Java Communicating Sequential Processes Design of JCSP AWT classes

Java Communicating

Sequential Processes
‘Design Of JCSP AWT Classes’

Paul Austin

pdal@ukc.ac.uk

University Of Kent Canterbury

BSc Computer Science with an Industrial Year
3% Year Project

Paul Austin 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

Contents
1 Introduction 1
2  Functionality 2
21 CSP Modé 2
3 Design and Implementation 3
3.1 Event Handling 3
311 JavaEvent Model 3
3.1.1.1 JDK 1.0 Model 3
3.1.1.2 JDK 1.1 Delegation Model 8
3.1.1.3 Comparison & Summary 10
31131 JIDK 1.0AP 10
31132 JIK11AP 10
3.1.2 Implementation 11
3.1.2.1 Event Notification 11
31211 Passive Approach 11
3.1.21.2 Active Approach With A Polling Loop 12
3.1.21.3 Active Approach With wait/notify 13
3.1.21.4 Active Approach with Channels 14
3.1.2.2 ClassDesign 15
3.1.221 ActionEventHandler 16
31222 AdjustmentEventHandler 17
31223 ItemEventHandler 18
31224 TextEventHandler 19
3.1.2.25 ComponentEventHandler 20
3.1.22.6 ContainerEventHandler 20
3.1.2.2.7 FocusEventHandler 20
3.1.22.8 KeyEventHandler 21
3.1.22.9 MouseEventHandler 21
3.1.2.2.10 MouseM otionEventHandler 21
3.1.2.2.11 WindowEventHandler 21
3.2 Configuration 22
321 AWT Configuration 22
3.22  Implementation 24
3.22.1 Configuration 25
3.221.1 OneChannel per Component 25
3.2.2.1.2 One Channel per configuration 27
3.2.2.2 ClassDesign 29
3.3 Active Components 30
331 Implementation 30

Paul Austin [ 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

Figures

Diagrams

L o 01 R = 101 () 1Y (o L=
Figure 2 - Relationship between 1.0 AWT COMPONENLES.........cccuierrieierierieeieeeeeeeeeeessessessseesesssesssesssesssesssesssssessssessesnes
Figure 3 - Interaction between event handling MELhOAS.............ccv i
Figure 4 - Relationship between 1.1 AWT COMPONENES........c.cccvieirieieeieeieeiteeeeeeeeeeseesessseesesssesssessssssssesssesssssessssessennes
Figure 5 — Process Diagram — event NOtfICAtION ............uuuuiiiiiiiiiiiiiiee e cmmmmmm e
Figure 6 — Process Diagram — single channel configuration ... e
Figure 7 — Process Diagram — multiple channel configurations
Figure 8 — Process diagram — active COMPONEIES ........uiiiiiiiiiiiiiie ettt e e e et e e e s st b s— e

Code Fragments

Code 1 - Event handling using 1.0 Event Model (EXample 1) .........oiiiiiiiiiiiir it e e 6
Code 2 - Event handling using 1.0 Event Model (EXampPle 2) .........oiiiiiiiiiiiie it e e 7
Code 3 - Event handling using 1.1 Event Model (EXample 1) .....coooioiiiiiiiiiiieeceeee e e e 10
Code 4 — Event Handling — PasSiVe APPIOACK ........uuiiiiiiiiiiiite ettt e e e 12
Code 5 — Event Handling — Active Approach with A PolliNg LOOP ........eeviiiiiiiiiiiiiiiicceeeie e 13
Code 6 — Event Handling — Active Approach with Wait/Notify ... e 14
Code 7 — Event Handling — Active Approach with Channels...........ccccccoiiiiiiiiiiie e 15
Code 8 — ACHONEVENTHANGIET .......ccoiiiiiiiie et mmee s

Code 9 — AdjustmentEventHandler

Code 10 — HeMEVENTHANAIET .........oeiiiiii e

Code 11 — TeXIEVENTHANGAIET ...t e s e e mmeeeenne e e e e e r e e e e e e e nnnrees
Code 12 — Configuration — Single Channel ... e e

Code 13 — Configuration — Multiple Channels

Code 14 — ACHVEBULION ClASS.......oiiiiiiiie ittt e

Code 15 — ACtiVEBULION — CONFIGUIE ClASS. ... .uuiiiieiiiiiiiie ettt s m——— 112t
Code 16 - ActiveButton — addXXXEventChannel() Methods...........cooccciiiiiiiiiiiiieecce e e eeeee s 32

Paul Austin i 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

1 Introduction

This document describes the functionality and design of the classes in the Java Communicating
Sequential Processes!” package that are used to provide a CSP [? Channel interface to the Java ®
Abstract Window Toolkit (AWT) user interface components. The design will be described using the
Unified Modelling Language!” (UML) notation with descriptive text describing why certain
decisions were made. The discussion will assume knowledge of the facilities and concepts of the
CSP model in the OCCAM ' programming language and of programming in the Java programming
language.

Previous work was done at the University of Kent at Canterbury by David Beckett to provide
Channel interfaces to two of the AWT Components, But t on and Scr ol | bar . These are used as
astarting point to developing Channel interfaces for most of the classesinthej csp. awt package.

Paul Austin 1 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

2  Functionality

This section describes the functionality that the library must implement to provide features similar
to those offered by the AWT but using the JCSP Channel for event notification and configuration.

The following list summarises the components that should be implemented.

* Applet

e Button

e Canvas

*  Checkbox
* CheckboxMenultem
» Choice

e Component
e Container

» Diadog

» FileDiaog
e Frame
 Labd

o List

e  Menultem
e Pand

e ScrollPane
e Scrollbar

e TextArea
 TextFied

e Window

2.1 CSP Model

In the CSP model, channels are used instead of methods to send messages to an object. The
advantages of this approach are.

1. The state of the object cannot be changed behind its back.

2. Objects can be joined together without each one knowing each others type.

Channels are also used to send event notifications for a component. When an event is generated, an
object representing that event is sent down a channel by the component. This can then be used by
other processes to handle the event.

P ActiveButton >

Figurel - Button Model

Paul Austin 2 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

3 Design and Implementation

The design of the new CSP style components is discussed below in three sections.

1. How to convert the Java Event Model into a Channel model.

2. How to convert the Java method based configuration model into a Channel model.

3. How to bring both parts together to implement the full componentsin an extendible way.

3.1 Event Handling

3.1.1 Java Event Model

This section serves as an introduction to event handling in the Java programming language. This
will be used as a base for the discussions later in this document on how to implement the CSP
channel model over the top of the Java model.

There are three parts to this section.

1. Description of the original model used in Java 1.0 API.

2. Description of the new event model introduced in the Java 1.1 API

3. A comparison of the two approaches, with the reasons for choosing one above the other.

3.1.1.1 JDK 1.0 Model

In the Java 1.0 library, the event handling is performed using an inheritance-based model for event
handling. Each Conponent (i.e. But t on, Fr ane, Text Fi el d etc) inthe AWT is a subclass of
the class Conponent which defines the methods required to handle events. To handle events for a
Conponent using thismodel it is necessary to subclass either the actua Conponent or it's
parentCont ai ner and override the event methods with the event handling code.

The diagram below shows part of the AWT inheritance hierarchy. Note all the classes inherit from
the Conponent class, which defines the event handling methods with no implementation. The
Cont ai ner class is the super class of all tGenponent subclasses that contain other

Conponent s. TheOKBut t on class is &ut t on with theact i on() method overridden to

handle the button press events.

Paul Austin 3 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

Component

postEvent()
handleEvent() <

action()
mouseUp()

Button TextField Container
OKButton Window
action() 4
Frame

Figure 2 - Relationship between 1.0 AWT Components

The diagram below shows which methods are called for different event types.

Paul Austin 4 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

: Com ponent : Container
postEvent()

[id == MOUSE_ENTER] gnter()
lid == MOUSE_EXIT] mouse Exit()
[id == MOUSE_MOVE] mouseMove()

P
[id == MOUSE_DOWN] mouseDown()

P
id == MOUSE_DRAG] mouseDrag()
id == MOUSE_UP] mouseUp()
[id IN (KEY_PRESS, keyDown( )
KEY_ACTION)] :
[id IN (KEY_RELEASE, keyUp()
KEY_ACTION_RELESE)] :
[id == ACTION_EVENT)] action()
[id == GOT_FOCUS] gotFocus()
[[d == LOST_FOCUS] lostFocus()

-

[eventHandled == false] handleEvent() /U

Figure 3 - Interaction between event handling methods

When an event happens to a component anew Event object is generated and the event handling
thread invokesthe post Event () method on that component. The role of this method is co-
ordinate the event handling process. First, it invokes the handl eEvent () method on itself to
give the subclass of the component a chance to handle the event. If the event if not fully handled
and the component has a parent container the handl eEvent () method isinvoked on the parent
container. Thehandl eEvent () method contains a switch statement which will invoke utility
methods to handle different events depending on the type of the event. For example, if the event
typeisMOUSE_UPthenmouseUp(e, e.x, e.y) method will beinvoked.

Paul Austin 5 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

In this model, there are two options if you want to handle an event for a component in an
application. Both examples will assume we are handling events for two buttons ‘OK’ and ‘Cancel’
contained within &r ane.

The first option is to create a new subclasSwf t on for each of the two buttons. With this

option, two methods can be overridden to provide the event handling code. The two methods are
action(Event, Object) orhandl eEvent (Event) . For theOKButt on the

action(...) method will be overridden with the code to perform the 'OK’ functionality. For the

Cancel But t on the handleEvent(...) method will be overridden. The body of this method

will check to seeif the Event wasfor an action if so the code to perform the 'Cancel’ button will be
executed otherwise propagate it up the containment hierarchy will be executed. The following Code
example demonstrates how to do this.

public class DenoFrane extends Frane {
publ i c DenoFrane() {
super ("Event Handling Denpn");
set Layout (new Fl owLayout ());
add(new OKButton());
add(new Cancel Button());
pack();
show() ;
}
}

cl ass OKButton extends Button {
public OKButton() {
super (" OK");

publi c bool ean action(Event e, Object arg) {
/'l Performthe ok action here
return true; // the event has been fully handl ed

}
}

cl ass Cancel Button extends Button {
public Cancel Button() {
super (" Cancel ") ;

}

publ i ¢ bool ean handl eEvent (Event e) {
if (e.id == ACTI ON_EVENT) {
// Performthe cancel action here
return true; // the event has been fully handl ed
}
return super. handl eEvent(); // call the standard event handling
}
}

Code 1 - Event handling using 1.0 Event Model (Example 1)

Paul Austin 6 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

The second option is to handle the events for both buttons in a subclass of the Fr ame that contains
the two buttons. We can either handle the eventsintheact i on() or handl eEvent () methods

in the same way as we did for the buttons. In the example we are going to overridetheact i on()
method as it produces cleaner code.

public class DenoFrane extends Frane {
publ i c DenoFrane() {
super (" Event Handling Denp");
set Layout (new Fl owLayout ());
add(new Button("OK"));
add(new Button("Cancel "));
pack() ;
show() ;
}

publi c bool ean action(Event e, Object arg) {
if (arg.equal s("OK") {
[/ Performthe continue action here
return true; // the event has bee fully handl ed
}
if (arg.equal s("Cancel") {
[/ Performthe cancel action here
return true; // the event has bee fully handl ed
}
return super.action(e, arg);
}
}

Code 2 - Event handling using 1.0 Event M odel (Example 2)

Paul Austin 7 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

3.1.1.2 JDK 1.1 Delegation Model

The Java 1.1 library introduced aradically different model for handling events', which separates the
Application logic from the GUI. The new model uses the Observer design pattern to notify one or
more event handlers that have been registered with the component.

In the new model, there is one event object for each type of event rather than just one event object.
The event objects contain the relevant information about the event and the source component that
generated it. The types of event are split into two conceptual groups shown below.

1. Semantic events

e ActionEvent
* Adj ust nent Event
» [tenEvent
» Text Event
2. low-level events
* Conponent Event - component moved, resized, shown or hidden

* FocusEvent - component lost focus or gained focus

» KeyEvent - key pressed, key released or key typed on the component

» MuseEvent - mouse clicked, pressed, released, entered, exited, dragged or moved
» Cont ai ner Event - component added or removed from the container

W ndowEvent - window opened, closed, closing, activated, deactivated, activated,

deiconified or iconified

For each event type thereis an event listener interface that defines the methods that event handlers
must define. Each component has a method to register an event listener of the form

addXXXEvent Li st ener ( XXXLi st ener) for each event type it generates. The low-level
events are generated for all components and the addXXXEventListener(...) methods for these
are defined in the Conponent class.

To handle an event the developer must create a class (or use an existing class) that implements the
required event listener. The class must then define the body of the relevant methods to handle the
events. The event listener must then be registered with the component using the appropriate method.

The following class diagram shows the rel ationshi ps between the components and the event
listeners.

! The 1.1 Javalibrary till retains the compatibility with the 1.0 inheritance based model, but for the purpose of this
discussion we will assume that the 1.0 model is not availablein the 1.1 library.

Paul Austin 8 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

<<Interface>>
EventlListener

A\

Component

parent dispatchEvent() <<Interface>>
addMouseListener() K>———— Mouselistener
0..* [removeMouselListener()|1 0.x
add...Listener()
remove...Listener()
Button
<<Interface>>
. . k>——— ActionListener
addActionListener() 1 0. ]
removeActionListener() I
Container
<<Interface>>
— ) ) K> ContainerListener
1 addContainerListener() 1 0.+
rem oveContainerListener() "
Window
<<Interface>>
. . <> WindowListener
addWindowlListener() .
removeWindowlListener() 1 0..

1

Frame

Figure 4 - Relationship between 1.1 AWT Components

The following example shows how to use event listeners to handle events.

public class DenoFrane extends Frane {
publ i c DenoFrane() {
super ("Event Handling Denp");
set Layout (new Fl owLayout ());
Button ok = new Button("CK");
ok. addActi onLi st ener ( OKLi st ener) ;
add( ok) ;
Button cancel = new Button("Cancel");
cancel . addActi onLi st ener (Cancel Li st ener);
add(cancel );
pack() ;
show() ;
}
}

cl ass OKLi stener inplenents ActionListener {
public OKListener () {

}

continued...

Paul Austin 9 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

public void actionPerfornmed(Acti onEvent e) {
[/ Performthe continue action here
return true; // The event has bee fully handl ed

}
}

cl ass Cancel Button extends Button {
public Cancel Button() {

}

public void actionPerfornmed(Acti onEvent e) {
[/ Performthe cancel action here
}

}

Code 3 - Event handling using 1.1 Event Model (Example 1)

3.1.1.3 Comparison & Summary
3.1.1.3.1 JDK 1.0 API

3.1.1.3.1.1 Advantages

1. All Javaenabled web browsers, Java development environments support the 1.0 API and
therefore the developer and user base would be larger.

3.1.1.3.1.2 Disadvantages

1. The code to handle the event notification must be duplicated for each component.
2. Adding new components requires a new subclass to be created with the event handling code.
3. It does not scaleto large applications.

31132 DK 1.1API

3.1.1.3.2.1 Advantages

1. Only oneclassisrequires per type of event (i.e. Act i onEvent, Adj ust abl eEvent ) rather
than one per component.

2. Adding anew component does not require a new subclass to be created to handle the event
notification, instead an Event Li st ener can be registered with the component.

3. The method can be scaled to large applications that may change during execution.

3.1.1.3.2.2 Disadvantages

1. There are only two browsers that support the 1.1 API, the 'SunSoft Hot Java Browser’ and the
'Microsoft Internet Explorer 4.0'.

Paul Austin 10 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

3.1.2 Implementation

The implementation of the CSP event notification will use the JDK 1.1 API. Thisis because it
reduces the duplication of code and enables the reuse of the event handlers for new components
such as the new swing library, which is being introduced in the 1.2 API.

3.1.2.1 Event Notification

This section discusses the various stages the design of the general method of event notification
using a Channel was developed.

All the examplesin this section discus the implementation for a subclass of But t on, the

Act i veBut t on class. The examples are asimplified version of what was implemented; this
serves to highlight the approach and any undesirable features. The diagram below shows the
process diagram for an active component.

ActiveButton -Lb

Figure 5 — Process Diagram — event notification

3.1.2.1.1 Passive Approach

The simplest approach is passive and does not require an extra CSPr ocess. In this approach, the
constructor has an extra parameter event of type Channel Qut put that will be used to send the
event notifications down. This parameter isstored asapr i vat e attribute in the class so it can be
used by the other methods. Asthe class usesthe 1.1 API it implementsthe Act i onLi st ener
interface and definestheact i onPer f or ned( Act i oneEvent ) method that will be invoked
when the button is pressed. The constructor registers this class as an action listener using the
addAct i onLi st ener (Acti onLi st ener) method.

The body of the actionPerformed(...) method implements the event notification down the
Channel . Thisis done by getting the action command name from the Act i onEvent instance
and writing this to the event Channel .

i nport java.aw.?*;
i nport java.aw.event.*;
i nport jcsp.lang.*;

public class ActiveButton extends Button inplements ActionListener {
private Channel Qut put event;
public ActiveButton(Channel Qutput event, String s) {
super(s);
this.event = event;
addAct i onLi stener (this);

}

continued...

Paul Austin 11 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

publi c synchroni zed void actionPerfornmed(ActionEvent e) {
event.wite(e.getActi onCommand());

}

}

Code 4 — Event Handling — Passive Approach

The main problem with this method is that the main Java event thread that is executing the
actionPerformed(...) method is blocked until the process that is reading from the event
Channel readsthe request. As one of the design goals of using a Channel interfaceisto not stop
further event notifications being blocked while the code for the event is being executed, this
approach is not acceptable.

3.1.2.1.2 Active Approach With A Polling Loop

The next approach attempts to solve the problem of blocking the event thread. It is based on the
implementation of the But t onCh class developed by David Beckett.

The class implements the CSPr ocess interface and therefore is an active process and should be
executed as part of a Parallél construct.

A private attribute clicked  of type boolean isadded to the class that indicates that the button
has been pressed. Another private attribute e of type Act i onEvent isaso added to store a
reference to the event. The actionPerformed(...) method will store the reference to the event
inthe e attribute and set clicked  to true. The method is synchronised.

The testAndResetClicked() will returntrueif clicked istrueand set clicked tofalse,
thisis used to provide the notification. The method is synchronised.

The body of the processintherun() method has an infinite loop that uses
testAndResetClicked() to check if an event has occurred, if it has the action command from
the event will be sent down theevent Channel . In either case, the process will then sleep for a
tenth of a second before [ooping.

i nport java.aw.?*;
i nport java.aw.event.*;
i nport jcsp.lang.*;

public class ActiveButton extends Button
i npl enents CSProcess, ActionListener {
private bool ean clicked = fal se;
private Channel event;
private ActionEvent e;

public ActiveButton(Channel event, String s) {
super(s);
this.event = event;
addAct i onLi stener (this);

}

continued...

Paul Austin 12 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

publ i c synchroni zed void actionPerfornmed(ActionEvent e) {
this.e = e;
clicked = true;

}

publi ¢ synchroni zed bool ean test AndReset i cked() {
bool ean result = clicked;
clicked = fal se;
return result;

}

public void run () {
while (true) {
if (testAndResetd icked()) {
event.wite(e.getActi onCommand());

}

try {
Thr ead. sl eep(100);

catch (InterruptedException ie)
{
}
}
}

}

Code 5 — Event Handling — Active Approach with A Polling Loop

The main problem with this approach is that the body of the process has a polling loop that is
executed 10 times a second. This has two undesirable effects. The first is it consumes processing
power even when the button has not been pressed. The second is that only a maximum of 10 event
notifications can be sent a second, this could be solved by decreasing the sleep time but this would
then effect the performance.

3.1.2.1.3 Active Approach With wait/notify

The next approach builds on the previous one but removes the polling approach by using the
wait/notify synchronisation on the object monitor.

The clicked attribute and thet est AndReset O i cked() method are removed.

The actionPerformed(...) method sets the e attribute to the event parameter and then invokes
notify() on the monitor for this Gbj ect .

Therun() method has an infinite loop that invokeswait()  on the monitor for this Gbj ect . The
method will block until the notify() method has been called. Upon waking up the process will
output the e attribute down the event Channel and then loop.

NOTE: Thewait() method iswrapped inatry catch block that ignoresthe
I nt errupt edExcept i on. Thisis safe, asthiswill never be raised when using the
Parallel construct to execute the process.

Paul Austin 13 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

i nport java.aw.?*;
i nport java.aw.event.*;
i nport jcsp.lang.*;

public class ActiveButton extends Button
i npl enents CSProcess, ActionListener {
private Channel Qut put event;
private ActionEvent e;

public ActiveButton(Channel Qutput event, String s) {
super(s);
this.event = event;

}

publ i c synchroni zed void actionPerfornmed(ActionEvent e) {
this.e = e;
notify();

}

public void run () {
while (true) {

try {
wai t();
}

catch (InterruptedException ie)

{
}

event.wite(e);

Code 6 — Event Handling — Active Approach with wait/notify

3.1.2.1.4 Active Approach with Channels

The final method came from arealisation of what was actually trying to be achieved here was a
synchronised communication between two processes. The obvious mechanism available to perform
thiskind of synchronisation provided by the Channel classes developed as part of this package.
Thiswas so obvious it took four versions and about three months to notice it. Thisis however
reassuring in the respect that the Channel does have avery practical use that simplifies adesign.

The synchronisation required between the processesis for the event handling processin the

Act i veBut t on to wait for the event thread to notify it when an event has happened and to pass it
the event parameter to it. The implementation does not want to block while the event handling
process is writing to the event Channel so that any notifications should be discarded in this case.
This functionality can be implemented by using a Channel that hasan Over Wi tti ngBuffer
that only storesone Qbj ect and overwritesthisif it has not been read.

The implementation of the event handling is now simplified to have an extra attribute
event Not i fy that isan instance of an Ohe2neChannel withan Over Wit i ngBuf f er of

Paul Austin 14 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

size 1. The actionPerformed(...) method will writethe Act i onEvent instance down the
eventNotify Channel . The process body reads from the eventNotify Channel andthe
writes the action command down theevent Channel . Any further callsto
actionPerformed(...) while the even handling processis writing will be discarded.

Asthe synchronisation is being performed by the Channel , it is safe to remove the method
synchronisation.

NOTE: This does assume that the processis executed in one thread only and that the event thread
isthe only oneto call the actionPerformed(...) method. As the actual
implementation does not reveal a reference to the process or the method this cannot occur
thereforeit is safe.

i mport java.aw.*;

i mport java.aw.event.*;
i mport jcsp.lang.*;

i mport jcsp.util.*

public class ActiveButton extends Button inplenents CSProcess,
ActionLi stener {
private Channel eventNotify =
new One20neChannel (new Over Wi tingBuffer(1));
private Channel Qut put event;

public ActiveButton(Channel Qutput event, String s) {
super(s);
this.event = event;

}

public void actionPerformed(Acti onEvent e) {
eventNotify.wite(e);
}

public void run () {
while (true) {
ActionEvent e = (ActionEvent)eventNotify.read();
event.wite(e.getActi onCommand());

}
}

}

Code 7 — Event Handling — Active Approach with Channels

3.1.2.2 Class Design

After implementing the Act i veBut t on class, it became apparent that it would not be necessary
to implement the event handling code for each component. Instead, it was possible to develop one
event handler for each type of event. The subclasses of the components would then only need to
create an instance of this class and register it asalistener and add it to the Par al | el construct for
the class (see section 3.1.3).

Paul Austin 15 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

The rest of this section describes each of the event handlers for the different event types. Thereis
one handler per Event Li st ener interface provided inthej ava. awt . event package. If a
new event Listener were added then a new event handler class would be required. The following
table summarises the event handlers.

Class Listener Event Components
Act i onEvent Handl er ActionLi st ener Act i onEvent But t on,
List,
Menul t em
Text Fi el d
Adj ust nent Event Hand|! er Adj ust nent Li st ener Adj ust ment Event Scrol | bar
I t enEvent Handl er I tenlistener I t emEvent Checkbox,
CheckboxMenul t em
Choi ce,
List
Text Event Hand! er Text Li st ener Text Event Text Ar ea,
Text Fi el d
Conponent Event Hand| er Conponent Li st ener Conponent Event Conponent
Cont ai ner Event Hand| er Cont ai ner Li st ener Cont ai ner Event Cont ai ner
FocusEvent Handl er FocusLi st ener FocusEvent Conponent
KeyEvent Handl er KeylLi st ener KeyEvent Conponent
MbuseEvent Handl er Mbuseli st ener MbuseEvent Conponent
MbuselMbt i onEvent Handl er MbuseMbt i onLi st ener MbuseMbt | onEvent | Conponent
W ndowEvent Handl er W ndowli st ener W ndowEvent W ndow

In general, the event handlers for the semantic events send data that is associated with the event
(such as the name of the button) down the event Channel . The event handlers for the low-level
events send the event object down theevent Channel .

3.1.2.2.1 ActionEventHandler

The Act i onEvent Handl er classisaprocess that can be used to send event notifications down
theevent Channel when acomponent generates an Act i onEvent . The classimplements the
ActionLi st ener interface so that it can be registered with any component that has an

addAct i onLi st ener (Acti onLi st ener) method. The classimplementsthe CSPr ocess
so the process can be run as part of a Par al | el construct.

The data that is sent down the event Channel isthe action command for the event obtained using
theget Acti onCommand() method onthe Act i onEvent instance for the event.

package jcsp.awt. event;
i mport java.aw.event.*
i mport jcsp.lang.*;
i mport jcsp.util.*;

public class ActionEvent Handl er i nplements CSProcess, ActionListener {
private Channel eventNotify =
new One20neChannel (new Over WittingBuffer(1));
private Channel Qut put event;

publ i c ActionEvent Handl er (Channel Qut put event) {
this.event = event;

}

public void actionPerformed(ActionEvent e) {

continiued...

Paul Austin 16 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

eventNotify.wite(e);
}

public void run () {
while (true) {
Acti onEvent e = (Acti onEvent)eventNotify.read();
event.wite(e.getActi onCommand());

}
}

}

Code 8 — ActionEventHandler

3.1.2.2.2 AdjustmentEventHandler

The Adj ust nment Event Hand| er classisaprocess that can be used to send event notifications
downtheevent Channel when acomponent generatesan Act i onEvent . The class
implementsthe Adj ust nent Li st ener interface so that it can be registered with any component
that has an addAdj ust nent Li st ener ( Adj ust ment Li st ener ) method. The class
implements the CSPr ocess so the process can be run as part of a Par al | el construct.

The datathat is sent down theevent Channel isan | nt eger representing the value of the
adjustable component that generated the event. The value is obtained using the get Val ue()
method on the Adj ust ment Event instance for the event.

The value is sent down the channel rather than the Adj ust ment Event instance to simplify the
Implementation of processes that perform some action based on this value. This does mean some
information about the event islost but generaly, thisinformation is not required.

package jcsp.awt. event;
i mport java.aw.event.*
i mport jcsp.lang.*;
i mport jcsp.util.*;

public cl ass Adjustnent Event Handl er
i mpl ements CSProcess, AdjustnentlListener {
private Channel Qut put event;
private Channel eventNotify =
new One20neChannel (new Over WitingBuffer(1));

publ i ¢ Adj ust nment Event Handl er (Channel event) {

this.event = event;
}

public void adj ust ment Val ueChanged( Adj ust nent Event e) {
eventNotify.wite(e);
}

continiued...

Paul Austin 17 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

public void run () {
while (true) {
Adj ust ment Event e = (Adj ust ment Event)event Notify.read();
event.wite(new I nteger(e.getValue()));

}
}

}

Code 9 — AdjustmentEventHandler

3.1.2.2.3 ItemEventHandler

Thel t enEvent Handl er classisaprocessthat can be used to send event notifications down the
event Channel when acomponent generatesan / t emEvent . The class implements the

It enli st ener interface so that it can be registered with any component that has an

addl t enli st ener (1t enli st ener) method. The classimplementsthe CSPr ocess so the
process can be run as part of a Par al | el construct.

The datathat is sent down the event Channel consists of two separate objects. Thefirstisa
Bool ean that either hasthe value Bool ean. TRUE or Bool ean. FALSE depending on whether
the event was for an item being selected or deselected. The second is an object that was sel ected or
deselected. Theitemisobtained using the get | t en{) method onthe / t emEvent instance for
the event.

As the channel communication sends two objects per event, the Channel should only be an
Me2MeChannel , otherwise the objects may be read by different processes thus causing non-
determinism.

package jcsp.awt. event;
i mport java.aw.event.*
i mport jcsp.lang.*;
i mport jcsp.util.*;

public class |tenEvent Handl er
i mpl ements CSProcess, |tenlistener {
private Channel Qut put event;
private Channel eventNotify =
new One20neChannel (new Over WitingBuffer(1));

public |tenEvent Handl er (Channel Qut put event) {
this.event = event;

}

public void itenttateChanged(IltenEvent e) {
eventNotify.wite(e);
}

continiued...

Paul Austin 18 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

public void run () {
while (true) {
ItenEvent e = (ItenEvent)eventNotify.read();
if (e.getStateChange() == ltenEvent. SELECTED) {
event.wite(Bool ean. TRUE) ;
}
el se {
event.wite(Bool ean. FALSE);
}
event.wite(e.getltem));
}
}

}

Code 10 — ItemEventHandler

3.1.2.2.4 TextEventHandler

The Text Event Handl er classisaprocess that can be used to send event notifications down the
event Channel when acomponent generatesa Text Event . The classimplements the

Text Li st ener interface so that it can be registered with any component that has an

addText Li st ener ( Text Li st ener ) method. The classimplementsthe CSPr ocess so the
process can be run as part of a Par al | el construct.

The datathat is sent down theevent Channel isthe current text value from the component. The
text is obtained using the get Text () method on the source component from the Text Event
instance for the event.

NOTE: Thisiscurrently theway it isimplemented, thisin not necessarily the best way to handle
text events as a lot of information about the event islost and it may be useful to software
constructors. A future version may send the source component down the Channel.

package jcsp.awt. event;
i mport java.aw.event.*
i mport jcsp.lang.*;
i mport jcsp.util.*;

public cl ass Text Event Handl er
i mpl ements CSProcess, TextListener {
private Channel Qut put event;
private Channel eventNotify =
new One20neChannel (new jcsp.util.OverWitingBuffer(1));

publ i ¢ Text Event Handl er ( Channel Qut put event) {

this.event = event;
}

public void textVal ueChanged( Text Event e){
eventNotify.wite(e);
}

continiued...

Paul Austin 19 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

public void run () {
Text Event e = (Text Event)eventNotify.read();
event.wite(((TextConponent)e.getSource()).getText());

}

}

Code 11 — TextEventHandler

3.1.2.2.5 ComponentEventHandler

The Conponent Event Hand| er classis aprocess that can be used to send event notifications
downtheevent Channel when acomponent generates a Conponent Event . The class
implements the Conponent Li st ener interface so that it can be registered with any component
that has an addConponent Li st ener ( Component Li st ener) method. The class
implements the CSPr ocess so the process can be run as part of a Par al | el construct.

NOTE: The Conponent class hasan addComponentListener(...) method. Therefore, all
components can generate a Conponent Event .

The datathat is sent down the event Channel isthe Conponent Event .

3.1.2.2.6 ContainerEventHandler

The Cont ai ner Event Hand| er classis aprocess that can be used to send event notifications
downtheevent Channel when acomponent generatesa Cont ai ner Event . The class
implements the Cont ai ner Li st ener interface so that it can be registered with any component
that has an addContainerListener(ContainerListener) method. The class
implements the CSPr ocess so the process can be run as part of a Par al | el construct.

NOTE: The Cont ai ner class has an addContainerListener(...) method.

The data that is sent down the event Channel isthe Cont i ner Event.

3.1.2.2.7 FocusEventHandler

The FocusEvent Handl er classisaprocessthat can be used to send event notifications down
theevent Channel when acomponent generates a FocusEvent . The classimplements the
FocusLi st ener interface so that it can be registered with any component that has an
addFocusListener(FocusListener) method. The class implements the CSPr ocess so
the process can be run as part of a Par al | el construct.

NOTE: The Conponent class has an addFocusListener(...) method.

The data that is sent down the event Channel isthe FocusEvent .

Paul Austin 20 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

3.1.2.2.8 KeyEventHandler

The KeyEvent Handl er classisaprocessthat can be used to send event notifications down the
event Channel when acomponent generates a Key Event . The class implements the

KeyLi st ener interface so that it can be registered with any component that has an

addKeyLi st ener ( KeyLi st ener) method. The class implements the CSPr ocess so the
process can be run as part of a Par al | el construct.

NOTE: The Conponent class has an addKeyListener(...) method.

The datathat is sent down the event Channel isthe KeyEvent .

3.1.2.2.9 MouseEventHandler

The MbuseEvent Hand! er classisaprocess that can be used to send event notifications down
theevent Channel when acomponent generates a MbuseEvent . The classimplements the
MbuselLi st ener interface so that it can be registered with any component that has an
addMouseListener(MouseListener) method. The class implements the CSPr ocess so
the process can be run as part of a Par al | el construct.

NOTE: The Conponent class hasan addMouseListener(...)  method.

The datathat is sent down the event Channel isthe MbuseEvent .

3.1.2.210 MouseMotionEventHandler

The MbuseMbt i onEvent Hand| er classisaprocess that can be used to send event notifications
down theevent Channel when acomponent generates a MbuselMbt i onEvent . The class
implements the MbuseMbt i onLi st ener interface so that it can be registered with any
component that has an addMouseMotionListener(MouseMotionListener) method.
The class implements the CSPr oces s so the process can be run as part of a Par al | el construct.

NOTE: The Conponent class has an addMouseMotionListener(...) method.

The datathat is sent down the event Channel isthe MbuseMbt i onEvent .

3.1.2.211 WindowEventHandler

The W ndowEvent Handl er classisaprocess that can be used to send event notifications down
theevent Channel when acomponent generates a W ndowEvent . The class implements the
W ndowLi st ener interface so that it can be registered with any component that has an
addWindowListener(WindowListener) method. The classimplements the CSPr ocess
so the process can be run as part of a Par al | el construct.

NOTE: The W dnowclass has an addWindowListener(...) method.

The datathat is sent down the event Channel isthe W ndowEvent .

Paul Austin 21 4-May-1998



Java Communicating Sequential Processes

Design of JCSP AWT classes

3.2 Configuration

3.2.1 AWT Configuration

In Java components can have their properties (i.e. colour, size) configured by invoking methods on
an instance of the component. Most of these methods are defined in the Conponent classand
therefore can be used for all the components. The subclasses of Conponent may define extra
methods to configure the properties specific to that component. For example, the Scr ol | bar class
provides methods to change the scale and value of the Scr ol | bar.

It is possible that several threads try to invoke these methods on an instance Conponent at the
same time. The implementations for these methods update the state and during execution, the state
may be in an inconsistent state. The methods are synchronised so that only one method may be

updating the state at any time.

The following table summarises all of the configuration methods provided by each class for

configuration.

Conponent

set Backgr ound( Col or)

Sets the background color of this component.

set Bounds(int, int, int, int)

Moves and resizes this component.

set Bounds( Rect angl e)

Moves and resizes this component to conform to the new
bounding rectangler.

set Cur sor ( Cur sor)

Set the cursor image to a predefined cursor.

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

set Font ( Font)

Sets the font of this component.

set For egr ound( Col or)

Sets the foreground color of this component.

set Local e( Local e)

Sets the locale of this component.

set Location(int, int)

Moves this component to a new location.

set Locat i on( Poi nt)

Moves this component to a new location.

set Name( String)

Sets the name of the component to the specified string.

set Si ze(Di nensi on)

Resizes this component so that it has width d.width and
height d.height.

setSize(int, int)

Resizes this component so that it has width width and
height.

set Vi si bl e( bool ean)

Shows or hides this component depending on the value of
parameter b.

But t on

set Acti onConmand( Stri ng)

Sets the command name for the action event fired by this
button.

set Label (String)

Sets the button’s |abel to be the specified string.

Canvas

CheckBox

set CheckboxG oup( CheckboxG oup)

Sets this check box’s group to be the specified check box
group.

set Label (String)

Sets this check box’s label to be the string argument.

set St at e( bool ean)

Sets the state of this check box to the specified state.

Paul Austin

22 4-May-1998



Java Communicating Sequential Processes

Design of JCSP AWT classes

CheckboxMenul t em

set Label (String)

Sets this check box’s label to be the string argument.

set St at e( bool ean)

Sets the state of this check box to the specified state.

Choi ce

add(String), addlten(String)

Adds an item to this Choice menu.

insert(String, int)

Inserts the item into this choice at the specified position.

renove(int)

Removes an item from the choice menu at the specified
position.

renmove(String)

Remove the first occurrence of item from the Choice menu.

removeAl | ()

Removes dl items from the choice menu.

sel ect (int)

Sets the selected item in this Choice menu to be the item at
the specified position.

sel ect (String)

Sets the selected item in this Choice menu to be theitem
whose name is equal to the specified string.

Label

set Al'i gnment (i nt)

Sets the alignment for this label to the specified alignment.

set Text (St ring)

Sets the text for thislabel to the specified text.

List

add(String), addlten(String)

Adds an item to this scrolling list.

add(String, int),
addltem(String, int)

Adds the specified item to the scrolling list at the specified
position.

renove(int)

Removes an item from the scrolling list at the specified
position.

renmove( String)

Remove the first occurrence of item from the scrolling list.

renmoveAl | ()

Removes all items from the scrolling list.

replaceltem(String, int)

Replaces the item at the specified index in the scrolling list
with the new string.

sel ect (int)

Sets the selected item in this Choice menu to be the item at
the specified position.

set Mul ti pl eMbde( bool ean)

Sets the flag that determines whether thislist allows
multiple selections.

Scrol | bar

set Bl ockl ncrement (int)

Sets the block increment for this scroll bar.

set Maxi mun(i nt)

Sets the maximum value of this scroll bar.

set M ni mun(int)

Sets the minimum value of this scroll bar.

setOrientation(int)

Sets the orientation for this scroll bar.

setUnitlncrenent (int)

Sets the unit increment for this scroll bar.

set Val ue(int)

Sets the value of this scroll bar to the specified value.

setValues(int, int, int, int)

Sets the values of four properties for this scroll bar.

set Vi si bl eAnount (i nt)

Sets the visible amount of this scroll bar.

Text Conponent

selectAll ()

Selects all the text in this text component.

set Car et Posi tion(int)

Sets the position of the text insertion caret for this text
component.

set Edi t abl e( bool ean)

Sets the flag that determines whether this text component is
editable.

set Sel ecti onEnd(i nt)

Sets the selection end for this text component to the
specified position.

Paul Austin

23 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

set Sel ectionStart (int) Sets the selection start for this text component to the
specified position.

set Text (String) Sets the text that is presented by this text component to be
the specified text.

Text Ar ea

append(String) Appends the given text to the text area’s current text.

insert(String, int) Inserts the specified text at the specified position in this

text area.
replaceRange(String, int, int) | Replacestext between theindicated start and end positions
with the specified replacement text.

set Col ums(i nt) Sets the number of columns for this text area.
set Rows(int) Sets the number of rows for this text area.
Text Fi el d

set Col ums(i nt) Sets the number of columns for this text area.
set EchoChar (char) Sets the echo character for thistext field.

The classes also provide methods to obtain the current state of the component. These methods are
also synchronised so that the state is not changed whileit is being executed.

3.2.2 Implementation

The implementation of configuration for the active components currently does not provide the same
level of configuration as provided by the AWT. The inspection of the state has also not been
implemented. The reasons for the non-completeness of functionality were mainly dueto time
constraints and the desire for simplicity of the interface. In future versions the library will be
extended to provide the same level of configuration.

Several methods can be used to implement the configuration. Each of these has a process within the
component that will read from one or more channels and update the state of the component based
on the value received. Two methods were considered one Channel per component or one Channel
per type of configuration.

Only a subset of the configuration is provided, the table below summarises what has been
implemented.

NOTE: Theoriginal configuration provided by the methods on the components can also be used
but their use should be restricted to when the components are constructed.

Conponent

But t on

set Enabl ed(bool ean) Enables or disables this component, depending on the
value of the parameter b.

set Label (String) Sets the button’s label to be the specified string.

Canvas

CheckBox

set Enabl ed(bool ean) Enables or disables this component, depending on the
value of the parameter b.

set Label (String) Sets this check box’s label to be the string argument.

set St at e(bool ean) Sets the state of this check box to the specified state.

Paul Austin 24 4-May-1998



Java Communicating Sequential Processes

Design of JCSP AWT classes

CheckBoxMenul t em

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

set Label (String)

Sets this check box’s label to be the string argument.

set St at e( bool ean)

Sets the state of this check box to the specified state.

Choi ce

sel ect (int)

Sets the selected item in this Choice menu to be the item at
the specified position.

sel ect (String)

Sets the selected item in this Choice menu to be the item
whose name is equal to the specified string.

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

Label

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

set Text (St ring)

Sets the text for thislabel to the specified text.

List

sel ect (int)

Sets the selected item in this Choice menu to be the item at
the specified position.

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

Scrol | bar

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

set Val ue(int)

Sets the value of this scroll bar to the specified value.

Text Conponent

set Text (String)

Sets the text that is presented by this text component to be
the specified text.

Text Ar ea

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

append( Stri ng)

Appends the given text to the text area’s current text.

Text Fi el d

set Enabl ed( bool ean)

Enables or disables this component, depending on the
value of the parameter b.

set Text (St ring)

Sets the text that is presented by this text component to be
the specified text.

3.2.2.1 Configuration

3.2.2.1.1 One Channel per Component

In this approach, one event channel is used to configure the component. The type of configuration
performed depends upon the type of the object sent down the channel. The following diagram
shows an active component with one configuration channel.

Paul Austin

25 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

configure R ActiveButton

Figure 6 — Process Diagram — single channel configuration

The following example shows how configuration using a single channel can be implemented.

import java.awt.*;
i nport jcsp.lang.*;
i nport jcsp.util.*

public class ActiveButton extends Button inplenents CSProcess {
private Channel | nput confi gure;

public ActiveButton(Channel Il nput configure, String s) {
super(s);
this.configure = configure;

}

public void run () {
while (true) {
hj ect nmessage = configure.read();
if (message instanceof String) {
set Label ((String) nessage);

el se if (message instanceof Bool ean) {
i f (nmessage == Bool ean. TRUE) {
set Enabl ed(true);
}
el se if (message == Bool ean. FALSE) {
set Enabl ed(f al se);

}

el se {

Code 12 — Configuration — Single Channel

In the constructor the channel is passed into the component and stored in a private attribute. The
component implements the CSPr ocess interface and definesther un() method to perform the
configuration.

Ther un() method has an infinite loop that reads one value from theconf i gur e Channel into
alocal variable of type Obj ect . Themethodthenhasani f el se i f ladder that performsthe
configuration based on either the type of the object or by comparing it against a know constant. In
the case of the Act i veBut t on if thevalueisaninstance of St ri ng the setLabel(...) method

Paul Austin 26 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

will be invoked with the value. If the valueis an instance of Bool ean one of three things can
happen. If it isthe instance Bool ean. TRUE the But t on will be enabled, the instance

Bool ean. FALSE the But t on will be disabled, otherwise it will be ignored. If the valueis of any
other type it will be ignored.

NOTE: the constants Bool ean. TRUE and Bool ean. FALSE are used to save on garbage
collection and this frees up other Bool ean valuesto be used for other configuration.

The disadvantage with this approach is that it is only possible to perform one type of configuration
per type of object sent down the channel. For example, two methods have Col or as a parameter
set For eground( Col or) andset Backgr ound( Col or) . If aCol or wasreceived on the
channel what type of configuration should be performed? This can be solved by either wrapping
these values up in a protocol class that has an identifier of the type of configuration required or a
constant value could be sent before the value. Also if configuration requires more than one value
these will need to be wrapped up or sent in sequence down the channel.

If the values were wrapped up in aprotocol this would complicate the interface. If the values were

sent in sequence, the configuration would be restricted to using an Che2neChannel otherwise

the order of the messages could not be guaranteed (this would not be a problem if claims? could be
made on channels).

3.2.2.1.2 One Channel per configuration

In this approach, one event channel per type of configuration is used to configure the component.
The type of configuration performed depends upon which channel the message is received. The
following diagram shows an active component with two configuration channels.

enable

label ActiveButton

Figure 7 — Process Diagram — multiple channel configurations

The following example shows how configuration using multiple channels can be implemented.

2 The concept of claiming a channel was introduced in OCCAM3 for shared channels. Once a channel has been claimed
it can only be used by that channel for output (grant is used to claim for input). The messages can then be guaranteed to
arrivein the order sent. Thiswill be added to the JCSP library in future rel eases.

Paul Austin 27 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

i nport java.aw.?*;
i nport jcsp.lang.*;
i nport jcsp.util.*

public class ActiveButton extends Button inplenents CSProcess {
private Channel | nput enabl e;
private Channel | nput | abel;

public ActiveButton(Channel | nput enabl e, Channel |l nput | abel,

String s) {
super(s);
t hi s. enabl e = enabl ¢;
this.label = |abel;

}

public void run () {
Alternative alt = new Alternative();
Channel | nput chans = {enable, |abel};
while (true) {
switch (alt.select(chans)) {
case O:
Bool ean b = (Bool ean) enabl e. read();
set Enabl ed(b. bool eanVal ue());
br eak;
case 1:
String | = (String)l abel.read();
set Label (1);
br eak;

}
}
}

}

Code 13 — Configuration — Multiple Channels

In the constructor the channels used to configure the label and to enable the component are passed
into the component and stored in private attributes. The component implements the CSPr ocess
interface and definesther un() method to perform the configuration.

Ther un() method has an infinite loop. The loop alternates on theenabl e and | abel channels.
If theenabl e channel is selected a Bool ean is read from the channel and the

set Enabl e( Bool ean) method isinvoked with thebool eanVal ue() of the Bool ean. If
thel abel channel isselected a St ri ng isread from the channel and theset Label (St ri ng)
method is invoked with the value.

NOTE: If any other type than the expected typeisreceived on the channels a
C assCast Except i on will be raised and the process will terminate abnormally.

The disadvantage with this approach is that the constructor may become very large if many
different types of configurations are performed. This also means that the software constructor will
have to create one Channel for each configuration type evenif it is not going to be used. This can
be solved by either defining the channels as attributes on the component, providing

Paul Austin 28 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

set XXXChannel (. .) methods for each configuration rather than a constructor or the
constructor expects an array of configuration channels.

This approach also suffers from the problem of multiple data configuration that the single channel
method suffers from.

3.2.2.2 Class Design

The implementation uses the one channel per component approach as it makes the interface easier
to use. This does however restrict the configurations that can be performed (thisiswhy not all the
configurations are implemented).

As each component has different configuration requirements each component must implement the
required configuration as a process dedicated to that component (sub classes may be able to reuse
the configuration process).

NOTE: Therearetoo many classes to describe the implementation of them. Refer to the on-line
documentation for each component to see what configuration is provided.

Paul Austin 29 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

3.3 Active Components

This section discusses how the event handling and configuration described above can be joined
together to make the active components. All the components use the same approach so the
discussion will only consider the Act i veBut t on.

The following diagram shows the external channel interface to a component along with the internal
ProCesses.

configure ) ) . event
» ActiveButton.Configure ActionEventHandler

ActiveButton

Figure 8 — Process diagram — active components

3.3.1 Implementation

Each component implements the CSPr ocess interface. Ther un() method invokesr un() on
the par attribute (of type Par al | el ) that contains all the processes created by this component.

The constructor of the component is passed the conf i gur e and event channels. If theevent
channel isnot nul | anew Act i onEvent Hand! er processis created, registered as an

Act i onLi st ener with this component and added to the par construct. If theconf i gur e
channel isnot nul | anew Conf i gur e processwill be created and added to the par construct.

The following example showsthe Act i veBut t on isimplemented (all components are similar).

package j csp. awt;

i nport java.aw.?*;

i nport jcsp.lang.*;

i nport jcsp.aw.event.*;

public class ActiveButton extends Button inplenents CSProcess {
protected Parallel par;

public ActiveButton(Channel Il nput configure, Channel Qutput event,
String s) {
super(s);
par = new Parallel();

if (event !'=null) {
Acti onEvent Handl er handl er = new Acti onEvent Handl er (event);
addAct i onLi st ener (handl er);
par . addPr ocess( handl er);

}

continued...

Paul Austin 30 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

if (configure !'=null) {
par . addPr ocess(new Confi gure(configure));
}
}
public void run() {
par.run();

[/ Definition of other nethods

/1 Definition of configure class

}

Code 14 — ActiveButton class

Each component defines anested class Conf i gur e that implements the CSPr ocess interface
and contains the codein ther un() method to configure the component upon receiving values. The
following code shows how thisisimplemented for the Act i veBut t on component.

protected class Configure inplenents CSProcess {
private Channel | nput confi gure;

publi ¢ Configure(Channel | nput configure) {
this.configure = configure;
}

public void run() {
while (true) {
bj ect nmessage = configure.read();
i f (message instanceof String) {
set Label ((String) nessage);

el se if (nmessage instanceof Bool ean) {
i f (nmessage == Bool ean. TRUE) {
set Enabl ed(true);

}

el se if (nmessage == Bool ean. FALSE) {
set Enabl ed(f al se);

}

Code 15 — ActiveButton — Configure class

It is also necessary to provide a mechanism to have a channel interface to the low-level events. As
thisis not always required when constructing a component one of the

addXXXEventChannel(...) methods can be used to create a new event handler for the
component with the Channel specified. These methods must be invoked befor e the component is

Paul Austin 31 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

executed as part of a Par al | el construct, otherwise the handler will not be executed. The
following code shows how these methods are implemented.

NOTE: Windows and containers will have extra methods to listen for those events.
The methods check to seeif the Channel isnot nul | . Then it creates a new event handler for that

event type. The event handler isregistered as an event listener with this component. Finaly the
process is added to the Par al | el construct for the component.

public voi d addConponent Event Channel ( Channel Qut put event) {
if (event !'=null) {
Conmponent Event Handl er handl er =
new Conponent Event Handl er (event) ;
addConponent Li st ener (handl er) ;
par . addPr ocess( handl er);
}
}
public voi d addFocusEvent Channel ( Channel Qut put event) {
if (event !'= null) {
FocusEvent Handl er handl er = new FocusEvent Handl er (event);
addFocusLi st ener (handl er);
par . addPr ocess(handl er);
}
}
public voi d addKeyEvent Channel (Channel Qut put event) {
if (event !'= null) {
KeyEvent Handl er handl er = new KeyEvent Handl er (event);
addKeylLi st ener (handl er) ;
par . addPr ocess( handl er);
}
}
public voi d addMouseEvent Channel ( Channel Qut put event) {
if (event !'= null) {
MouseEvent Handl er handl er = new MouseEvent Handl er (event);
addMouseli st ener (handl er);
par . addPr ocess( handl er);
}
}
public voi d addMouseMdt i onEvent Channel ( Channel Qut put event) {
if (event !'=null) {
MouseMbt i onEvent Handl er handl er =
new MouseMot i onEvent Handl er (event) ;
addMouseMot i onLi st ener (handl er);
par . addPr ocess( handl er);
}
}

Code 16 - ActiveButton — addXXXEventChannel() methods

Paul Austin 32 4-May-1998



Java Communicating Sequential Processes Design of JCSP AWT classes

Bibliography

[1] Paul. D. Austin. 1998, 'Design of JCSP Language classes, University of Kent Canterbury

[2] JavaSoft. 1997, 'JDK™ 1.1 DocumentationSun Microsystems.
http://ww. javasoft. coni products/jdk/ 1.1/ docs/

[3] C. A. R. Hoare. 1985, 'Communicating Sequential Processeséntice Hall.

[4] Martin Fowler with Kendall Scott. 1997, 'UML Distilled’, Addison Wesley, ISBN 0-201-32563-
2

[5] CGS-THOMSON Microelectronics Ltd. 1995, 'OCCAM 2.1 referencmanual; Prentice Hall
International (UK) Ltd.

[6] Gamma, Helm, Johnson, Vlissides. 1995, Design Patterns (Elements of Reusable Object-
Oriented Software)Addison-Wesley

Paul Austin 33 4-May-1998



	Contents
	
	1 Introduction
	2 Functionality
	2.1 CSP Model

	3 Design and Implementation
	3.1 Event Handling
	3.1.1 Java Event Model
	3.1.1.1 JDK 1.0 Model
	3.1.1.2 JDK 1.1 Delegation Model
	3.1.1.3 Comparison & Summary
	3.1.1.3.1 JDK 1.0 API
	3.1.1.3.1.1 Advantages
	3.1.1.3.1.2 Disadvantages

	3.1.1.3.2 JDK 1.1 API
	3.1.1.3.2.1 Advantages
	3.1.1.3.2.2 Disadvantages



	3.1.2 Implementation
	3.1.2.1 Event Notification
	3.1.2.1.1 Passive Approach
	3.1.2.1.2 Active Approach With A Polling Loop
	3.1.2.1.3 Active Approach With wait/notify
	3.1.2.1.4 Active Approach with Channels

	3.1.2.2 Class Design
	3.1.2.2.1 ActionEventHandler
	3.1.2.2.2 AdjustmentEventHandler
	3.1.2.2.3 ItemEventHandler
	3.1.2.2.4 TextEventHandler
	3.1.2.2.5 ComponentEventHandler
	3.1.2.2.6 ContainerEventHandler
	3.1.2.2.7 FocusEventHandler
	3.1.2.2.8 KeyEventHandler
	3.1.2.2.9 MouseEventHandler
	3.1.2.2.10 MouseMotionEventHandler
	3.1.2.2.11 WindowEventHandler



	3.2 Configuration
	3.2.1 AWT Configuration
	3.2.2 Implementation
	3.2.2.1 Configuration
	3.2.2.1.1 One Channel per Component
	3.2.2.1.2 One Channel per configuration

	3.2.2.2 Class Design


	3.3 Active Components
	3.3.1 Implementation


	Bibliography

