
  private Channel eventNotify =
    new One2OneChannel(new jcsp.util.OverWritingBuffer(1));

  public TextEventHandler(ChannelOutput event) {
    this.event = event;
  }

  public void textValueChanged(TextEvent e){
    eventNotify.write(e);
  }

continiued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 20 4-May-1998

  public void run () {
    TextEvent e = (TextEvent)eventNotify.read();
    event.write(((TextComponent)e.getSource()).getText());
  }
}

Code 11 – TextEventHandler

3.1.2.2.5 ComponentEventHandler
The ComponentEventHandler class is a process that can be used to send event notifications
down the event Channel when a component generates a ComponentEvent. The class
implements the ComponentListener interface so that it can be registered with any component
that has an addComponentListener(ComponentListener) method. The class
implements the CSProcess so the process can be run as part of a Parallel construct.

NOTE: The Component class has an addComponentListener(…)  method. Therefore, all
components can generate a ComponentEvent.

The data that is sent down the event  Channel is the ComponentEvent.

3.1.2.2.6 ContainerEventHandler
The ContainerEventHandler class is a process that can be used to send event notifications
down the event  Channel when a component generates a ContainerEvent. The class
implements the ContainerListener interface so that it can be registered with any component
that has an addContainerListener(ContainerListener)  method. The class
implements the CSProcess so the process can be run as part of a Parallel construct.

NOTE: The Container class has an addContainerListener(…)  method.

The data that is sent down the event  Channel is the ContinerEvent.

3.1.2.2.7 FocusEventHandler
The FocusEventHandler class is a process that can be used to send event notifications down
the event  Channel when a component generates a FocusEvent. The class implements the
FocusListener interface so that it can be registered with any component that has an
addFocusListener(FocusListener)  method. The class implements the CSProcess so
the process can be run as part of a Parallel construct.

NOTE: The Component class has an addFocusListener(…)  method.

The data that is sent down the event  Channel is the FocusEvent.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 21 4-May-1998

3.1.2.2.8 KeyEventHandler
The KeyEventHandler class is a process that can be used to send event notifications down the
event Channel when a component generates a KeyEvent. The class implements the
KeyListener interface so that it can be registered with any component that has an
addKeyListener(KeyListener) method. The class implements the CSProcess so the
process can be run as part of a Parallel construct.

NOTE: The Component class has an addKeyListener(…)  method.

The data that is sent down the event  Channel is the KeyEvent.

3.1.2.2.9 MouseEventHandler
The MouseEventHandler class is a process that can be used to send event notifications down
the event  Channel when a component generates a MouseEvent. The class implements the
MouseListener interface so that it can be registered with any component that has an
addMouseListener(MouseListener)  method. The class implements the CSProcess so
the process can be run as part of a Parallel construct.

NOTE: The Component class has an addMouseListener(…)  method.

The data that is sent down the event  Channel is the MouseEvent.

3.1.2.2.10 MouseMotionEventHandler
The MouseMotionEventHandler class is a process that can be used to send event notifications
down the event  Channel when a component generates a MouseMotionEvent. The class
implements the MouseMotionListener interface so that it can be registered with any
component that has an addMouseMotionListener(MouseMotionListener)  method.
The class implements the CSProcess so the process can be run as part of a Parallel construct.

NOTE: The Component class has an addMouseMotionListener(…)  method.

The data that is sent down the event  Channel is the MouseMotionEvent.

3.1.2.2.11 WindowEventHandler
The WindowEventHandler class is a process that can be used to send event notifications down
the event  Channel when a component generates a WindowEvent. The class implements the
WindowListener interface so that it can be registered with any component that has an
addWindowListener(WindowListener)  method. The class implements the CSProcess
so the process can be run as part of a Parallel construct.

NOTE: The Widnow class has an addWindowListener(…)  method.

The data that is sent down the event  Channel is the WindowEvent.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 22 4-May-1998

3.2 Configuration

3.2.1 AWT Configuration
In Java components can have their properties (i.e. colour, size) configured by invoking methods on
an instance of the component. Most of these methods are defined in the Component class and
therefore can be used for all the components. The subclasses of Component may define extra
methods to configure the properties specific to that component. For example, the Scrollbar class
provides methods to change the scale and value of the Scrollbar.

It is possible that several threads try to invoke these methods on an instance Component at the
same time. The implementations for these methods update the state and during execution, the state
may be in an inconsistent state. The methods are synchronised so that only one method may be
updating the state at any time.

The following table summarises all of the configuration methods provided by each class for
configuration.

Component
setBackground(Color) Sets the background color of this component.
setBounds(int, int, int, int) Moves and resizes this component.
setBounds(Rectangle) Moves and resizes this component to conform to the new

bounding rectangle r.
setCursor(Cursor) Set the cursor image to a predefined cursor.
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setFont(Font) Sets the font of this component.
setForeground(Color) Sets the foreground color of this component.
setLocale(Locale) Sets the locale of this component.
setLocation(int, int) Moves this component to a new location.
setLocation(Point) Moves this component to a new location.
setName(String) Sets the name of the component to the specified string.
setSize(Dimension) Resizes this component so that it has width d.width and

height d.height.
setSize(int, int) Resizes this component so that it has width width and

height.
setVisible(boolean) Shows or hides this component depending on the value of

parameter b.
Button
setActionCommand(String) Sets the command name for the action event fired by this

button.
setLabel(String) Sets the button’s label to be the specified string.
Canvas
CheckBox
setCheckboxGroup(CheckboxGroup) Sets this check box’s group to be the specified check box

group.
setLabel(String) Sets this check box’s label to be the string argument.
setState(boolean) Sets the state of this check box to the specified state.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 23 4-May-1998

CheckboxMenuItem
setLabel(String) Sets this check box’s label to be the string argument.
setState(boolean) Sets the state of this check box to the specified state.
Choice
add(String), addItem(String) Adds an item to this Choice menu.
insert(String, int) Inserts the item into this choice at the specified position.
remove(int) Removes an item from the choice menu at the specified

position.
remove(String) Remove the first occurrence of item from the Choice menu.
removeAll() Removes all items from the choice menu.
select(int) Sets the selected item in this Choice menu to be the item at

the specified position.
select(String) Sets the selected item in this Choice menu to be the item

whose name is equal to the specified string.
Label
setAlignment(int) Sets the alignment for this label to the specified alignment.
setText(String) Sets the text for this label to the specified text.
List
add(String), addItem(String) Adds an item to this scrolling list.
add(String, int),
addItem(String, int)

Adds the specified item to the scrolling list at the specified
position.

remove(int) Removes an item from the scrolling list at the specified
position.

remove(String) Remove the first occurrence of item from the scrolling list.
removeAll() Removes all items from the scrolling list.
replaceItem(String, int) Replaces the item at the specified index in the scrolling list

with the new string.
select(int) Sets the selected item in this Choice menu to be the item at

the specified position.
setMultipleMode(boolean) Sets the flag that determines whether this list allows

multiple selections.
Scrollbar
setBlockIncrement(int) Sets the block increment for this scroll bar.
setMaximum(int) Sets the maximum value of this scroll bar.
setMinimum(int) Sets the minimum value of this scroll bar.
setOrientation(int) Sets the orientation for this scroll bar.
setUnitIncrement(int) Sets the unit increment for this scroll bar.
setValue(int) Sets the value of this scroll bar to the specified value.
setValues(int, int, int, int) Sets the values of four properties for this scroll bar.
setVisibleAmount(int) Sets the visible amount of this scroll bar.
TextComponent
selectAll() Selects all the text in this text component.
setCaretPosition(int) Sets the position of the text insertion caret for this text

component.
setEditable(boolean) Sets the flag that determines whether this text component is

editable.
setSelectionEnd(int) Sets the selection end for this text component to the

specified position.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 24 4-May-1998

setSelectionStart(int) Sets the selection start for this text component to the
specified position.

setText(String) Sets the text that is presented by this text component to be
the specified text.

TextArea
append(String) Appends the given text to the text area’s current text.
insert(String, int) Inserts the specified text at the specified position in this

text area.
replaceRange(String, int, int) Replaces text between the indicated start and end positions

with the specified replacement text.
setColumns(int) Sets the number of columns for this text area.
setRows(int) Sets the number of rows for this text area.
TextField
setColumns(int) Sets the number of columns for this text area.
setEchoChar(char) Sets the echo character for this text field.

The classes also provide methods to obtain the current state of the component. These methods are
also synchronised so that the state is not changed while it is being executed.

3.2.2 Implementation
The implementation of configuration for the active components currently does not provide the same
level of configuration as provided by the AWT. The inspection of the state has also not been
implemented. The reasons for the non-completeness of functionality were mainly due to time
constraints and the desire for simplicity of the interface. In future versions the library will be
extended to provide the same level of configuration.

Several methods can be used to implement the configuration. Each of these has a process within the
component that will read from one or more channels and update the state of the component based
on the value received. Two methods were considered one Channel per component or one Channel
per type of configuration.

Only a subset of the configuration is provided, the table below summarises what has been
implemented.

NOTE: The original configuration provided by the methods on the components can also be used
but their use should be restricted to when the components are constructed.

Component
Button
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setLabel(String) Sets the button’s label to be the specified string.
Canvas
CheckBox
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setLabel(String) Sets this check box’s label to be the string argument.
setState(boolean) Sets the state of this check box to the specified state.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 25 4-May-1998

CheckBoxMenuItem
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setLabel(String) Sets this check box’s label to be the string argument.
setState(boolean) Sets the state of this check box to the specified state.
Choice
select(int) Sets the selected item in this Choice menu to be the item at

the specified position.
select(String) Sets the selected item in this Choice menu to be the item

whose name is equal to the specified string.
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
Label
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setText(String) Sets the text for this label to the specified text.
List
select(int) Sets the selected item in this Choice menu to be the item at

the specified position.
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
Scrollbar
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setValue(int) Sets the value of this scroll bar to the specified value.
TextComponent
setText(String) Sets the text that is presented by this text component to be

the specified text.
TextArea
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
append(String) Appends the given text to the text area’s current text.
TextField
setEnabled(boolean) Enables or disables this component, depending on the

value of the parameter b.
setText(String) Sets the text that is presented by this text component to be

the specified text.

3.2.2.1 Configuration

3.2.2.1.1 One Channel per Component
In this approach, one event channel is used to configure the component. The type of configuration
performed depends upon the type of the object sent down the channel. The following diagram
shows an active component with one configuration channel.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 26 4-May-1998

ActiveButtonconfigure

Figure 6 – Process Diagram – single channel configuration

The following example shows how configuration using a single channel can be implemented.

import java.awt.*;
import jcsp.lang.*;
import jcsp.util.*

public class ActiveButton extends Button implements CSProcess {
  private ChannelInput configure;

  public ActiveButton(ChannelInput configure, String s) {
    super(s);
    this.configure = configure;
  }

  public void run () {
    while (true) {
      Object message = configure.read();
      if (message instanceof String) {
        setLabel((String)message);
      }
      else if (message instanceof Boolean) {
        if (message == Boolean.TRUE) {
          setEnabled(true);
        }
        else if (message == Boolean.FALSE) {
          setEnabled(false);
        }
        else {
        }
      }
    }
  }
}

Code 12 – Configuration – Single Channel

In the constructor the channel is passed into the component and stored in a private attribute. The
component implements the CSProcess interface and defines the run() method to perform the
configuration.

The run() method has an infinite loop that reads one value from the configure Channel into
a local variable of type Object. The method then has an if else if ladder that performs the
configuration based on either the type of the object or by comparing it against a know constant. In
the case of the ActiveButton if the value is an instance of String the setLabel(…)  method



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 27 4-May-1998

will be invoked with the value. If the value is an instance of Boolean one of three things can
happen. If it is the instance Boolean.TRUE the Button will be enabled, the instance
Boolean.FALSE the Button will be disabled, otherwise it will be ignored. If the value is of any
other type it will be ignored.

NOTE: the constants Boolean.TRUE and Boolean.FALSE are used to save on garbage
collection and this frees up other Boolean values to be used for other configuration.

The disadvantage with this approach is that it is only possible to perform one type of configuration
per type of object sent down the channel. For example, two methods have Color as a parameter
setForeground(Color) and setBackground(Color). If a Color was received on the
channel what type of configuration should be performed? This can be solved by either wrapping
these values up in a protocol class that has an identifier of the type of configuration required or a
constant value could be sent before the value. Also if configuration requires more than one value
these will need to be wrapped up or sent in sequence down the channel.

If the values were wrapped up in a protocol this would complicate the interface. If the values were
sent in sequence, the configuration would be restricted to using an One2OneChannel otherwise
the order of the messages could not be guaranteed (this would not be a problem if claims2 could be
made on channels).

3.2.2.1.2 One Channel per configuration
In this approach, one event channel per type of configuration is used to configure the component.
The type of configuration performed depends upon which channel the message is received. The
following diagram shows an active component with two configuration channels.

ActiveButtonlabel

enable

Figure 7 – Process Diagram – multiple channel configurations

The following example shows how configuration using multiple channels can be implemented.

                                                
2 The concept of claiming a channel was introduced in OCCAM3 for shared channels. Once a channel has been claimed
it can only be used by that channel for output (grant is used to claim for input). The messages can then be guaranteed to
arrive in the order sent. This will be added to the JCSP library in future releases.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 28 4-May-1998

import java.awt.*;
import jcsp.lang.*;
import jcsp.util.*

public class ActiveButton extends Button implements CSProcess {
  private ChannelInput enable;
  private ChannelInput label;

  public ActiveButton(ChannelInput enable, ChannelInput label,
                      String s) {
    super(s);
    this.enable = enable;
    this.label = label;
  }

  public void run () {
    Alternative alt = new Alternative();
    ChannelInput chans = {enable, label};
    while (true) {
      switch (alt.select(chans)) {
        case 0:
          Boolean b = (Boolean)enable.read();
          setEnabled(b.booleanValue());
        break;
        case 1:
          String l = (String)label.read();
          setLabel(l);
        break;
      }
    }
  }
}

Code 13 – Configuration – Multiple Channels

In the constructor the channels used to configure the label and to enable the component are passed
into the component and stored in private attributes. The component implements the CSProcess
interface and defines the run() method to perform the configuration.

The run() method has an infinite loop. The loop alternates on the enable and label channels.
If the enable channel is selected a Boolean is read from the channel and the
setEnable(Boolean) method is invoked with the booleanValue() of the Boolean. If
the label channel is selected a String is read from the channel and the setLabel(String)
method is invoked with the value.

NOTE: If any other type than the expected type is received on the channels a
ClassCastException will be raised and the process will terminate abnormally.

The disadvantage with this approach is that the constructor may become very large if many
different types of configurations are performed. This also means that the software constructor will
have to create one Channel for each configuration type even if it is not going to be used. This can
be solved by either defining the channels as attributes on the component, providing



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 29 4-May-1998

setXXXChannel(..) methods for each configuration rather than a constructor or the
constructor expects an array of configuration channels.

This approach also suffers from the problem of multiple data configuration that the single channel
method suffers from.

3.2.2.2 Class Design
The implementation uses the one channel per component approach as it makes the interface easier
to use. This does however restrict the configurations that can be performed (this is why not all the
configurations are implemented).

As each component has different configuration requirements each component must implement the
required configuration as a process dedicated to that component (sub classes may be able to reuse
the configuration process).

NOTE: There are too many classes to describe the implementation of them. Refer to the on-line
documentation for each component to see what configuration is provided.



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 30 4-May-1998

3.3 Active Components
This section discusses how the event handling and configuration described above can be joined
together to make the active components. All the components use the same approach so the
discussion will only consider the ActiveButton.

The following diagram shows the external channel interface to a component along with the internal
processes.

ActiveButton

ActiveButton.Configure
configure

ActionEventHandler
event

Figure 8 – Process diagram – active components

3.3.1 Implementation
Each component implements the CSProcess interface. The run() method invokes run() on
the par attribute (of type Parallel) that contains all the processes created by this component.

The constructor of the component is passed the configure and event channels. If the event
channel is not null a new ActionEventHandler process is created, registered as an
ActionListener with this component and added to the par construct. If the configure
channel is not null a new Configure process will be created and added to the par construct.

The following example shows the ActiveButton is implemented (all components are similar).

package jcsp.awt;
import java.awt.*;
import jcsp.lang.*;
import jcsp.awt.event.*;

public class ActiveButton extends Button implements CSProcess {
  protected Parallel par;

  public ActiveButton(ChannelInput configure, ChannelOutput event,
                      String s) {
    super(s);
    par = new Parallel();

    if (event != null) {
      ActionEventHandler handler = new ActionEventHandler(event);
      addActionListener(handler);
      par.addProcess(handler);
    }

continued…



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 31 4-May-1998

    if (configure != null) {
      par.addProcess(new Configure(configure));
    }
  }

   public void run() {
    par.run();
  }

  // Definition of other methods

  // Definition of configure class
}

Code 14 – ActiveButton class

Each component defines a nested class Configure that implements the CSProcess interface
and contains the code in the run() method to configure the component upon receiving values. The
following code shows how this is implemented for the ActiveButton component.

  protected class Configure implements CSProcess {
    private ChannelInput configure;

    public Configure(ChannelInput configure) {
      this.configure = configure;
    }

    public void run() {
      while (true) {
        Object message = configure.read();
        if (message instanceof String) {
          setLabel((String)message);
        }
        else if (message instanceof Boolean) {
          if (message == Boolean.TRUE) {
            setEnabled(true);
          }
          else if (message == Boolean.FALSE) {
            setEnabled(false);
          }
        }
      }
    }
  }
}

Code 15 – ActiveButton – Configure class

It is also necessary to provide a mechanism to have a channel interface to the low-level events. As
this is not always required when constructing a component one of the
addXXXEventChannel(…)  methods can be used to create a new event handler for the
component with the Channel specified. These methods must be invoked before the component is



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 32 4-May-1998

executed as part of a Parallel construct, otherwise the handler will not be executed. The
following code shows how these methods are implemented.

NOTE: Windows and containers will have extra methods to listen for those events.

The methods check to see if the Channel is not null. Then it creates a new event handler for that
event type. The event handler is registered as an event listener with this component. Finally the
process is added to the Parallel construct for the component.

  public void addComponentEventChannel(ChannelOutput event) {
    if (event != null) {
      ComponentEventHandler handler =
        new ComponentEventHandler(event);
      addComponentListener(handler);
      par.addProcess(handler);
    }
  }

  public void addFocusEventChannel(ChannelOutput event) {
    if (event != null) {
      FocusEventHandler handler = new FocusEventHandler(event);
      addFocusListener(handler);
      par.addProcess(handler);
    }
  }

  public void addKeyEventChannel(ChannelOutput event) {
    if (event != null) {
      KeyEventHandler handler = new KeyEventHandler(event);
      addKeyListener(handler);
      par.addProcess(handler);
    }
  }

  public void addMouseEventChannel(ChannelOutput event) {
    if (event != null) {
      MouseEventHandler handler = new MouseEventHandler(event);
      addMouseListener(handler);
      par.addProcess(handler);
    }
  }

public void addMouseMotionEventChannel(ChannelOutput event) {
  if (event != null) {
    MouseMotionEventHandler handler =
      new MouseMotionEventHandler(event);
    addMouseMotionListener(handler);
    par.addProcess(handler);
  }
}

Code 16  - ActiveButton – addXXXEventChannel() methods



Java Communicating Sequential Processes Design of JCSP AWT classes

Paul Austin 33 4-May-1998

Bibliography

[1] Paul. D. Austin. 1998, ’Design of JCSP Language classes’, University of Kent Canterbury
[2] JavaSoft. 1997, 'JDK™ 1.1 Documentation', Sun Microsystems.

http://www.javasoft.com/products/jdk/1.1/docs/
[3] C. A. R. Hoare. 1985, 'Communicating Sequential Processes', Prentice Hall.
[4] Martin Fowler with Kendall Scott. 1997, 'UML Distilled', Addison Wesley, ISBN 0-201-32563-

2
[5] CGS-THOMSON Microelectronics Ltd. 1995, 'OCCAM 2.1 reference manual', Prentice Hall

International (UK) Ltd.
[6] Gamma, Helm, Johnson, Vlissides. 1995, Design Patterns (Elements of Reusable Object-

Oriented Software), Addison-Wesley


	Contents
	
	1 Introduction
	2 Functionality
	2.1 CSP Model

	3 Design and Implementation
	3.1 Event Handling
	3.1.1 Java Event Model
	3.1.1.1 JDK 1.0 Model
	3.1.1.2 JDK 1.1 Delegation Model
	3.1.1.3 Comparison & Summary
	3.1.1.3.1 JDK 1.0 API
	3.1.1.3.1.1 Advantages
	3.1.1.3.1.2 Disadvantages

	3.1.1.3.2 JDK 1.1 API
	3.1.1.3.2.1 Advantages
	3.1.1.3.2.2 Disadvantages



	3.1.2 Implementation
	3.1.2.1 Event Notification
	3.1.2.1.1 Passive Approach
	3.1.2.1.2 Active Approach With A Polling Loop
	3.1.2.1.3 Active Approach With wait/notify
	3.1.2.1.4 Active Approach with Channels

	3.1.2.2 Class Design
	3.1.2.2.1 ActionEventHandler
	3.1.2.2.2 AdjustmentEventHandler
	3.1.2.2.3 ItemEventHandler
	3.1.2.2.4 TextEventHandler
	3.1.2.2.5 ComponentEventHandler
	3.1.2.2.6 ContainerEventHandler
	3.1.2.2.7 FocusEventHandler
	3.1.2.2.8 KeyEventHandler
	3.1.2.2.9 MouseEventHandler
	3.1.2.2.10 MouseMotionEventHandler
	3.1.2.2.11 WindowEventHandler



	3.2 Configuration
	3.2.1 AWT Configuration
	3.2.2 Implementation
	3.2.2.1 Configuration
	3.2.2.1.1 One Channel per Component
	3.2.2.1.2 One Channel per configuration

	3.2.2.2 Class Design


	3.3 Active Components
	3.3.1 Implementation


	Bibliography

