Java Communicating Sequential Processes Design of JCSP Language Classes

Java Communicating

Sequential Processes
‘Design Of JCSP Language Classes’

Paul Austin

pdal@ukc.ac.uk

University Of Kent Canterbury

BSc Computer Science with an Industrial Year
3% Year Project

Paul David Austin 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

Contents
R 01 10T U o o) o O 1
pZZ U oo = | Y2 2
200 R O 1 = T T USRS 2
20 R O 1 o117 /S 3
%0 N R R @ 14 1= 1 (o @ X @ 7= g = PSSRSO 4
20100 REAAING .c.oocveoeeeeeeeeeeeeeeeee e s s esssssessssesanssessaessnssenssessenes 4
2 0 0 2 V1 41 1T OO SO P SO P SRR PTSTRP 4
2.1.1.2 ONETOMBENY ChANNEooiiiieiiieter ettt bbbt bbbt b st b et et b et enes 5
0 O 0t R = o 11 o SO P ST U SRR PSTRP 5
0 0 VL 1 11 o 5
A e T \V 0|V o T @ T X 11 7= = R 6
20 0 e T R = o 11 o PSSR 6
20 0 e T2 V1Y 41 1o PSS 6
2.1.1.4 Many TOMaNY Channelccooiiiiieiie ettt sttt s sb e e et e eesaeeseennennenbesneas 7
20 0 O R = o[o PSSO 7
0 00 0 V1Y 4 oo OO PSPPSR 7
202 SHOTBOE TYPES. ..ttt sttt st sttt e s e b s bbbt et s s e e b e s Rt e R e e b e e he e s e e e e R e s et e R e ARt R e e R e e ae e s R R e Rt Rt e e nenn e ne e 8
b RS 1 g To 11 @ o= ot ST RRRP 8
N A = TV i = SRR 8
b2 W T @ Y= Y (] oo o LU = SRS 8
N S 117 OSSR RSRRRR 8
2.2 AILEINALIVE CONSIIUCTeiiieieeieieeeie ettt e st s e e steeseesbesseeeesseeneesaesseesesseeneesseeasesneensessennenns 8
2.3 Parallel Construct and ProCeSS'S.........coiiiiiiiiiiiiiii e 10
3 Design & IMPlEMENTAtIONccoeiieice ettt e e nreeeesne s 11
G 50 R O = g T £ 11
0t St R [01 = 1 = PSPPSR TP PO 11
3111 REAAING AN WITTING. ..ccteiteieeteieeeetesieeet ettt ettt st b e et b e et et s e e st b e see e et e sbe e ebesreneas 11
312 IMPIEMENEALTION.ectieiieetireeeet ettt b bbb he bbb bt b e ae b e e ae b et e e 15
3.1.2.1 Inheritance Based ChanmElS..........cociieiirireeeerenes sttt esae e te e ere e e eneeneeneeneeses 15
3.1.2.2 Bridge Basad ChannelS.........cociiiioiriieeeete ettt sttt s b e st b ettt e e b sre e 16
TN 20 R © o = ox 5 (o = OO SO PR SRR 17
3. 1.2.2. 1. 1SINGIE ODJECL ...ttt sttt sttt st se et b e ettt s a et b e e et be et b e et et ebe bt ebe e 18
TN 0 1 = 11 i = TSRS 18
I N 1@ YT YT T g To = T = 19
TN N I 141 OSSPSR 19
31222 Theread MENOMccoirieiiiieisise ettt st nnns 20
3.1.22.3 TheWHeMENOUccoiie e et et b st e e b e 21
3.2 AR NALIVE CONSIIUCT ...ouviiiieieiceiceiesie sttt sttt et et ese e b e s re s e e senreabeneens 22
1 020t R | 41 = 1 o= SRR 22
0t Rt R N =1 7= 1 Y= TSR 22
3212 AlLING ChanNEIS. ...ttt ettt et b e st b e et b e se bt b e se bt e s e e e ebe e e e ebesre e 24
0 7 1 101 = 2= g1 = 4o o T 26
AN R N | =017 1Y TSSO U RO 26
G N 1o 1@ 1 7= 0T S 27
3.3 Parallel CONStrUCE ANG PrOCESSESccoerririirieriiriesiesieee sttt see st ssesae e e e e e e ssesseneens 29
1T 51 R [01 1 o RSO 29
3.3 L1 USING JAVA TRIEAOS.cueetiieeietesteeet ettt ettt st et b e b et et sb et b e b sa e e et e see e ebesreneas 29
3.3.1.2 OCCAM StYIE PAR CONSIIUCL......cuieeterieeetesieeetesteeete sttt st see e b e e b e et see e b sae e sbeseeneebesrenens 31
0 T 0 O O 0= P 31
B.3.L2.2 PalallEl ..ot b et e e ne et e a et nnens 32

Paul David Austin [1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.3.1.2.3 PrOCESSINEIWOIKvveeiiteieieeeieeetete e ettt e s ettt e s st e s s et e s e seseeessbeeesasbesesasssessbeeasasseeesasssaes seeseenassarenes 34

332 IMPIEMENIALION. ...ttt b e bbb bbbt e bttt b She b et bbbt bt nennenes 35
GG T R O £ 1o T = V7= [=0 (S 35
3.3.2.2 OCCAM StYI€ PAR CONSITUCE........eceeiticiicieste et eee e ete et e ste et e steete e e ste et e ssaesteensessaesseen saeessesnsssnes 35

G Tt R O o [0 == SO 36

R I = - | 1= 36
3.3.2.2.3 PrOCESSINEIWOIKoeeeiitiie it ieteee ettt e e ettt ettt e e e et e e sbe e e s s ba e e seab e e s sbaeessabeeesesbeessaneeees seesenensssarenes 39
APPENTIX A ClasS DIAQraMS......cccueieerieeieiieereeieseesieeessreeseeaeesseessesseesseessesseesseessessessseessesssessessseenes 40
A.1 JCSP Language ClasseS OVEN VIEWccuieiirierieieeieeesesie sttt s e e e sse s sne s s esessesnessesnes 40
A.2 JCSP Language ClasseS DELAI]ccoeoeiririiiiiiisesiese et 41
Y R O 4 =010 1= IO £ SRR 41
Y = o | 1= B O s <SR 42

Paul David Austin Ii 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

Figures
Diagrams

Figure 1 - Relationship between Channel INTErfaCES.........oii i 12
Figure 2 - JCSP Channel interface relationShipsoocce ittt s 14
Figure 3 - Inheritance based Channels - Class DIAgram ..ot ebe e e ebe s ebe e 15
Figure 4 - Bridge Channels - Class DIAGIAMcuiiierirerieieriereete sttt ettt et ebesae et sbe e ebess e seebesbeneebeseeneebeseeneas 17
Figure 5 — SingleODbject - State DIagraM..........ccoiiiiiiiiiiiiiie e es e e e e e e e et e e eaete b b memmmmmmmmmmmm e eeeesesensannnn s 18
Figure 6 — BUffer - STat@ DIAQIAMccce i e e e e e e et et e et e eseeeaeaaeaeeeeeeeeesasntanaaaeaaeeens 18
Figure 7 — OverWritingBuffer - State DIagramooeviiiiiiiiiii et e e e et eee e e e e e rrenn e e e aeeeeeees 19
(o (VoIS R T g =T g v (=T B 1=V | = o 19
Figure 9 - Class interactions for the Channel read method..............c.oooiriiiii e 20
Figure 10 - Class interactions for the Channel write method ... e 21
Figure 11 — JCSP Channel interface relationships With ARINGeeeeveiiiiiiiiee s e e 25
Figure 12 — JCSP Channel interfaces With AIINGcoooiiiiiiiieiii e ee e eeme e e 25
FIgUre 13 - AREINALIVE = SEIECTeeiiiiiiiieiiie ettt e e ettt e e e s s e b e et e e e e s s anbbe et e e e e sanbbeeeaeesnnnes 27
Figure 14 - ARINGCNANNET - WISoiiiiiiiiei ettt e e e et e e e e s st e e eeee e e e s bbe e e e e e s anbbaeeeeesann 28
Figure 15 - Relationship between Parallel and CSPIOCESSccovciiiiiiriieiiiie e e resmne e 32
Figure 16 - Relationship between ProcessNetwork and CSPIrOCESScvvvvieeeeiiiiiii i eeeeeeeeeeeees 35
Figure 17 - Parallel Class DIAQIAIMcoooiiiiiiiiiiiie ettt e e e e e e e e e ettt e et e et e e e e s smmmmmmmmmme s e e s s e s e nnanbnsbene 36
FIQUIE 18 - PArallE] — FUN() ...eeeeeieeiieeii ettt ettt e e e e e e e e e oo e e e e bbb b eeeemeamaan e e 222 e e e e e e e e e s aaaaannnnnnrene 37
Figure 19 - Parallel STate DIagramoooii ittt e e e e ettt e e e e ¢ s—— £ 4422222222221 21100 1n 39
Figure 20 - JCSP Language classes — Overview + cermmmmmmrmnn e oo e e 02 20
Figure 21 - JCSP Channel ClasSes - DELAIL............uuuuiiiiiiiiiiiieii et eme e e 41
Figure 22 - JCSP Parallel Classes - DELAIl...........ccooiiii it em e e e e e e e e s e e e nnnnns 42

Code Fragments

Code 1 - One to One Channel, reading PSEUAO COUE..........cceeeiiiiiiiiiiiieiee et smmmmmmmeeeeeeeens e e e
Code 2 - One to One Channel, writing PSeUdO COUEuuviiiiiiiiiiiiiiieeeeee e

Code 3 - One to Many Channel, reading Pseudo Code

Code 4 - One to Many Channel, Writing PSEUAO COUEccviiiiiiieee ittt e e e e e eeemmmmmneenee e e e e e s
Code 5 - Many to One Channel, reading Pseudo Code

Code 6 - Many to One Channel, writing PSEUAO COEuuuiiiiiiiieiiiiceeeis e reeene s
Code 7 - Many to Many Channel, reading PSEUAO COUE...........uiiiiiiiiiiiiiiiceeiie s eeeemmmmmmmmmmmm e e 7
Code 8 - Many to Many Channel, writing PSEUAO COE...........coeiiiiiiiiiiiiiiiii e e e e e e e e e e e e eeemmmm e 7
Code 9 - ALT ProcesSs iN OCCAMcoiiiiiiii ettt et e e e e e e e e e e e oo oo e e b bab b e et et e et e et sammmmmmmmmmmms e e e e e s s e e e nnnnreee 9
Code 10 - Using Channel Interfaces - @XamPIEoooiiiiiiiiie et et e e et e e e e e e e e e e e 12
Code 11 - ITW Channel INtEIACE ...ttt et e e e e e e e s emmmmmmmmmmmmnea b be bbb e b e e e e e e eeeeas 13
(7o [T b2 O N I O o =T oL 1= I T =T o = o TR 13
Code 13 - JCSP ChannN@l INTEITACEeevviiiiiiee ettt e e e e e e e e e e e e s s s e et e ——— 11222221 e s e e s 14
Code 14 - ObjectStore interface

Code 15 - Alternative class - PUDIIC INTEITACEoooiiiiiiiie e c——— e e e e e an 23
Code 16 — Alternative interface - @XamMPIE..........uuuiiiiiiiiiiiiieii e e e e e e s smmmmmmmmmmmmmm e 23
Code 17 - AINGCANNEL - INTEITACES. ...ttt et e e e e mmmmmmmmmmmmm bbbt e e e e e e eeeeas 24
Code 18 - Algorithm for selection Of ChaNNEISuuiiiiii et 26
Code 19 — ParalleliSm USING tAIEAASccuiiiiiiiie ettt e e et e e e e e e e aaaaaaaaaaeaaan 30
COdE 20 — CSPIOCESS INTEITACE ...ttt ettt e e e e e e e e e e e e e aane e e e e e e eeaeaaaaaaaaaaans 31
COdE 21 — C SO PIOCESS EXAIMPIE ..ttt e oottt et e et eeeaaaeeeeeaeeeeaaaaaaaaaaeeeeeeesasaaaannnnenes 32
Code 22 — PArallel INEITACE ...ttt e e e e e e e e e e e e e e bttt et eeeeeaaaaaaaaaaaeaeaaan 33
Code 23 — Parallel EXAMPIEueiiiiiiiiiiiiie ettt e et e e e aae e e e e e e s e e e a2 mmm—— 1ttt ettt e e e e eaeaeeen 34
Code 24 — ProCeSSNEIWOIK INTEITACEueiiiiiiiiiiiiie ettt et e s s mmeeeeeeasmmnseeeeeeessnnneeeeeas 35
Code 25 — Parallel run() method — PSEUAO COAE.........ccuuuiiiiiiiiiiiieie e re e e e e e e e e e e e e e e e e e s anaanns 36

Paul David Austin iii 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

1 Introduction

This document describes the functionality and design of the classes in the Java Communicating
Sequential Processes package that are used to model the OCCAM language in Java. The design will
be described using the Unified Modelling Language ¥ (UML) notation with descriptive text
describing why certain decisions were made. The discussion will assume knowledge of the facilities
and concepts of the CSP 1? model in the OCCAM ! language and of programming in the Java!*!
programming language.

Severa different versions of CSP style channels have been developed at the University of Kent
England and the University of Twente Netherlands. Each different version provides slightly
different interfaces to channels. Included in these packages are some other classes that provide
different types of channel, composition constructs (Parallel and Alternative) and standard building
blocks.

In this document, the following terms will be used:; ‘Java Threads workshop’ (¥\fpr the
work at the University of Kent, ‘Communicating Java Threads’ (€3r the work at the
University of Twente and ‘Java Communicating Sequential Processes’ (JCSP) for the work
described in this document.

The package described within this document takes the best parts from each of these versions to
develop a unified class library. The library will try to contain classes that are simple to use for
developers constructing applications and is simple to extend to include extra channel types.

The design of these channels must balance the need to provide easily extensible channels that have
as low a performance overhead as possible.

Paul David Austin 1 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2 Functionality

This section describes the functionality that the library must implement to provide features similar
to those offered by OCCAM.

2.1 Channels

A channel provides a mechanism for two (or more) paralel processesto communicatein a
synchronised manner. Therefore the process performing output cannot continue until the channel
accepts the read request and likewise the process performing input cannot continue until the channel
accepts the write request. Thisis specifically a generic description of a channel so that in our class
libraries we can define other channels that implement the behaviour of accepting read and write
processes in different ways that still follow this model.

The OCCAM language defines a Channel to be synchronised, point to point, non-buffered
communication. In this definition, we have only one reader and one writer (point to point). When
the writer writes to the Channel, it cannot continue execution until the reader has read from the
Channel (synchronised). The Channel does not logically store the value of the object in the
communication (non-buffered).

In the Java version, we want to build upon this basic concept of a channel to include other type of
channel such as; Timer, io ports, Buffered Channels, Overwriting Buffers, Shared Channels and
Network channels. In fact in OCCAM 3 there are Shared Channels. It is possible with the basic
channel to build active processes that implement Buffered Channels, Overwriting Buffers etc. It is
however sometimes more useful to have low level versions of these type of channels (for example
when a parallél version incurs too much overhead).

In OCCAM, the channel isimplemented as a primitive type in the language. This provides the
benefits of ensuring at compile time that only one process is permitted to write to the channel at a
time (for One to One channels). In addition, the types of data sent down the channel are specified
for the channel and thisis check at compile time. To check that only one process could writeto a
channel in Java run time checks would be required which would add an extra overhead and possibly
require amore complex interface. It is therefore the responsibility of the software constructor to
decide on the type of channel to use.

It is possible in Javato implement channels, which can only accept certain types of data.
Unfortunately, as the language does not support template classes this would have to be implemented
using run time checks or by creating new a Channel classfor each type of Qvj ect thatisto be
sent down a channel. Thiswould either result in a performance hit or avery large classlibrary. In
thisclasslibrary any Qbj ect can be sent down the channel with no checks made by the library as
to the type of the data. It is therefore the responsibility of the users of these channels to publicise the
data types expected down a particular channel and to handle any error conditions.

The OCCAM channels make a copy of the data sent down a channel from the original processto the
receiving process. In the Java channels this will not be done automatically by the channel, instead it
Is the responsibility of the developer to copy Qbj ect if required. The reasons for not copying the
Qvj ect arelisted below.

Paul David Austin 2 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

1) A lot of classesin the Javalibrary areimmutable® therefore creating a copy is not necessary as it
safe for more than one thread to accessthe (bj ect .

2) Copyingan Qvj ect inJavais performed using the cl one() method on the Qbj ect whichisa
protected method therefore it cannot be called unless the actual class has declared the cl one()
method to be public. To finally copy the Qbj ect it is necessary to cast the reference to the
actual class and then call thecl one() method. Thiswould require some fairly complex code or
require a common super class for al types that should be cloned that definesacl one() to be
public.

3) It would be possible to use serialisation to make copies of the Qvj ect sent down the
Channel , thiswould however have alarge performance hit.

2.1.1 Cardinality

The cardinality of achannel defines how many different processes can be trying to either read or

write at the same time. It is necessary to consider the cardinality of the channels instead of

implementing the channels as a ‘Many to Many’ channel. There are several reasons why this is so.

1) If the class library includes support for Alternative selection of channels it is only safe to do this
for a single reader (see section 2.3 for further details).

2) The ‘Many to Many’ channel has an extra synchronisation for each read and write to ensure the
channel is left in a consistent state and does not cause any race hazards. This extra
synchronisation is necessary for the ‘Many to Many’ channel as if it did not have this extra
synchronisation the following scenario could arise. A second writer could enter the write
method and overwrite the data from the first process, while the first process was blocked
waiting for a reader to read the data. For channels that only allow one reader (or writer) this
extra synchronisation on reading from (or writing to) the channel adds an unnecessary overhead
to each channel communication. This overhead is quite high as the Java synchronization
mechanism takes a long time.

There are four cardinalities to consider; each one is discussed below.
4) Single Writer and Single Readei{e2neChannel)

1. Single Writer and Many Reader@{e2Many Channel)

2. Many Writers and Single Readdv{ny2neChannel)

3. Many Writers and Many Reade®gny2Many Channel)

! immutable means the value of the Gbj ect cannot be changed once the Gbj ect has been created. An exampleis the
St ring class.

Paul David Austin 3 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2.1.1.1 One to One Channel

The simplest form of channel isthe One To One channel, that is only safe to be used for one reader
and writer. Thisisthe type of channel used in OCCAM.

2.1.1.1.1 Reading

Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
A check isthen made to seeif thereis data available, if thereis no data the monitor is released and
this process will wait for awriter. The Gbj ect will be read from the data store and the waiting
writer will be notified. The Gbj ect isreturned and the monitor is released.

synchroni ze on channe
if data store is enpty
wait for witer
end if
read Cbject fromdata store
notify waiting witer
return Cbject
end synchroni ze

Code 1 - Oneto One Channel, reading Pseudo Code

2.1.1.1.2 Writing

Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
The Qbj ect will be written to the data store and the waiting reader will be notified. A check is
then made to see if the data storeisfull, if it isfull the monitor is released and this process will wait
for areader. The monitor is then released.

synchroni ze on channel
wite (bject to data

store
notify waiting reader
if data store is full

wait for reader

end if

end synchroni ze

Code 2 - Oneto One Channel, writing Pseudo Code

Paul David Austin 4 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2.1.1.2 One To Many Channel
The One to Many Channel is safe to be used for many readers and one writer.

2.1.1.2.1 Reading

Reading from the channel involves obtaining the monitor for read and then for the channel to ensure
exclusive access. A check isthen madeto seeif thereis data available, if there is no datathe
monitor is released and this process will wait for awriter. The Qoj ect will beread from the data
store and the waiting writer will be notified. The Qbj ect isreturned and the monitor is released.

synchroni ze on read nonitor
synchroni ze on channe
if data store is enpty
wait for witer
end if
read Cbject fromdata store
notify waiting witer
return Cbject
end synchroni ze
end synchroni ze

Code 3 - Oneto Many Channel, reading Pseudo Code

2.1.1.2.2 Writing

Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
The Qbj ect will be written to the data store and the waiting reader will be notified. A check is
then made to see if the data storeisfull, if it isfull the monitor is released and this process will wait
for areader. The monitor is then released.

synchroni ze on channe
wite Cbject to data
store
notify waiting reader
if data store is ful
wai t for reader
end if
end synchroni ze

Code 4 - Oneto Many Channel, writing Pseudo Code

Paul David Austin 5 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2.1.1.3 Many To One Channel
The One to Many Channel is safe to be used for one reader and many writers.

2.1.1.3.1 Reading

Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
A check isthen made to seeif thereis data available, if thereis no data the monitor is released and
this process will wait for awriter. The Gbj ect will be read from the data store and the waiting
writer will be notified. The Obj ect isreturned and the monitor is released.

synchroni ze on channe
if data store is enpty
wait for witer
end if
read Cbject fromdata store
notify waiting witer
return Cbject
end synchroni ze

Code5 - Many to One Channel, reading Pseudo Code

2.1.1.3.2 Writing

Reading from the channel involves obtaining the monitor for write and then for the channel to
ensure exclusive access. The Qvj ect will be written to the data store and the waiting reader will
be notified. A check isthen made to see if the data storeisfull, if it isfull the monitor is released
and this process will wait for areader. The monitor is then released.

synchroni ze on wite nonitor
synchroni ze on channe
wite Cbject to data store
notify waiting reader
if data store is ful
wai t for reader
end if
end synchroni ze
end synchroni ze

Code 6 - Many to One Channel, writing Pseudo Code

Paul David Austin 6 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2.1.1.4 Many To Many Channel
The One to Many Channel is safe to be used for many readers and many writers.

2.1.1.4.1 Reading

Reading from the channel involves obtaining the monitor for read and then for the channel to ensure
exclusive access. A check isthen madeto seeif thereis data available, if there is no datathe
monitor is released and this process will wait for awriter. The Qoj ect will beread from the data
store and the waiting writer will be notified. The Qbj ect isreturned and the monitor is released.

synchroni ze on read nonitor
synchroni ze on channe
if data store is enpty
wait for witer
end if
read Cbject fromdata store
notify waiting witer
return Cbject
end synchroni ze
end synchroni ze

Code 7 - Many to Many Channel, reading Pseudo Code

2.1.1.4.2 Writing

Reading from the channel involves obtaining the monitor for write and then for the channel to
ensure exclusive access. The Qvj ect will be written to the data store and the waiting reader will
be notified. A check isthen made to see if the data storeisfull, if it isfull the monitor is released
and this process will wait for areader. The monitor is then released.

synchroni ze on wite nonitor
synchroni ze on channe
wite (bject to data store
notify waiting reader
if data store is ful
wai t for reader
end if
end synchroni ze
end synchroni ze

Code 8 - Many to Many Channel, writing Pseudo Code

Paul David Austin 7 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2.1.2 Storage Types

The storage types define how objects sent across the channel are stored. The storage policy may
specify the number of Qvj ect s that can be in the Channel and what to doif itisfull. The
following storage types will be provided in the JCSP library; Si ngl eQbj ect , Buf f er,
Over Wi ti ngBuffer and Ti mer. Further Gbj ect St or es can be added by developers.

2.1.2.1 Single Object

The OCCAM channels store only one value at atime, thisvalue is not buffered and the writer must
block until areader has read the value and a reader must block until data has been written. In the
library, the Si ngl ebj ect will provide this functionality.

2.1.2.2 Buffer

A Buf f er actsinavery similar way to the rendezvous channel except that a Buf f er can hold
more than one Qbj ect at atime. If the Buf f er is empty, the reader must block until afurther
Qvj ect iswritten. If the Buf f er isfull, the writer must wait until areader reads an Qvj ect
from the channel.

2.1.2.3 Over Writing buffer

An Over Wi ti ngBuf f er hasthe same propertiesasa Buf f er but instead of blocking when
the buffer isfull the Over Wi t i ngBuf f er discards the last value written to the buffer and writes
the new valueinit's place.

2.1.2.4 Timer

OCCAM provides a specia type of variable called a Timer that can be read from asif it were a
Channel. Reading from Timer returns along representing the current time, the Timer never blocks
the caller. Writing to a Timer is not possiblein OCCAM, the JCSP Ti mer (bj ect St or e will
discard any data written to it.

2.2 Alternative construct

An Alternation combines several input, timeout or SKI P clauses, only one of which is executed.
Each clause may optionally have a Boolean guard; the input may only be executed if the guard is
true. Associated with each clause is a section of code (process) which is executed if that clauseis
selected. The input clause is aread from a single channel that isready if datais available to be read
from the channel. The timeout clause that will wait until the time specified has passed; the clause
will become ready after thistime. The SKI P clause is always ready and will be selected if none of
the input clauses isimmediately ready.

When the Alternation construct is executed the channels specified will be probed to seeif it has data

to be read. The following checks will be executed in the order shown below.

1. If only one channel is ready the data will be read from it and the associated code will be
executed.

Paul David Austin 8 1-May-1998

Java Communicating Sequential Processes

Design of JCSP Language Classes

2. If more than one channel is ready, one of these will be selected. The datawill be read from it
and the associated code will be executed (there is no specification about which channel will be

selected).

3. If thereisa SKI P clause the Alternation will not read from any channels and the code

associated with SKI P will be executed.

4. If no channels are ready the Alternation will wait until at least one of the channels becomes

ready
5. An Alternation may also have atimeout.

The OCCAM language provides the facility to wait for input on more than one channel and then
select one of the channels which has data ready to be read. The data from the selected channel is
read and then some code will be executed to process the data read. The OCCAM code fragment
shows an example of an ALT statement that waits for input on the three channelsinl, in2 and in3.
When input is available the ALT process will select one of the channels which has data and executes

the read from that channel and the code associated with that read.

BOOL b:
TIMER tim
SEQ
B := fal se
ALT
| NT i:
inl ? i
SEQ
out ! 1
out ! i
b :=true
b &in2 ?i
SEQ
out ! 2
out ! i
tim? AFTER 10
SEQ
out ! 3
out ! |
b & SKIP
SEQ
out ' 0
out ' O

Code9- ALT processin OCCAM

Paul David Austin 9

1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

2.3 Parallel Construct and Process’s

The PAR construct in OCCAM enables the parallel execution of fine grained processes such asa
single assignment, output to a channel or read from a channel as well as named procedures
(PRQCs). The PAR construct after setting the processes running will not complete until all the
specified processes terminate.

The language also enforces certain rules about parallelism to ensure that no two processestry to
write/read to/from the same channel or modify the same variable. These constraints mean that it is
possible to reason about the programs, as the language does not allow code to be written with
undesirable side effects.

The Javaversion of PAR must provide the following;
Execution of processesin parallel as per PAR.

» Encapsulation of processes in named procedures

* Must not terminate until al sub processes terminate

In addition, it would be useful if it could provide the following;
» Addition of new Processes

* Removal of Processes

» Asynchronous execution of a Process

Paul David Austin 10 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3 Design & Implementation

The section discusses the different designs for the channels considered comparing their relative
merits along with the final design used. The main factors considered were (in no particular order).
* Good OO design (high cohesion, low coupling and encapsulation)

» Simplicity of interface

* Performance

For the different parts of the library, first the interface to the classes is described then followed by a
section talking about the different implementations tried and the relative merits.

The design of the library was considered in the following groups of classes.
1. Channels

2. Alternative

3. Parallel construct and Processes

3.1 Channels

In designing the Channel classesit isimportant, to design the classesis such away that it is easy
to add new types of channel. The following sections describe the approach taken to allow thisto

happen.

3.1.1 Interface

To enable the facility to change the implementation of channels and have more than one type of
Channel theinterface of the channels were designed as pure interfaces with no implementation.
This enables clients to be written without any knowledge of the actual Channel it uses.

3.1.1.1 Reading and writing

When building CSP processesit is usually the case that a particular process will usea Channel
either for input or for output but not both input and output. To aid the designer of these processesit
should be possible for them to specify that a particular Channel isfor either for input or output,
the compiler would then flag an error if the read method was called on an output Channel .

The original JTW channels, had only one type of Channel used to send arbitary Qbj ect s, there
was no mechanism for processes to specify if a Channel isto be used for input or output. The CJT
channelsincluded two interfaces types for input and output respectively. The Channel | nput
interface defines the format of ther ead() method and the Channel Qut put interface defines
the format of thewr i t e() method. The Channel interfaceisthen defined asimplementing both
the Channel | nput and Channel Qut put interfaces as shown in the class diagram below.
(Channel could actually be defined as a class which implementsther ead() and

wr i t e() methods asin the CJT classes, in the JCSP classesit isjust going to be implemented as
an interface).

Z Interfaces in Java are used to specify the public methods a class must implement to have the type specified by the
interface. A class may implement several interfaces as well as inheriting from one class. As Java does not allow
multiple inheritance the inclusion of interfaces enables Objects to have multiple types.

Paul David Austin 11 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

<<Interface>> <<Interface>>
Channell nput ChannelOutput
Channel

Figurel - Relationship between Channel interfaces

The example below shows how processes would use the interfaces to access the channel, the
example network consists of one process outputing along the channel and one reading fromit. The
definition of the Qut put Pr ocess usesan Channel Qut put reference in the constructor, this
means that inside the class only those methods defined in the Channel Qut put interface can be
used and this restraint is checked at compiletime. The sameistruefor the | nput Pr ocess except
only those methods defined in Channel | nput may be used. Asthe Channel interface
implements the type of both Channel | nput and Channel Qut put itislegal for a Channel to
be passed where a Channel | nput or Channel Qut put isrequired.

OutputProcess > IntputProcess

class Network {
Net wor k() {
Channel ¢ = new Channel ();
Qut put Process writer = new Qut put Process(c);
| nput Process reader = new | nput Process(c);
}
}

cl ass Qut put Process {
Qut put Process(Channel Qut put out) {
[lperforminitialisation here
}
public void run() {
}
}

cl ass I nput Process {
| nput Process(Channel I nput in) {
[lperforminitialisation here
}
public void run() {
}
}

Code 10 - Using Channel Interfaces - example

Paul David Austin 12 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

After considering the relationships between the interfaces it is necessary to define the methods
required to read and write data to and from the channel. The format of these methods should be as
intuitative and simple as possible to use and provide flexibility in the type of data sent down the
channdl.

The JTW channels defined thewr i t e() method to accept an (bj ect as aparameter and the
r ead() method to return an Qbj ect . The channels do not copy the Obj ect asthey are sent
across the channel. The definition of the class is shown below.

public class Channel {
public void write(Object o) { ... }
public Objectread() { ... }

}

Code 11 - JTW Channel interface

The CJT classes provide a more complex interface to reading and writing that includes support for
aternative selection of channels and parrallel input/output. The CJT channels can only send data
which isasubclass of & onabl ePr ot ocol which makesthe interface less flexibile. The
channels do however copy the bj ect asit is sent across the channel. The definition of the classis
shown below.

public class Channel {
public void write(ClonableProtocol o) throws Exception { ... }
public void write(ALT alt, ClonableProtocol o) throws Exception {

}

public void write(PAR par, ClonableProtocol o) throws Exception {

.}

public void read(ClonableProtocol 0) throws Exception { ... }
public void read(ALT alt, ClonableProtocol o) throws Exception {

public void read(PAR par, ClonableProtocol o) throws Exception {

2}

Code 12 - CJT Channdl interface

There are several issues with the interface, which are;

» Itisonly possibleto send O onabl ePr ot ocol objects down the channel. The reason for this
isto enable the Qb ect to be copied when passed across the channel. As the JCSP channels are
required to send an arbitrary Qbj ect and therefor it isthe client that is responsible to copy the
Qvj ect if required. Theinflexibility of the CJT interface is not necessary and causes the
following problem.

» The d onabl ePr ot ocol class definesthe clone method ascl one(Obj ect) instead of
bj ect cl one().Thiswould causea O assCast Except i on if thevariablethe client is
trying to read into is not the same as the variable sent down the channel.

Paul David Austin 13 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

* Theread method is not intuitive.

» All the read and write methods are declared to throw all exceptions, this forces the implementers
of processes to place atry catch block around the callstor ead() andw i t e() . Theonly
time exceptions would be raised by the channels are Runt i meExcept i ons which signify
program errors and should not be caught.

* Theread()andw i te() methods provide away to poll a Channel to see if communication is
possible using the ALT construct. Thisis an inefficient method and providing alting on both
input and output causes problems if both the sender and receiver are alting on the same channel.
The implementation of ALT in OCCAM does not allow this for the same reasons (see 3.1.2 for a
further discussion of ALT).

e TheJCSP library will use the method of having Channel | nput and Channel Qut put
interfaces which definether ead() andw i t e() methods respeciviey as per the CJT classes.
The format of the read and write methods are the same as the JTW classes as they are simple
and intuitive. Ther ead() andwr i t e() methodsfor PARand ALT provided by CJT are not
necessary as these will be implemented differently. The definitions of these interfaces are shown
below and the class relationships are shown in Figure 2.

public interface Channel Qutput {
public void wite(Cbject 0);
}

public interface Channel | nput {
public Object read();
}

public interface Channel extends Channel Qut put,
Channel | nput {

}

Code 13 - JCSP Channel interface

<<Interface>> <<Interface>>
Channellnput ChannelOutput
®read(): Object ®write(o : Object) : void

L)

<<Interface>>
Channel

Figure 2 - JCSP Channel interface relationships

Paul David Austin 14 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.1.2 Implementation

For the implementation of the channels two different methods were considered, each of theseis
discussed below

1. Inheritance based channels

2. Bridge based channels

3.1.2.1 Inheritance Based Channels

Thefirst approach considered when designing the implementation for the channels was to take the
interface and create a class for each of the storage types that implements Channel . Each of these
classes would then definether ead() andwr i t e() methods to implement the storage policy as
well as the synchronisation between the reading and writing processes.

The Class Diagram below shows the rel ationships between the classes in the inheritance based
model.

<<Interface>> <<Interface>>
Channellnput ChannelOutput

T T

<<Interface>>

Channel
7777777 -

—l> SingleObjectChannel > BufferChannel Timlhannel
SingleObjectOne20neChannel BufferOne20neChannel
SingleObjectOne2ManyChannel BufferOne2ManyChannel
SingleObjectMany20neChannel BufferMany20OneChannel
SingleObjectMany2ManyChannel BufferMany2ManyChannel

Figure 3 - Inheritance based Channels - Class Diagram

Paul David Austin 15 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

To implement the cardinality of the channels up to four sub classes of each of the channels need to
be created to make channels that are safe to use for many readers and writers. The four cardinalities
required are One20ne, One2Many, Many20ne and Many2Many. Certain channels such as the

Ti mer Channel may not need to define extra classes to make them safe to use for many readers
and writers.

Note: For each new storage policy five classes are required and the channel synchronisation
code will have to be written for each channel type.

Thisis one method of implementing the Inheritance model for the channels, another approach may
have the cardinalities at the top of the tree and the storage types subclass these. Whatever way the
inheritance is organised the number of classesrequired islarge.

Another problem with this approach is if network Channels were introduced, it would be necessary
to create Buf f er Net wor kChannel , Si ngl ebj ect Net wor kChannel (and al the
subclasses for cardinality).

The advantage with this approach is that the code that implements each of the channelsisin one
class. Thiswould enable the implementations to be written without method calls to other classes
and the associated de-referencing of Qvj ect references. Thiswould result in a possible
performance improvement.

The JCSP library does not use this approach due to the quantity of classes and the replication of
code required.

3.1.2.2 Bridge Based Channels

The second approach considered when designing the implementation for the channels was to take
the interface and create a new sub class for each of the required cardinalities. These classes
implement the required synchronisation between the reader and the writer process. Thiswill ensure
that they are safe to use for many readers and writers as necessary.

Another interface Qbj ect St or e is defined to define the interface to putting an Gbj ect , reading
an vj ect and checking the state of the storage type. A classis defined which extends

Qvj ect St or e for each of the storage policies required. Provided in the library would be an
implementation of Gbj ect St or e for the following.

1. Singl ej ect (defaultif an Qbj ect St or e if not specified)

2. Buffer

3. OverWitingBuffer

4. Ti mer

The channels will be created with an instance of an Qvj ect St or e to store the data sent across the
channel. The Channel classeswill control the synchronisation by checking the state of the

Qvj ect St or e tofind out if the reader or writer should block to wait for awriter or areader. The
wri t e() method will put datainto the Obj ect St or e and ther ead() method will get data
from the ObjectStore.

Paul David Austin 16 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

The Class Diagram below shows the rel ationshi ps between the classes in the bridge based model.

<<Interface>> <<Interface>>
Channellnput ChannelOutput
<<Interface>>| 1 0..1 -
Channel [<> ObjectSbore

4& -data ’ Z} |

SingleObject Buffer OverWrittingBuffer Timer
‘ (from util) (from util) (from util) (from util)

- 1

One20neChannel One2ManyChannel Many20OneChannel || Many2ManyChannel

Figure4 - Bridge Channels - Class Diagram

3.1.2.2.1 ObjectStore

The bj ect St or e interface is an abstract class that defines several abstract protected methods
that must be defined by sub-classes. The interface is shown below.

public abstract class bjectStore {
protected static final int EMPTY,
protected static final int FULL;
protected static final int NONEMPTYFULL;

protected abstract void put Object (Obj ect

0);
protected abstract Object getbject();
protected abstract int getState();

}

Code 14 - ObjectStore interface

The methods are defined as protected® as only the Channel classes defined within this package
should be able to access members of the Qbj ect St or e. When defining the sub-classes, the
constructor of those classes must be public but al the other methods should remain protected. This
gives aclean interfaceto the Qvj ect St or e and insures data is not changed by other classes.

% The protected visibility in Java enables classes in the defining package as well as sub-classes access the methods of
the class.

Paul David Austin 17 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.1.2.2.1.1 Single Object

The Si ngl evj ect will store the reference to the bj ect being written and aflag indicating
the state of the Qbj ect St or e. The state diagram below shows the allowed states and transitions
of the Si ngl evj ect classwhen used ina Channel .

putObject

. finitialize Empty Full

getObject

Figure 5 — SingleObject - State Diagram

3.1.2.2.1.2 Buffer

The Buf f er will store the referencesto the bj ect s being written in acircular buffer, with a
count of the number of items. The state will be calculated from the size of the buffer and the count.
The state diagram below shows the allowed states and transitions of the Buf f er class when used

ina Channel .

finitialize

Empty

/A
/

putObject[size=0] putObject[size > 0]

getObject[count=1]
putObject[count < size]

getObject[size =0] getObject[count> 1]

= getObject[size > 0]
Full Not Empty or Full

putObject[count = size]

Figure 6 — Buffer - State Diagram

Paul David Austin 18 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.1.2.2.1.3 OverwritingBuffer

The Over Wi t i ngBuf f er will store the referencesto the Qbj ect being written in acircular

buffer, with a count of the number of items. The state will be calculated from the size of the buffer
and the count, the state will either be empty if the count is0 or NONEMPTY FULL otherwise. The
state diagram below shows the allowed states and transitions of the Over Wi t i ngBuf f er class

when used in a Channel .
putObjectmgetObject[count>1]
putObject

’% Empty Not Empty or Full ‘

getObject[count=1]

Figure 7 — OverWritingBuffer - State Diagram

3.1.2.2.1.4 Timer

The Ti mer will discard the reference to the Qbj ect being written. The state will always be
NONEMPTY FULL. The state diagram below shows the allowed states and transitions of the
Ti mer classwhen used in a Channel .

getObject getObject

Non Empty Full

Figure 8 — Timer - State Diagram

finitialize

Paul David Austin 19 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.1.2.2.2 The read method

The basic functionality of ther ead() method isthe same for al the different channels, the
channels with a cardinality of Many readers provide extra synchronisation around the method to
ensure exclusive access.

The purpose of the read method on a channel isto provide the correct synchronisation for the
channel between the reader and writer, and to return the next Gbj ect from the channel. The
following diagram shows the interaction between the Channel and the Gbj ect St or e.

: Channel data : Object

Store
l read() l

getState()

[state = EMPTY] wait()

P

getObject()

notify()

P

|
g
|
|
g
|
|
|
|

Figure9 - Classinteractionsfor the Channel read method

Ther ead() method is a synchronised method so that only one process can access the Channel .
The method will block (using thewai t () method) if the Obj ect St or e iISEMPTY (this
provides the synchronisation between the reader and the writer). The synchronisation on the
Channel monitor isreleased when thewai t () method isinvoked allowing the writer to call the
write() method, thewr it e() method will then notify this reader when it has finished writing
the data. The reader will then regain the Channel monitor. The next Gbj ect will then be
obtained using get Cbj ect () . Thenot i f y() method will then be invoked to schedule any
waiting writers, the Qbj ect will then be returned.

Ther ead() method for the Many reader channels will have an extra synchronisation on aread
monitor object. This synchronisation is around the method described above to ensure that only one
reader can beinvoking r ead() at any onetime. If thiswas not done, a second reader could come
along while the first iswaiting (and therefore not holding the monitor) and enter the method and
may cause the Channel to beleft in an inconsistent state.

Paul David Austin 20 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

NOTE: Whenthewai t () call ismade only the lock from synchronising on the same object as
wai t () wasinvoked on isreleased. Therefore, when the reader has synchronised on the
read monitor then waited on the channel monitor no other readerswill be able to gain the
read monitor. The other readerswill have to wait until the reader is notified and regains
the channel monitor and releases the read monitor. The writers will however be able to
get through the write monitor and gain the channel monitor while the reader is waiting.

3.1.2.2.3 Thewrite method

The basic functionality of thewr i t e() method isthe same for all the different channels. The
channels with a cardinality of Many writers provide extra synchronisation around the method to
ensure exclusive access.

The purpose of thewr i t e() method on a Channel isto provide the correct synchronisation for
the Channel between the writer and reader, and to place the next Gbj ect inthe Channel . The
following diagram shows the interaction between the Channel and the Gbj ect St or e.

: Channel data : Object
Store

write(Object)

putObject(Object)

|

|

notify() W—H
: |
getState() |
"L

|

|

|

|

\

[state = FULL] wait()

P

T |
|
\ \

Figure 10 - Classinteractionsfor the Channe write method

Thewri t e() method isa synchronised method so that only one process can access the Channel.
Theput Obj ect () method will be invoked to store the value in the Channel . Thenot i fy()
method will then be invoked to schedule any waiting readers. The method will block (using the wait
method) if the Qvj ect St or e is FULL (this provides the synchronisation between the writer and
the reader). The synchronisation on the Channel monitor is released when the wait method is
invoked allowing the reader to call ther ead() method, the read method will then notify this
writer when it has finished reading the data. The writer will then regain the Channel monitor and
exit.

Paul David Austin 21 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

Thewr i t e() method for the Many writer channels will have an extra synchronisation on awrite
monitor object. This synchronisation is around the method described above to ensure that only one
writer can beinvokingwr i t e() at any onetime. If thiswas not done, a second writer could come
along while the first iswaiting (and therefore not holding the monitor) and enter the method and
may cause the Channel to beleft in an inconsistent state.

NOTE: Whenthewai t () call ismade only the lock from synchronising on the same object as
wai t () wasinvoked onisreleased. Therefore, when the writer has synchronised on the
write monitor then waited on the channel monitor no other writerswill be able to gain the
write monitor. The other writerswill have to wait until the writer is notified and regains
the channel monitor and releases the write monitor. The readerswill however be able to
get through the read monitor and gain the channel monitor while the writer is waiting.

3.2 Alternative Construct

The Alternative construct in the JCSP class library isbased onthe Al t er nat i ve class devel oped
by Peter Welch. The classis modified so that only Al t i ngChannel s may be selected upon and
common code has been factored out into utility methods.

NOTE: TheALT construct in OCCAM is actually a process. In this version of the Java
Al ternati ve, itisnot a process. Future versions may be implemented differently, there
was not enough time at the end of the project to describe details here.

The addition of the Al t er nat i ve construct should not radically alter the interface to existing
classes.

3.2.1 Interface

3.2.1.1 Alternative

Theinterfaceto the Al t er nat i ve class must provide methods to perform alternation under the
following circumstances.

e Alting on input Channels only

e Alting on input Channels with SKIP

» Alting on input Channels with atimeout

» Alting on input Channels with guards

» Alting on input Channels with guards and SKIP

* Alting on input Channels with guards and a timeout

The interface will define severa versions of thesel ect () method with varying arguments. Each
version will accept an array of Al t i ngChannel | nput (see next section for definition)
containing references to the input channels. The sel ect () method will return the index of the
Channel in the array that is ready, or —1 if the skip or a timeout occurred.

The interface for thé/ t er nat i ve class is shown below.

Paul David Austin 22 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

public class Alternative {

public int select(AltingChannellnput[] c);

public int select(A tingChannellnput[] c, bool ean skip);

public int select(AltingChannellnput[] ¢, |ong nsecs);

public int select(AtingChannellnput[] ¢, long nsecs, int nsecs);
public int select(AtingChannellnput[] ¢, boolean[] guard);

public int select(A tingChannellnput[] c, boolean[] guard,
bool ean skip);

public int select(AtingChannellnput[] c, boolean[] guard,
| ong nsecs);

public int select(A tingChannellnput[] c, boolean[] guard,
| ong nsecs, int nsecs);

Code 15 - Alternative class - public interface

Tousethe Al t er nat i ve interfaceanew Al t er nat i ve is constructed. When selection is
required, one of thesel ect () methodsisinvoked with the array of Al t i ngChannel asa
parameter. The index returned from the method can either be used directly to invoker ead() on
the Channel inthe array or using a switch statement as shown in the example below.

Alternative alt = new Alternative();
Al tingChannel I nput[] altChans = {inl, in2, in3};
I nteger i;
switch (alt.select(altChans, 1000)) {
case 1:
i = inl.read();
out.wite(new Integer(1));
out.wite(i);
br eak;
case 2:
i = inl.read();
out.wite(new Integer(2));
out.wite(i);
br eak;
case 3:
i = inl.read();
out.wite(new Integer(3));
out.wite(i);
br eak;
default: // tineout
System.out.printin(“Time Out”);
Break;

}

Code 16 — Alternative interface - example

Paul David Austin 23 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

Theinterface for the Al t er nat i ve classincludes facilitiesfor bool ean guards, timeouts and
skips as parameters to the select method. Therefore, it is only necessary to modify the interface to
the channels that allow alternative selection to have the required methods.

3.2.1.2 Alting Channels
To implement selection on channels there needs to be two methods. The first method will enable the

selection on the channel and return true if dataisimmediately available. The second will disable the
selection on the channel after one of the channels has been selected.

The easiest way to add alting to the existing channels it to add the declarations of the enabl e()

and di sabl e() methodsto the Channel | nput class and then require the concrete channelsto

implement the bodies of these methods. This nieive approach has the following disadvantages.

» Itisnot safeto implement alting for all types of channel, the only types of channel that may
implement alting on input are those which may only have one reader.

All methods defined in interfaces are declared to be public, thisis would enable any classto call the

enabl e() anddi sabl e() methodswhen infact only the sub classesand the Al t er nat i ve

class should be able to call them. This requires that the methods be defined in a classin the same

package asthe Al t er nat i ve class. The class should be defined as an abstarct class with the

methods defined with package visibility.

» Adding the methods would require the modification of the existing interfaces, it would be better
if alting could be added without modifying the existing interface.

The method used is to define two extra abstract classes. Thefirst Al t i ngChannel | nput
implementsthe Channel | nput interface and defines the format of the enabl e() and

di sabl e() methods, this class will be used to pass channels into processes which ALT on the
channel. The second Al t i ngChannel extendsthe Al t i ngChannel | nput and implments the
Channel interface, no new methods are defined, this classis the super class of all

Al ti ngChannel s.

The channels which enable alternative selection must extend the Al t i ngChannel classand
definetheenabl e() anddi sabl e() methodsinstead of implementing the Channel interface.
These are the only interface changes required. As the methods are defined to have package visibility
only this package can define classes that extend Al t i ngChannel .

The declaration of these new classes and the class digram is shown below.

public abstract class AltingChannel | nput
i mpl emrent s Channel | nput {
abstract bool ean enable(Alternative alt);
abstract bool ean di sabl e();

public abstract class AltingChannel
ext ends Al ti ngChannel | nput
i mpl emrents Channel {

Code 17 - AltingChanne - interfaces

Paul David Austin 24 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

<<Interface>>
Channellnput

<<Interface>>

ChannelOutput
‘ <<Interface>>
‘ Channel
AltingChannellnput ‘
AltingChannel

Figure 11 — JCSP Channel interface relationships with Alting

<<Interface>> <<Interface>>
Channellnput ChannelOutput
®read() : Object ®write(o: Object) :void

R

<<Interface>>
‘ Channel

AltingChannellnput %
|

T*enable(alt : Alternative) : boolean
|Pedisable() : boolean ‘

AltingChannel

Figure 12 — JCSP Channel interfaces with Alting

Paul David Austin 25 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.2.2 Implementation

3.2.2.1 Alternative

The bulk of the Al t er nat i ve classis mainly implemented withinthesel ect () methods
defined in the interface with some private methods to perform some of the work. The genera
algorithm for selection on channels with no timeouts, guards or skipsis shown below.

synchroni ze on Alternative
for each channel c
enabl e(c)
end for
i f no Channel ready
wait for witer
end if
for each channel c in reverse order
if disable(c) = has data
sel ect edChannel = index of c
end if
end for
return sel ect edChanne
end synchroni ze

Code 18 - Algorithm for selection of Channels

To implement the selection with timeout, if no channdl is ready the wait call will have atimeout
value that will cause the select to awake after thistime.

To implement the selection with skip, if no channel is ready thereis no wait call, the channels are
disabled immediately.

To implement the selection with guards the loops to enable and disable each channel will only
enable/disable a channel if thebool ean variable in the guards array for that channel istrue.

The Al t er nat i ve class defines a package visible method schedul e() that must be invoked
when a Channel has been enabled for selection to notify that data has become ready instead of the
usual not i fy() invocation. Theschedul e() method will invokethenot i f y() method on
the Al t er nat i ve class.

The interaction diagram below shows the interactions between the various classes for the simple
sel ect () statement.

Paul David Austin 26 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

reader : alt : Alternative : AltingChannel writer :
CSPProcess CSPProcess

select(AltingChannellnput]]) ‘

For each Channel in * enable(Alternative)

in the Array passed to
select)
wait()

P

|
|
|
| |
T ‘ write (Object)
\ schedule()7

notify()

For each Channel in

T %H
* disable() ‘ ‘
in the Array passed to ‘

|
|
|
|
|

select ‘ /u
i |
| |
| | |
| | |

Figure 13 - Alternative - select

The enable al and disable al channels functionality is factored out into several private methods that
contain the loops that perform the work. These loops have been modified so that when achannel is
enabled and returnstrue indicating it is ready the loops will short-circuit at that point improving
performance.

3.2.2.2 AltingChannel

The Al ti ngChannel | nput and Al t i ngChannel classes have no implementation as they are
abstract classes. However discussion on the implementation of the Al t i ngChannel sub classes
must be considered.

The two channels which may implement selection are One20neChannel and
Many2(0neChannel asthe Many2neChannel only adds extra synchronisation on write only
the implementation of the Ohe2neChannel needs to be considered.

Toextend the Al t i ngChannel classthe implementation must definethe enabl e() and
di sabl e() methods. The implementation of theenabl e() method simply stores the reference

Paul David Austin 27 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

tothe Al t er nat i ve passed as the parameter in a private attribute indicating it is enabled and
specifying the Al t er nat i ve construct that is performing the selection. Thedi abl e() method
sets the private attribute to nul | indicating no selection is being performed and the normal
synchronisation between reader and writer should be used.

The implementation for thewr i t e() method must be modified so that if the private attribute for
the Al t er nat i ve classisnot null the schedule method must be invoked on the reference
otherwisenot i f y() must be invoked as per normal channels.

The interaction diagram below shows the interactions involved for the version of write for
Al ti ngChannel .

: Channel data : Object alt : Alternative
Store

write(Object) ‘

putObject(Object) %7]

[alt '= null] schedule() ‘

[alt == null] notify()

-

getState()

[state = FULL] wait()

P

|
]
w
| |

| |

| |

o E
|

Figure 14 - AltingChannel - write

Paul David Austin 28 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.3 Parallel Construct and Processes

The implementation of the parallel functionality evolved through first using Java threads to
encapsul ate the processes with specialist versions of read and write. Followed by the devel opment
of aPar al | el classthat was primarily used just for reading and writing processes. Finally, the
adoption and improvement of the Par al | el classto model the implementation of the PAR
construct in OCCAM with added functionality to add and remove processes.

NOTE: The current implementation does not implement PRI PAR but thisis being considered for
future versions.

3.3.1 Interface

3.3.1.1 Using Java Threads

The first approach to generating CSP process networks in Javawas to create a new subclass of
Thr ead for each PROC. The constructor of the class models the PROC declaration and ther un()
method models the body of the PROC. The constructor of the class also causes the Thr ead to be
started when constructed. The class stores the parameters passed into the constructor in private
attributes so that ther un() method can access them.

When executing several processesin parallel thej oi n() method must be invoked on each process
after the last process has been constructed to wait for all of the processes to finish executing. This
gives the same functionality as PAR. To execute a process so that the calling processis not blocked
(i.e. asynchronously) thej oi n() method should not be invoked.

The code below shows how a simple process is constructed and how a network of these processesis
constructed.

Paul David Austin 29 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

i mport jcsp.lang.*;

cl ass Successor extends Thread {
private Channel | nput in;
private Channel Qut put out;

publi ¢ Successor (Channel | nput in, Channel output out) {

this.in = in;
this.out = out;
start();

}

public void run() {
while (true) {
Integer i = in.read();
out.wite(new Integer(i.intValue() + 1));
}
}
}

/] declarations of Delta and Prefix go here

cl ass Nos extends Thread {
private Channel | nput out;

publ i ¢ Nos(Channel Qut put out) {
this.out = out;
start();

}

public void run() {
Channel a = new One20neChannel ();
Channel b new One20neChannel () ;
Channel c new One20neChannel () ;
Prefix p = new Prefix(new Integer(0), a, b);
Delta d = new Delta(b, out, c);
Successor s = new Successor(c, a);

/1 wait for the processes to finish

p.join();
d.join();
s.join();
}
}
Code 19 — Parallelism using threads
Paul David Austin 30 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

3.3.1.2 OCCAM style PAR Construct

After using the first method to develop some test and demonstration programs, it became apparent

that there were several problems with this approach.

» Definition of a processwas long

» Construction of process networks was long winded

» Long winded approach to waiting for all of the processes to terminate

» Execution of fine grained processes such as channel reads and write till required parallel
versions or a PAR construct.

» Difficult to control the execution of al the processes in the PAR construct

* Processes could not be re-used after termination

To overcome the problems a new approach was needed one that followed the OCCAM/CSP model.
This section describes the interfaces to the classes required to implement the PAR construct in Java
as similar to the OCCAM version as possible. There are three classes

* CSProcess (PROC)
* Parall el (PAR
* ProcessNet wor k (asynchronous execution of a CSPr ocess)

3.3.1.2.1 CSProcess

The CSPr ocess interface defines the methods that all processes that are to be executed using the
Parallel construct must implement. Thisis equivalent to defining named processes (PROCs) in
OCCAM.

Unlike the OCCAM PAR construct, it is not possible to execute single statements in parallel, only
classes that implement the CSPr oces s interface can be executed in parallel.

public interface CSProcess {
public void run();
}

Code 20 — CSProcess interface

Ther un() method of classes which implement the CSPr ocesss interface will contain the body of
the process.

To pass channels and parameters to the process the classes that implement the CSPr ocess
interface the class must be defined with a constructor that accepts the parameters and store
references to the parametersin private attributes. To execute the CSPr ocess it can either be run
as part of the Par al | el Construct (equivalent to PAR), Sequent i al construct (equivalent to
SEQ) or ther un() method can be invoked (equivalent to SEQ). The following Code demonstrates
how to create a ssmple process.

Paul David Austin 31 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

public class ProcessExanpl e i npl enents CSProcess {
private Object o;
private Channel Qut put out;

public ProcessExanpl e(Obj ect o, Channel Qutput out)
{

this.o = o;
this.out =

}

public void run() {
while (true) {
out.wite(o);
}

}
}

out ;

Code 21 — CSProcess example

3.3.1.2.2 Parallel

The design of the Par al | el classaimsto provide similar functionality as the PAR construct in
OCCAM that is also easy to use. The interface has constructors that create a new PAR construct
with an array of CSPr ocess’ s or with no processes. The Par al | el classimplementsthe
CSPr ocess and definesther un(') method to execute each of the CSPr ocess’ s oncein
Par al | el and returnsonly when all the CSPr ocess’ s finish executing.

0..*| <<Interface>>

> CSPProces

-processes |1
Parallel

Figure 15 - Relationship between Parallel and CSProcess

The interface also defines methods to add and remove CSPr ocess’ s fromthe Par al | el class.
There aretwo addProcess(...) methods one that will add asingle CSPr ocess and another that
will add and array of CSPr ocess’ s. TheremoveProcess(...) method will remove the

CSPr ocess. These methods are synchronized (asistherun() method) which means processes

can only be added or removed if therun() method (or any of the other methods) is currently being
executed.

Paul David Austin 32 1-May-1998

Java Communicating Sequential Processes

Design of JCSP Language Classes

public cl
publ i
publ i
publ i
publ i
publ i
publ i

OO0 00O0

ass Parall el
Parallel ();

i mpl ements CSProcess {

Par al | el (CSProcess[] process);

synchroni zed
synchroni zed
synchroni zed
synchroni zed

voi d
voi d
voi d
voi d

addPr ocess(CSProcess process);

addPr ocess(CSProcess[] processes);
renovePr ocess(CSProcess process);

run();

Code 22 — Parallel interface

NOTE: The Sequenti al classhasthe sameinterfaceasthe Par al | el class.

The code below shows how a simple process is constructed and how a network of these processesis

constructed.

NOTE: The example uses an advanced feature of the Java language to declare an array of
CSPr ocess’ s asa parameter tothe Par al | el constructor. This makes the code for
using PAR ook similar to the OCCAM version.

Paul David Austin

33

1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

i nport jcsp.lang.*;

cl ass Successor inplenments CSProcess {
private Channel | nput in;
private Channel Qut put out;

publi ¢ Successor (Channel | nput in, Channel output out) {
this.in = in;
this.out = out;

}

public void run() {
while (true) {
Integer i = in.read();
out.wite(new Integer(i.intValue() + 1));
}
}
}

/1 declarations of Delta and Prefix go here

cl ass Nos inplenments CSProcess {
private Channel | nput out;

publ i ¢ Nos(Channel Qut put out) {
this.out = out;
}

public void run() {
Channel a = new One20neChannel ()
Channel b new One20neChannel ()
()
/

Channel ¢ = new One20neChannel () ;
new Paral |l el (new CSProcess[] { // PAR
new Prefix(new Integer(0), a, b),
new Del ta(b, out, c),
new Successor(c, a)
}).run(); // run the processes and wait for themto
term nate

}
}

Code 23 — Parallel Example

3.3.1.2.3 ProcessNetwork

In the Javaversion it would be useful if a process network could be constructed and be executed
asynchronously and to have a mechanism to suspend, resume or stop the entire network when it is
no longer required.

The simplest method of performing this functionality would be to create anew Thr ead within a
new Thr eadG oup to execute the CSPr ocess. The problem with this method isit requires the
software constructor to perform several steps to implement the functionality. In addition, if the class

Paul David Austin 34 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

library were re-written to implement some new form of parallelism all other code would have to be
re-written to support the new interface.

<<Inteface>> -process
CSPProcess

ProcessNetwork

1 0.1

Figure 16 - Relationship between ProcessNetwor k and CSProcess

The interface of the class is shown below.

public class ProcessNetwork {
publ i c ProcessNetwor k(CSProcess process);
public void stop();
public void start();
public void suspend();
public void resune();
public void join();

Code 24 — ProcessNetwork interface

3.3.2 Implementation

3.3.2.1 Using Java Threads

There is no implementation required to implement the Par al | el classusing just Java Threads, as
there are no extra classes to be implemented. The implementation would consist of a set of
guidelines on how to construct processes and networks. As this method is not going to be used, the
guidelines have not been written.

3.3.2.2 OCCAM style PAR Construct

The implementation of the Par al | el construct described below uses the Java Thread mechanisms
to provide the parallel execution of processes. Asthe external interfaces to the classes have been
designed to hide the actual implementation it would be possible to change the actual

implementation of the Par al | el classto provide some other more efficient mechanism in the
future.

There are four classes used to implement the parallel functionality, the interfaces for CSPr ocess,
Par al | el and ProcessNet wor k were defined earlier. The Par Thr ead classis used in the
implementation of Par al | el to execute the processesin parallel. Figure 17 showsthe

rel ationships between the classes.

Paul David Austin 35 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

0..*| <<Interface>>| -process
P ProcessNetwork

CSPProcess
1 0.1
/ !
e
-processes | 1 - "Process| g 1
Parallel <-§arThreads -par | ParThread
1 0..* (from Parallel)

Figure 17 - Parallel Class Diagram

The Pr ocessNet wor k executes one CSPr ocess.

The Par al | el classimplementsthe CSPr ocess interface, has zero or more CSPr ocess
classes to be executed in parallel and has zero or more Par Thr eads which execute each of the
CSProcess’s

3.3.2.2.1 CSProcess
Asthe CSProcess isan interface, there isno implementation to be described.

3.3.2.2.2 Pardllél

The Parallel class executes each of the CSProcess’s oncein parallel when ther un()

method is called, any threads that are created are done within ther un() method. The pseudo code
below shows the basic functionality of the run method.

for each process
restart process
end for
wait for processes to finsih

Code 25 — Parallel run() method — pseudo code

The simplest method of implementing ther un() method would be to create a special Thr ead
class that would call amethod on the Par al | el class before the process is executed to increment
areference count. The Thr ead would then execute ther un() method of the CSPr ocess. When
the CSPr ocess terminates the Thr ead would then execute another method on the Par al | el
class that would decrement the reference count, if this was the last process the method would then
notify the run method and wake it up. The Thr ead would then terminate. This simple approach

would require a new set of threads to be created for each call to ther un() method causing extra
overhead.

The approach used is similar to described as above except the specia Thr ead (Par Thr ead class)
Is actually a class that implements the Runnabl e interface. The constructor of this class creates a
new Thr ead to executether un() method and startsit running. Ther un() method of the

Paul David Austin 36 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

Par Thr ead has an infinite loop that executeswai t () at the beginning of the loop, then executes
the CSPr ocess and then executes the method on the Par al | el classto decrement the reference
count. Asthe Thr ead now does not terminate it can be used to execute the CSPr ocess more
than once thus saving on the overhead of Thr ead creation (apart from at initialisation).

The Par Thr ead class definesast ar t () method whichiscalled by the Par al | el classto start
the CSPr ocess running. Thest art () method calls the method on the Par al | el classto
increment the reference count and then calls notify to wake up ther un()) method on the

Par Thr ead.

The interaction diagram shows the sequence of method callsinvolved in the Par al | el class’s
run() method. The diagram includes some extra method namé®(() andfi ni sh())
which have until now not been named.

process . Parallel : ParThread : CSPProcess

: | |

0 l *start() I

enter()

[count I= 0] wait()

P

O — — |

finish()

[count == 0] notify()

]

S

Figure 18 - Parallel — run()

Thereis one last point that need to be considered in the design of the Par Thr ead class. Thisisthe
topic of race hazards. It would be possible for the constructor to return beforether un() method

Paul David Austin 37 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

has been started by the Thr ead (and therefor thewai t () method not reached). The Par al | el
class could then call thest art () method on the Par Thr ead (causing not i fy() tobe
invoked). The Par Thr ead would then be waiting for a notification that has already occurred.

This race hazard can be avoided by including a synchronised block around the st art () method
invocation on the Thr ead in the constructor. In this synchronised block would aso beawai t ()
invocation to wait for the thread to be created and ther un() method invoked. At the top of the run
method there would beanot i f y() toindicate the thread has started. Oncethewai t () call is
reached inther un() method the control would then return to the constructor. The race hazard is
now removed.

Theent er () method iscalled by the Par Thr ead classto increment the reference count of the
number of CSPr ocess’ s being executed.

The fini sh() method iscalled by the Par Thr ead class to decrement the reference count of
the number of CSPr ocess’ s being executed. If the count is0 ther un() method will be notified.

The Par al | el classwill storethe CSPr ocess’ s to be executed in an array, when the classis
constructed the array will be created and the referencesto the CSProcess’s copied into the new
array. Thereisaflag pr ocessesChanged, which will besettot r ue if the number of
CSProcess’s into the array changes.

TheaddPr ocess() method will add a CSProcess to the array by increasing the size of the
array and copying the old array into the new one, the pr ocessesChanged flag will be set to
true.

Ther emovePr ocess() method will search through the array to find the CSProcess. The old
array will be copied into anew one apart from the removed CSProcess , the
pr ocessesChanged flagwill besettot r ue.

The ParThreads created by the Parallel classwill be stored in an array and not disposed of
when processes are removed. The ParThread's will be created by the run() method so that the
ProcessNetwork class functions correctly.

When ther un() method isinvoked the pr ocessesChanged flag ischecked. If itisf al se a
loop will invoke st ar t () on each of the ParThreads to set them running again. If itist r ue a
first loop will loop through the ParThread array for each of the CSProcess’s , the

set Process() method will beinvoked to set the CSProcess for that ParThread tothe
CSProcess and then it will be started. A check will be made to seeif the CSProcess array is
greater than the ParThread array, if thisisthe case new ParThreads must be created for each
of thenew CSProcess’s . The ParThread array will be enlarged to store the new

ParThreads . A loop will then create anew ParThread andthest art () method will then be
invoked. The pr ocessesChanged flag will besettof al se.

As described above ParThreads are created asthey are needed by ther un() method and only
done so when there are less ParThreads than CSProcess’s

Paul David Austin 38 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

If aprogram was written using a Par al | el construct the program should terminate when the
run() method returns. The implementation so far does not do this. The reason is that the Java
program does not terminate until all non-daemon Threads have terminated. In the implementation of
Par al | el there are non-terminating threads. To ensure the program terminates the threads create
by Par Thr ead should have their daemon flag settot r ue.

The following state diagram shows the possible states and actions possible in the Par al | el class.

restart next process[Not all processes started]

removeProcess(process)
run Restarting Processes

finish[Notall processes finished]

[

‘ Waiting for processes to finish ‘

addProcess(process)

finitialize

finish[All processes Finished] [All processes restarted]

Figure 19 - Parallel State Diagram

Onefinal performance improvement can be introduced that reduces the number of Par Thr eads
created. In the run method only n-1 Par Thr eads are created (where n is the number of
CSProcess). Thelast CSPr ocess will be executed in the same Thr ead asther un() method
by ther un() method being invoked on the CSPr ocess method thewai t () method is called.

3.3.2.2.3 ProcessNetwork

The Pr ocessNet wor k classisimplemented as a Runnabl e classthat executesther un()
method of the CSPr ocess which isto be executed asynchronously. The class creates a new

Thr eadG oup that will contain the Thr eads of al the CSProcess’s created by the top
CSProcess or any sub processes. The ThreadGroup will be used to control the execution of the
entire network. A Thread will be created in the ThreadGroup to executether un() method of
this class.

Thest art () method will invokest art () onthe Thread , thiswill cause the threads for the
network to be started.

Thest op(),suspend(),resune() methodswill invoke the corresponding method on the
ThreadGroup which will invoke the corresponding method on each Thread .

The j oi n() method will invokej oi n() onthe Thread , thiswill cause the current Thread to
wait for the thread to stop executing.

Paul David Austin 39 1-May-1998

Java Communicating Sequential Processes

Design of JCSP Language Classes

Appendices

Appendix A Class Diagrams

A.1 JCSP Language Classes Overview

<<Interface>>
Channellnput
(fromlang)

<<Interface>>
ChannelOutput
(fromlang)

?

‘ <<Interface>> 1

0.1 .
‘ Channel fObjf)ctStore
(fromlang) -data (fomiang)
AltingChannellnput ‘
(fromlang) \
‘ \ SingleObject Buffer OverwrittingBuffer
‘ \ (from util) (from util) (from util)
Alternative |0..1 0..*| AltingChannel \
(from lang) +altChan +alt (fromlang) \

One20neChannel One2ManyChannel

(from lang) (fom lang)

Many2 OneChannel Many2ManyChannel

from lang) (from lang)

0.*| <<Interface>>| _process
CSPProcess fProclessNetwork
(from lang) 1 0.1 (from lang)
e 1
e
-processes | 1 -~ "Process g 1
Parallel | -ParThreads ParThread
(from lang) 1 0..* (from Parallel)

Figure 20 - JCSP Language classes — Overview

Paul David Austin 40 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

A.2 JCSP Language Classes Detail

A.2.1 Channel Classes

<<Interface>>
Channellnput

<<Interface>>
ChannelOutput

®write(o : Object) : void

/ Ta$ EMPTY :int=1

<<Interface> | 1 0.1 |Te$FULL:int=2
Channel - "Ea$ NONEMPTYFULL: int =0

%®read() : Object

ObjectSore

AltingChannellnput

Thenable(alt: Alternative) : boolean
Thdisable() : boolean

-data

T%getObject() : Object
| dgetstate(: int

\"F®putObject(o : Object) : void |

:

‘ SingleObject

One20neChannel _ One2ManyChannel (from util)
AltingChannel
"ree_ld() : Obj(_ect _ %write(o : Object) : void E‘putObject(o_: Object) : void
#write(o : Object) : void 0..*| +alt %read() : Object THgetState() : int
: T¥getObject() : Object
Z% | #SingleObject()
Buffer
Many20neChannel Many2ManyChan nel (trom util)
%write(o : Object) : void %write(o : Object) : void %Lzllﬁt:_l;tt -0
0..1{ +altCh
a=nan F¥putObject(o : Object) : void
Alternative

THgetObject() : Object
THgetState() : int

%select(channels
g¥schedule() : wid
%select(channels

: AltingChannelinput[)) : int

| WBuffer(size : int)

: AltingChannellnput[], msecs : int) : int OverWrittingBuffer
%select(channels : AltingChannellnput[}, msecs : int, nsecs : int) : int (from util)
%select(channels : AltingChannellnput[}, guards : boolean[) : int Q::/size “int
#select(channels : AltingChannellinput{], guards :boolean]l, msecs :int) :int chount int=0

%select(channels : AltingChannelinput[], guards : boolean[], msecs : int, nsecs : int) : in
#select(channels : AltingChannellinput[], skip : boolean): int
#select(channels : AtingChannellnput[], guards : boolean[, skip : boolean) :int
ﬂenableChannels(c : AltingChannelinpuf]) : boolean
ghdisableChannels(c : AlingChannelinput]])
gl'disabIeChannels(c :AlingChannelinput]], guards : boolean[)

LigenableChannels(c : AtingChannelinput], guards : boolean([]) : boolean

T¥putObject(o : Object) : void
T¥getObject() : Object
T¥getState() : int

| %OverwritingBuffer(size : int)

Timer
(from util)

TE#putObject(o : Object) : void

THgetState() : int

THgetObject() : Object
#Timer()

Figure 21 - JCSP Channel classes - Detail

Paul David Austin 41 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

A.2.2 Parallel Classes

ProcessNetwork
<<Interface>> ®ProcessNetwork(process : CSPProcess)
CSPProcess -process| #start() : void
#®stop() : void
* 0.1 PO :
0-* #unq) 1 #®suspend() : void
N ®resume() : void
#join() : void
-processes |1
0.1 -process
Parallel
ParThread
%Parallel() (from Parallel)
®Parallel(processes : CSPProcess) -parThreads
®addProcess(process : CSPProcess) : void > 4®ParThread(process : CSPProcess) : wid

®addProcess(process : CSPProcess[]) : void 4®setProces s(process : C SPProcess) : void

#removeProcess(process : CSPProcess) : woid 1 0.* -PgetProcess(): CSPProcess
®run() : void ®start() : void

enter() : void ®run() : void

inish() : void

Figure 22 - JCSP Parallel classes - Detail

Paul David Austin 42 1-May-1998

Java Communicating Sequential Processes Design of JCSP Language Classes

Bibliography

[1] Martin Fowler with Kendall Scott. 1997, 'UML Distilled’, Addison Wesley, ISBN 0-201-32563-
2

[2] CGS-THOMSON Microelectronics Ltd. 1995, OCCAM 2.1 'reference manual’, Prentice Hall.

[3] C. A. R. Hoare. 1985, 'Communicating Sequential Processes, Prentice Hall.

[4] JavaSoft. 1997, 'JIDK™ 1.1 DocumentationSun Microsystems.
http://ww. javasoft. conl products/jdk/ 1.1/ docs/

[5] Peter .H. Welch. 1996, ‘Java Channels: A learning Experienc&niversity of Kent Canterbury,
England.

[6] Peter .H. Welch. 1998, ‘Java Threads in the Light of OCCAM/CSP’ p259-284 in 'WoTUG-21.:
Architectures, Languages and Patterns for Parallel and Distributed Applicati@&Press
(Amsterdam), ISBN 9051993919.

[7] Gerald H. Hilderink. 1997, 'Communicating Java Threads Reference Manual' p283-325 in
'WoTUG-20: Parallel Programming and Jay#0S Press (Amsterdam), ISBN 9051993366.

[8] Gamma. Helm, Johnson, Vissides. 1995, Design Patterns (Elements of Reusable Object-
Oriented Software)Addison Wesley, ISBN 0-201-63361-2

Paul David Austin 43 1-May-1998

	Contents
	Figures
	1 Introduction
	2 Functionality
	2.1 Channels
	2.1.1 Cardinality
	2.1.1.1 One to One Channel
	2.1.1.1.1 Reading
	2.1.1.1.2 Writing

	2.1.1.2 One To Many Channel
	2.1.1.2.1 Reading
	2.1.1.2.2 Writing

	2.1.1.3 Many To One Channel
	2.1.1.3.1 Reading
	2.1.1.3.2 Writing

	2.1.1.4 Many To Many Channel
	2.1.1.4.1 Reading
	2.1.1.4.2 Writing

	2.1.2 Storage Types
	2.1.2.1 Single Object
	2.1.2.2 Buffer
	2.1.2.3 Over Writing buffer
	2.1.2.4 Timer

	2.2 Alternative construct
	2.3 Parallel Construct and Process’s

	3 Design & Implementation
	3.1 Channels
	3.1.1 Interface
	3.1.1.1 Reading and writing

	3.1.2 Implementation
	3.1.2.1 Inheritance Based Channels
	3.1.2.2 Bridge Based Channels
	3.1.2.2.1 ObjectStore
	3.1.2.2.1.1 Single Object
	3.1.2.2.1.2 Buffer
	3.1.2.2.1.3 OverwritingBuffer
	3.1.2.2.1.4 Timer

	3.1.2.2.2 The read method
	3.1.2.2.3 The write method

	3.2 Alternative Construct
	3.2.1 Interface
	3.2.1.1 Alternative
	3.2.1.2 Alting Channels

	3.2.2 Implementation
	3.2.2.1 Alternative
	3.2.2.2 AltingChannel

	3.3 Parallel Construct and Processes
	3.3.1 Interface
	3.3.1.1 Using Java Threads
	3.3.1.2 OCCAM style PAR Construct
	3.3.1.2.1 CSProcess
	3.3.1.2.2 Parallel
	3.3.1.2.3 ProcessNetwork

	3.3.2 Implementation
	3.3.2.1 Using Java Threads
	3.3.2.2 OCCAM style PAR Construct
	3.3.2.2.1 CSProcess
	3.3.2.2.2 Parallel
	3.3.2.2.3 ProcessNetwork

	Appendices
	Appendix A Class Diagrams
	A.1 JCSP Language Classes Overview
	A.2 JCSP Language Classes Detail
	A.2.1 Channel Classes
	A.2.2 Parallel Classes

	Bibliography

