
Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 1-May-1998

-DYD�&RPPXQLFDWLQJ
6HTXHQWLDO�3URFHVVHV

‘Design Of JCSP Language Classes’

Paul Austin
pda1@ukc.ac.uk
University Of Kent Canterbury
BSc Computer Science with an Industrial Year
3rd Year Project

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin i 1-May-1998

Contents

1 Introduction ...1

2 Functionality ...2

2.1 Channels .. 2
2.1.1 Cardinality...3

2.1.1.1 One to One Channel ...4
2.1.1.1.1 Reading ...4
2.1.1.1.2 Writing ..4

2.1.1.2 One To Many Channel ...5
2.1.1.2.1 Reading ...5
2.1.1.2.2 Writing ..5

2.1.1.3 Many To One Channel ...6
2.1.1.3.1 Reading ...6
2.1.1.3.2 Writing ..6

2.1.1.4 Many To Many Channel...7
2.1.1.4.1 Reading ...7
2.1.1.4.2 Writing ..7

2.1.2 Storage Types..8
2.1.2.1 Single Object ..8
2.1.2.2 Buffer..8
2.1.2.3 Over Writing buffer ..8
2.1.2.4 Timer ..8

2.2 Alternative construct .. 8

2.3 Parallel Construct and Process’s ... 10

3 Design & Implementation ...11

3.1 Channels .. 11
3.1.1 Interface...11

3.1.1.1 Reading and writing..11
3.1.2 Implementation..15

3.1.2.1 Inheritance Based Channels..15
3.1.2.2 Bridge Based Channels...16

3.1.2.2.1 ObjectStore ...17
3.1.2.2.1.1Single Object ..18
3.1.2.2.1.2Buffer ...18
3.1.2.2.1.3OverwritingBuffer ..19
3.1.2.2.1.4Timer ..19

3.1.2.2.2 The read method ...20
3.1.2.2.3 The write method ..21

3.2 Alternative Construct ... 22
3.2.1 Interface...22

3.2.1.1 Alternative ..22
3.2.1.2 Alting Channels ..24

3.2.2 Implementation..26
3.2.2.1 Alternative ..26
3.2.2.2 AltingChannel...27

3.3 Parallel Construct and Processes .. 29
3.3.1 Interface...29

3.3.1.1 Using Java Threads...29
3.3.1.2 OCCAM style PAR Construct..31

3.3.1.2.1 CSProcess ...31
3.3.1.2.2 Parallel ..32

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin ii 1-May-1998

3.3.1.2.3 ProcessNetwork34
3.3.2 Implementation..35

3.3.2.1 Using Java Threads..35
3.3.2.2 OCCAM style PAR Construct...35

3.3.2.2.1 CSProcess36
3.3.2.2.2 Parallel36
3.3.2.2.3 ProcessNetwork39

Appendix A Class Diagrams..40

A.1 JCSP Language Classes Overview .. 40

A.2 JCSP Language Classes Detail .. 41
A.2.1 Channel Classes...41
A.2.2 Parallel Classes..42

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin iii 1-May-1998

Figures

Diagrams
Figure 1 - Relationship between Channel interfaces ..12
Figure 2 - JCSP Channel interface relationships ...14
Figure 3 - Inheritance based Channels - Class Diagram ...15
Figure 4 - Bridge Channels - Class Diagram ...17
Figure 5 – SingleObject - State Diagram..18
Figure 6 – Buffer - State Diagram ..18
Figure 7 – OverWritingBuffer - State Diagram ..19
Figure 8 – Timer - State Diagram...19
Figure 9 - Class interactions for the Channel read method..20
Figure 10 - Class interactions for the Channel write method...21
Figure 11 – JCSP Channel interface relationships with Alting ..25
Figure 12 – JCSP Channel interfaces with Alting ..25
Figure 13 - Alternative - select ...27
Figure 14 - AltingChannel - write...28
Figure 15 - Relationship between Parallel and CSProcess ..32
Figure 16 - Relationship between ProcessNetwork and CSProcess ...35
Figure 17 - Parallel Class Diagram ...36
Figure 18 - Parallel – run() ..37
Figure 19 - Parallel State Diagram..39
Figure 20 - JCSP Language classes – Overview ..40
Figure 21 - JCSP Channel classes - Detail...41
Figure 22 - JCSP Parallel classes - Detail ...42

Code Fragments
Code 1 - One to One Channel, reading Pseudo Code...4
Code 2 - One to One Channel, writing Pseudo Code ...4
Code 3 - One to Many Channel, reading Pseudo Code ..5
Code 4 - One to Many Channel, writing Pseudo Code ...5
Code 5 - Many to One Channel, reading Pseudo Code ..6
Code 6 - Many to One Channel, writing Pseudo Code ...6
Code 7 - Many to Many Channel, reading Pseudo Code..7
Code 8 - Many to Many Channel, writing Pseudo Code...7
Code 9 - ALT process in OCCAM...9
Code 10 - Using Channel Interfaces - example ..12
Code 11 - JTW Channel interface...13
Code 12 - CJT Channel interface..13
Code 13 - JCSP Channel interface ...14
Code 14 - ObjectStore interface..17
Code 15 - Alternative class - public interface...23
Code 16 – Alternative interface - example..23
Code 17 - AltingChannel - interfaces..24
Code 18 - Algorithm for selection of Channels...26
Code 19 – Parallelism using threads ..30
Code 20 – CSProcess interface...31
Code 21 – CSProcess example..32
Code 22 – Parallel interface ...33
Code 23 – Parallel Example ...34
Code 24 – ProcessNetwork interface ..35
Code 25 – Parallel run() method – pseudo code...36

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 1 1-May-1998

1 Introduction
This document describes the functionality and design of the classes in the Java Communicating
Sequential Processes package that are used to model the OCCAM language in Java. The design will
be described using the Unified Modelling Language [1] (UML) notation with descriptive text
describing why certain decisions were made. The discussion will assume knowledge of the facilities
and concepts of the CSP [2] model in the OCCAM [3] language and of programming in the Java [4]

programming language.

Several different versions of CSP style channels have been developed at the University of Kent
England and the University of Twente Netherlands. Each different version provides slightly
different interfaces to channels. Included in these packages are some other classes that provide
different types of channel, composition constructs (Parallel and Alternative) and standard building
blocks.

In this document, the following terms will be used; ‘Java Threads workshop’ (JTW) [5][6] for the
work at the University of Kent, ‘Communicating Java Threads’ (CJT) [7] for the work at the
University of Twente and ‘Java Communicating Sequential Processes’ (JCSP) for the work
described in this document.

The package described within this document takes the best parts from each of these versions to
develop a unified class library. The library will try to contain classes that are simple to use for
developers constructing applications and is simple to extend to include extra channel types.

The design of these channels must balance the need to provide easily extensible channels that have
as low a performance overhead as possible.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 2 1-May-1998

2 Functionality
This section describes the functionality that the library must implement to provide features similar
to those offered by OCCAM.

2.1 Channels
A channel provides a mechanism for two (or more) parallel processes to communicate in a
synchronised manner. Therefore the process performing output cannot continue until the channel
accepts the read request and likewise the process performing input cannot continue until the channel
accepts the write request. This is specifically a generic description of a channel so that in our class
libraries we can define other channels that implement the behaviour of accepting read and write
processes in different ways that still follow this model.

The OCCAM language defines a Channel to be synchronised, point to point, non-buffered
communication. In this definition, we have only one reader and one writer (point to point). When
the writer writes to the Channel, it cannot continue execution until the reader has read from the
Channel (synchronised). The Channel does not logically store the value of the object in the
communication (non-buffered).

In the Java version, we want to build upon this basic concept of a channel to include other type of
channel such as; Timer, io ports, Buffered Channels, Overwriting Buffers, Shared Channels and
Network channels. In fact in OCCAM 3 there are Shared Channels. It is possible with the basic
channel to build active processes that implement Buffered Channels, Overwriting Buffers etc. It is
however sometimes more useful to have low level versions of these type of channels (for example
when a parallel version incurs too much overhead).

In OCCAM, the channel is implemented as a primitive type in the language. This provides the
benefits of ensuring at compile time that only one process is permitted to write to the channel at a
time (for One to One channels). In addition, the types of data sent down the channel are specified
for the channel and this is check at compile time. To check that only one process could write to a
channel in Java run time checks would be required which would add an extra overhead and possibly
require a more complex interface. It is therefore the responsibility of the software constructor to
decide on the type of channel to use.

It is possible in Java to implement channels, which can only accept certain types of data.
Unfortunately, as the language does not support template classes this would have to be implemented
using run time checks or by creating new a Channel class for each type of Object that is to be
sent down a channel. This would either result in a performance hit or a very large class library. In
this class library any Object can be sent down the channel with no checks made by the library as
to the type of the data. It is therefore the responsibility of the users of these channels to publicise the
data types expected down a particular channel and to handle any error conditions.

The OCCAM channels make a copy of the data sent down a channel from the original process to the
receiving process. In the Java channels this will not be done automatically by the channel, instead it
is the responsibility of the developer to copy Object if required. The reasons for not copying the
Object are listed below.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 3 1-May-1998

1) A lot of classes in the Java library are immutable1 therefore creating a copy is not necessary as it
safe for more than one thread to access the Object.

2) Copying an Object in Java is performed using the clone() method on the Object which is a
protected method therefore it cannot be called unless the actual class has declared the clone()
method to be public. To finally copy the Object it is necessary to cast the reference to the
actual class and then call the clone() method. This would require some fairly complex code or
require a common super class for all types that should be cloned that defines a clone() to be
public.

3) It would be possible to use serialisation to make copies of the Object sent down the
Channel, this would however have a large performance hit.

2.1.1 Cardinality
The cardinality of a channel defines how many different processes can be trying to either read or
write at the same time. It is necessary to consider the cardinality of the channels instead of
implementing the channels as a ‘Many to Many’ channel. There are several reasons why this is so.
1) If the class library includes support for Alternative selection of channels it is only safe to do this

for a single reader (see section 2.3 for further details).
2) The ‘Many to Many’ channel has an extra synchronisation for each read and write to ensure the

channel is left in a consistent state and does not cause any race hazards. This extra
synchronisation is necessary for the ‘Many to Many’ channel as if it did not have this extra
synchronisation the following scenario could arise. A second writer could enter the write
method and overwrite the data from the first process, while the first process was blocked
waiting for a reader to read the data. For channels that only allow one reader (or writer) this
extra synchronisation on reading from (or writing to) the channel adds an unnecessary overhead
to each channel communication. This overhead is quite high as the Java synchronization
mechanism takes a long time.

There are four cardinalities to consider; each one is discussed below.
4) Single Writer and Single Reader (One2OneChannel)
1. Single Writer and Many Readers (One2ManyChannel)
2. Many Writers and Single Reader (Many2OneChannel)
3. Many Writers and Many Readers (Many2ManyChannel)

1 immutable means the value of the Object cannot be changed once the Object has been created. An example is the
String class.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 4 1-May-1998

2.1.1.1 One to One Channel
The simplest form of channel is the One To One channel, that is only safe to be used for one reader
and writer. This is the type of channel used in OCCAM.

2.1.1.1.1 Reading
Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
A check is then made to see if there is data available, if there is no data the monitor is released and
this process will wait for a writer. The Object will be read from the data store and the waiting
writer will be notified. The Object is returned and the monitor is released.

Code 1 - One to One Channel, reading Pseudo Code

2.1.1.1.2 Writing
Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
The Object will be written to the data store and the waiting reader will be notified. A check is
then made to see if the data store is full, if it is full the monitor is released and this process will wait
for a reader. The monitor is then released.

Code 2 - One to One Channel, writing Pseudo Code

synchronize on channel
 if data store is empty
 wait for writer
 end if
 read Object from data store
 notify waiting writer
 return Object
end synchronize

synchronize on channel
 write Object to data
store
 notify waiting reader
 if data store is full
 wait for reader
 end if
end synchronize

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 5 1-May-1998

2.1.1.2 One To Many Channel
The One to Many Channel is safe to be used for many readers and one writer.

2.1.1.2.1 Reading
Reading from the channel involves obtaining the monitor for read and then for the channel to ensure
exclusive access. A check is then made to see if there is data available, if there is no data the
monitor is released and this process will wait for a writer. The Object will be read from the data
store and the waiting writer will be notified. The Object is returned and the monitor is released.

Code 3 - One to Many Channel, reading Pseudo Code

2.1.1.2.2 Writing
Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
The Object will be written to the data store and the waiting reader will be notified. A check is
then made to see if the data store is full, if it is full the monitor is released and this process will wait
for a reader. The monitor is then released.

Code 4 - One to Many Channel, writing Pseudo Code

synchronize on read monitor
 synchronize on channel
 if data store is empty
 wait for writer
 end if
 read Object from data store
 notify waiting writer
 return Object
 end synchronize
end synchronize

synchronize on channel
 write Object to data
store
 notify waiting reader
 if data store is full
 wait for reader
 end if
end synchronize

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 6 1-May-1998

2.1.1.3 Many To One Channel
The One to Many Channel is safe to be used for one reader and many writers.

2.1.1.3.1 Reading
Reading from the channel involves obtaining the monitor for the channel to ensure exclusive access.
A check is then made to see if there is data available, if there is no data the monitor is released and
this process will wait for a writer. The Object will be read from the data store and the waiting
writer will be notified. The Object is returned and the monitor is released.

Code 5 - Many to One Channel, reading Pseudo Code

2.1.1.3.2 Writing
Reading from the channel involves obtaining the monitor for write and then for the channel to
ensure exclusive access. The Object will be written to the data store and the waiting reader will
be notified. A check is then made to see if the data store is full, if it is full the monitor is released
and this process will wait for a reader. The monitor is then released.

Code 6 - Many to One Channel, writing Pseudo Code

synchronize on channel
 if data store is empty
 wait for writer
 end if
 read Object from data store
 notify waiting writer
 return Object
end synchronize

synchronize on write monitor
 synchronize on channel
 write Object to data store
 notify waiting reader
 if data store is full
 wait for reader
 end if
 end synchronize
end synchronize

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 7 1-May-1998

2.1.1.4 Many To Many Channel
The One to Many Channel is safe to be used for many readers and many writers.

2.1.1.4.1 Reading
Reading from the channel involves obtaining the monitor for read and then for the channel to ensure
exclusive access. A check is then made to see if there is data available, if there is no data the
monitor is released and this process will wait for a writer. The Object will be read from the data
store and the waiting writer will be notified. The Object is returned and the monitor is released.

Code 7 - Many to Many Channel, reading Pseudo Code

2.1.1.4.2 Writing
Reading from the channel involves obtaining the monitor for write and then for the channel to
ensure exclusive access. The Object will be written to the data store and the waiting reader will
be notified. A check is then made to see if the data store is full, if it is full the monitor is released
and this process will wait for a reader. The monitor is then released.

Code 8 - Many to Many Channel, writing Pseudo Code

synchronize on read monitor
 synchronize on channel
 if data store is empty
 wait for writer
 end if
 read Object from data store
 notify waiting writer
 return Object
 end synchronize
end synchronize

synchronize on write monitor
 synchronize on channel
 write Object to data store
 notify waiting reader
 if data store is full
 wait for reader
 end if
 end synchronize
end synchronize

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 8 1-May-1998

2.1.2 Storage Types
The storage types define how objects sent across the channel are stored. The storage policy may
specify the number of Objects that can be in the Channel and what to do if it is full. The
following storage types will be provided in the JCSP library; SingleObject, Buffer,
OverWritingBuffer and Timer. Further ObjectStores can be added by developers.

2.1.2.1 Single Object
The OCCAM channels store only one value at a time, this value is not buffered and the writer must
block until a reader has read the value and a reader must block until data has been written. In the
library, the SingleObject will provide this functionality.

2.1.2.2 Buffer
A Buffer acts in a very similar way to the rendezvous channel except that a Buffer can hold
more than one Object at a time. If the Buffer is empty, the reader must block until a further
Object is written. If the Buffer is full, the writer must wait until a reader reads an Object
from the channel.

2.1.2.3 Over Writing buffer
An OverWritingBuffer has the same properties as a Buffer but instead of blocking when
the buffer is full the OverWritingBuffer discards the last value written to the buffer and writes
the new value in it’s place.

2.1.2.4 Timer
OCCAM provides a special type of variable called a Timer that can be read from as if it were a
Channel. Reading from Timer returns a long representing the current time, the Timer never blocks
the caller. Writing to a Timer is not possible in OCCAM, the JCSP Timer ObjectStore will
discard any data written to it.

2.2 Alternative construct
An Alternation combines several input, timeout or SKIP clauses, only one of which is executed.
Each clause may optionally have a Boolean guard; the input may only be executed if the guard is
true. Associated with each clause is a section of code (process) which is executed if that clause is
selected. The input clause is a read from a single channel that is ready if data is available to be read
from the channel. The timeout clause that will wait until the time specified has passed; the clause
will become ready after this time. The SKIP clause is always ready and will be selected if none of
the input clauses is immediately ready.

When the Alternation construct is executed the channels specified will be probed to see if it has data
to be read. The following checks will be executed in the order shown below.
1. If only one channel is ready the data will be read from it and the associated code will be

executed.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 9 1-May-1998

2. If more than one channel is ready, one of these will be selected. The data will be read from it
and the associated code will be executed (there is no specification about which channel will be
selected).

3. If there is a SKIP clause the Alternation will not read from any channels and the code
associated with SKIP will be executed.

4. If no channels are ready the Alternation will wait until at least one of the channels becomes
ready

5. An Alternation may also have a timeout.

The OCCAM language provides the facility to wait for input on more than one channel and then
select one of the channels which has data ready to be read. The data from the selected channel is
read and then some code will be executed to process the data read. The OCCAM code fragment
shows an example of an ALT statement that waits for input on the three channels in1, in2 and in3.
When input is available the ALT process will select one of the channels which has data and executes
the read from that channel and the code associated with that read.

Code 9 - ALT process in OCCAM

BOOL b:
TIMER tim:
SEQ
 B := false
 ALT
 INT i:
 in1 ? i
 SEQ
 out ! 1
 out ! i
 b := true
 b & in2 ? i
 SEQ
 out ! 2
 out ! i
 tim ? AFTER 10
 SEQ
 out ! 3
 out ! I
 b & SKIP
 SEQ
 out ! 0
 out ! 0

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 10 1-May-1998

2.3 Parallel Construct and Process’s
The PAR construct in OCCAM enables the parallel execution of fine grained processes such as a
single assignment, output to a channel or read from a channel as well as named procedures
(PROCs). The PAR construct after setting the processes running will not complete until all the
specified processes terminate.

The language also enforces certain rules about parallelism to ensure that no two processes try to
write/read to/from the same channel or modify the same variable. These constraints mean that it is
possible to reason about the programs, as the language does not allow code to be written with
undesirable side effects.

The Java version of PAR must provide the following;
Execution of processes in parallel as per PAR.
• Encapsulation of processes in named procedures
• Must not terminate until all sub processes terminate

In addition, it would be useful if it could provide the following;
• Addition of new Processes
• Removal of Processes
• Asynchronous execution of a Process

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 11 1-May-1998

3 Design & Implementation
The section discusses the different designs for the channels considered comparing their relative
merits along with the final design used. The main factors considered were (in no particular order).
• Good OO design (high cohesion, low coupling and encapsulation)
• Simplicity of interface
• Performance

For the different parts of the library, first the interface to the classes is described then followed by a
section talking about the different implementations tried and the relative merits.

The design of the library was considered in the following groups of classes.
1. Channels
2. Alternative
3. Parallel construct and Processes

3.1 Channels
In designing the Channel classes it is important, to design the classes is such a way that it is easy
to add new types of channel. The following sections describe the approach taken to allow this to
happen.

3.1.1 Interface
To enable the facility to change the implementation of channels and have more than one type of
Channel the interface of the channels were designed as pure interfaces with no implementation.
This enables clients to be written without any knowledge of the actual Channel it uses.

3.1.1.1 Reading and writing
When building CSP processes it is usually the case that a particular process will use a Channel
either for input or for output but not both input and output. To aid the designer of these processes it
should be possible for them to specify that a particular Channel is for either for input or output,
the compiler would then flag an error if the read method was called on an output Channel.

The original JTW channels, had only one type of Channel used to send arbitary Objects, there
was no mechanism for processes to specify if a Channel is to be used for input or output. The CJT
channels included two interfaces2 types for input and output respectively. The ChannelInput
interface defines the format of the read() method and the ChannelOutput interface defines
the format of the write() method. The Channel interface is then defined as implementing both
the ChannelInput and ChannelOutput interfaces as shown in the class diagram below.
(Channel could actually be defined as a class which implements the read() and
write()methods as in the CJT classes, in the JCSP classes it is just going to be implemented as
an interface).

2 Interfaces in Java are used to specify the public methods a class must implement to have the type specified by the
interface. A class may implement several interfaces as well as inheriting from one class. As Java does not allow
multiple inheritance the inclusion of interfaces enables Objects to have multiple types.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 12 1-May-1998

ChannelOutput
<<Interface>>

ChannelI nput
<<Interface>>

Channel

Figure 1 - Relationship between Channel interfaces

The example below shows how processes would use the interfaces to access the channel, the
example network consists of one process outputing along the channel and one reading from it. The
definition of the OutputProcess uses an ChannelOutput reference in the constructor, this
means that inside the class only those methods defined in the ChannelOutput interface can be
used and this restraint is checked at compile time. The same is true for the InputProcess except
only those methods defined in ChannelInput may be used. As the Channel interface
implements the type of both ChannelInput and ChannelOutput it is legal for a Channel to
be passed where a ChannelInput or ChannelOutput is required.

Code 10 - Using Channel Interfaces - example

class Network {
 Network() {
 Channel c = new Channel();
 OutputProcess writer = new OutputProcess(c);
 InputProcess reader = new InputProcess(c);
 }
}

class OutputProcess {
 OutputProcess(ChannelOutput out) {
 //perform initialisation here
 }
 public void run() {
 }
}

class InputProcess {
 InputProcess(ChannelInput in) {
 //perform initialisation here
 }
 public void run() {
 }
}

OutputProcess IntputProcess

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 13 1-May-1998

After considering the relationships between the interfaces it is necessary to define the methods
required to read and write data to and from the channel. The format of these methods should be as
intuitative and simple as possible to use and provide flexibility in the type of data sent down the
channel.

The JTW channels defined the write() method to accept an Object as a parameter and the
read() method to return an Object. The channels do not copy the Object as they are sent
across the channel. The definition of the class is shown below.

Code 11 - JTW Channel interface

The CJT classes provide a more complex interface to reading and writing that includes support for
alternative selection of channels and parrallel input/output. The CJT channels can only send data
which is a subclass of ClonableProtocol which makes the interface less flexibile. The
channels do however copy the Object as it is sent across the channel. The definition of the class is
shown below.

Code 12 - CJT Channel interface

There are several issues with the interface, which are;
• It is only possible to send ClonableProtocol objects down the channel. The reason for this

is to enable the Object to be copied when passed across the channel. As the JCSP channels are
required to send an arbitrary Object and therefor it is the client that is responsible to copy the
Object if required. The inflexibility of the CJT interface is not necessary and causes the
following problem.

• The ClonableProtocol class defines the clone method as clone(Object) instead of
Object clone(). This would cause a ClassCastException if the variable the client is
trying to read into is not the same as the variable sent down the channel.

public class Channel {
 public void write(Object o) { … }
 public Object read() { … }
 …
}

public class Channel {
 public void write(ClonableProtocol o) throws Exception { … }
 public void write(ALT alt, ClonableProtocol o) throws Exception {
… }
 public void write(PAR par, ClonableProtocol o) throws Exception {
… }

 public void read(ClonableProtocol o) throws Exception { … }
 public void read(ALT alt, ClonableProtocol o) throws Exception {
… }
 public void read(PAR par, ClonableProtocol o) throws Exception {
… }
 …
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 14 1-May-1998

• The read method is not intuitive.
• All the read and write methods are declared to throw all exceptions, this forces the implementers

of processes to place a try catch block around the calls to read() and write(). The only
time exceptions would be raised by the channels are RuntimeExceptions which signify
program errors and should not be caught.

• The read()and write()methods provide a way to poll a Channel to see if communication is
possible using the ALT construct. This is an inefficient method and providing alting on both
input and output causes problems if both the sender and receiver are alting on the same channel.
The implementation of ALT in OCCAM does not allow this for the same reasons (see 3.1.2 for a
further discussion of ALT).

• The JCSP library will use the method of having ChannelInput and ChannelOutput
interfaces which define the read()and write() methods respecivley as per the CJT classes.
The format of the read and write methods are the same as the JTW classes as they are simple
and intuitive. The read()and write() methods for PAR and ALT provided by CJT are not
necessary as these will be implemented differently. The definitions of these interfaces are shown
below and the class relationships are shown in Figure 2.

Code 13 - JCSP Channel interface

C h a n n e lO u tp u t

wri te (o : O b je c t) : vo id

<< In te rfa ce >>
C h a n n e lI n p u t

rea d () : Ob je ct

< < In te rfa ce >>

C h a n n e l
<< In te rfa ce > >

Figure 2 - JCSP Channel interface relationships

public interface ChannelOutput {
 public void write(Object o);
}

public interface ChannelInput {
 public Object read();
}

public interface Channel extends ChannelOutput,
ChannelInput {
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 15 1-May-1998

3.1.2 Implementation
For the implementation of the channels two different methods were considered, each of these is
discussed below
1. Inheritance based channels
2. Bridge based channels

3.1.2.1 Inheritance Based Channels
The first approach considered when designing the implementation for the channels was to take the
interface and create a class for each of the storage types that implements Channel. Each of these
classes would then define the read() and write() methods to implement the storage policy as
well as the synchronisation between the reading and writing processes.

The Class Diagram below shows the relationships between the classes in the inheritance based
model.

ChannelOutput
<<Interface>>

ChannelInput
<<Interface>>

Channel
<<Interface>>

SingleObjectOne2OneChannel

SingleObjectMany2OneChannel

SingleObjectOne2ManyChannel

SingleObjectMany2ManyChannel

SingleObjectChannel BufferChannel

BufferOne2OneChannel

BufferOne2ManyChannel

BufferMany2OneChannel

BufferMany2ManyChannel

Tim erChannel

Figure 3 - Inheritance based Channels - Class Diagram

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 16 1-May-1998

To implement the cardinality of the channels up to four sub classes of each of the channels need to
be created to make channels that are safe to use for many readers and writers. The four cardinalities
required are One2One, One2Many, Many2One and Many2Many. Certain channels such as the
TimerChannel may not need to define extra classes to make them safe to use for many readers
and writers.

Note: For each new storage policy five classes are required and the channel synchronisation
code will have to be written for each channel type.

This is one method of implementing the Inheritance model for the channels, another approach may
have the cardinalities at the top of the tree and the storage types subclass these. Whatever way the
inheritance is organised the number of classes required is large.

Another problem with this approach is if network Channels were introduced, it would be necessary
to create BufferNetworkChannel, SingleObjectNetworkChannel (and all the
subclasses for cardinality).

The advantage with this approach is that the code that implements each of the channels is in one
class. This would enable the implementations to be written without method calls to other classes
and the associated de-referencing of Object references. This would result in a possible
performance improvement.

The JCSP library does not use this approach due to the quantity of classes and the replication of
code required.

3.1.2.2 Bridge Based Channels
The second approach considered when designing the implementation for the channels was to take
the interface and create a new sub class for each of the required cardinalities. These classes
implement the required synchronisation between the reader and the writer process. This will ensure
that they are safe to use for many readers and writers as necessary.

Another interface ObjectStore is defined to define the interface to putting an Object, reading
an Object and checking the state of the storage type. A class is defined which extends
ObjectStore for each of the storage policies required. Provided in the library would be an
implementation of ObjectStore for the following.
1. SingleObject (default if an ObjectStore if not specified)
2. Buffer
3. OverWritingBuffer
4. Timer

The channels will be created with an instance of an ObjectStore to store the data sent across the
channel. The Channel classes will control the synchronisation by checking the state of the
ObjectStore to find out if the reader or writer should block to wait for a writer or a reader. The
write() method will put data into the ObjectStore and the read() method will get data
from the ObjectStore.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 17 1-May-1998

The Class Diagram below shows the relationships between the classes in the bridge based model.

ChannelOutput
<<Interface>>

ChannelInput
<<Interface>>

Channel
<<Interface>> ObjectStore

SingleObject
(from uti l)

Buffer
(from util)

OverWrittingBuffer
(f rom ut il)

Tim er
(from uti l)

-data

1 0..11 0..1

One2OneChannel Many2OneChannelOne2ManyChannel Many2ManyChannel

Figure 4 - Bridge Channels - Class Diagram

3.1.2.2.1 ObjectStore
The ObjectStore interface is an abstract class that defines several abstract protected methods
that must be defined by sub-classes. The interface is shown below.

Code 14 - ObjectStore interface

The methods are defined as protected3 as only the Channel classes defined within this package
should be able to access members of the ObjectStore. When defining the sub-classes, the
constructor of those classes must be public but all the other methods should remain protected. This
gives a clean interface to the ObjectStore and insures data is not changed by other classes.

3 The protected visibility in Java enables classes in the defining package as well as sub-classes access the methods of
the class.

public abstract class ObjectStore {
 protected static final int EMPTY;
 protected static final int FULL;
 protected static final int NONEMPTYFULL;

 protected abstract void putObject(Object
o);
 protected abstract Object getObject();
 protected abstract int getState();
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 18 1-May-1998

3.1.2.2.1.1 Single Object
The SingleObject will store the reference to the Object being written and a flag indicating
the state of the ObjectStore. The state diagram below shows the allowed states and transitions
of the SingleObject class when used in a Channel.

Empty Full
/initialize

getObject

putObject

Figure 5 – SingleObject - State Diagram

3.1.2.2.1.2 Buffer

The Buffer will store the references to the Objects being written in a circular buffer, with a
count of the number of items. The state will be calculated from the size of the buffer and the count.
The state diagram below shows the allowed states and transitions of the Buffer class when used
in a Channel.

Empty

Not Empty or Full

getObject[count = 1]

Full

/initialize

putObject[count = size]

putObject[size > 0]putObject[size=0]

getObject[size = 0]

getObject[size > 0]

putObject[count < size]

getObject[count > 1]

Figure 6 – Buffer - State Diagram

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 19 1-May-1998

3.1.2.2.1.3 OverwritingBuffer
The OverWritingBuffer will store the references to the Object being written in a circular
buffer, with a count of the number of items. The state will be calculated from the size of the buffer
and the count, the state will either be empty if the count is 0 or NONEMPTYFULL otherwise. The
state diagram below shows the allowed states and transitions of the OverWritingBuffer class
when used in a Channel.

Empty Not Empty or Full

getObject[count = 1]

putObject

putObject getObject[count > 1]

/initialize

Figure 7 – OverWritingBuffer - State Diagram

3.1.2.2.1.4 Timer

The Timer will discard the reference to the Object being written. The state will always be
NONEMPTYFULL. The state diagram below shows the allowed states and transitions of the
Timer class when used in a Channel.

Non Empty Full
/initial ize

getObjectgetObject

Figure 8 – Timer - State Diagram

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 20 1-May-1998

3.1.2.2.2 The read method
The basic functionality of the read() method is the same for all the different channels, the
channels with a cardinality of Many readers provide extra synchronisation around the method to
ensure exclusive access.

The purpose of the read method on a channel is to provide the correct synchronisation for the
channel between the reader and writer, and to return the next Object from the channel. The
following diagram shows the interaction between the Channel and the ObjectStore.

 : Channel

read()

[state = EMPTY] wai t()

notify()

data : Object
Store

getState()

getObject()

Figure 9 - Class interactions for the Channel read method

The read()method is a synchronised method so that only one process can access the Channel.
The method will block (using the wait() method) if the ObjectStore is EMPTY (this
provides the synchronisation between the reader and the writer). The synchronisation on the
Channel monitor is released when the wait() method is invoked allowing the writer to call the
write() method, the write() method will then notify this reader when it has finished writing
the data. The reader will then regain the Channel monitor. The next Object will then be
obtained using getObject(). The notify() method will then be invoked to schedule any
waiting writers, the Object will then be returned.

The read() method for the Many reader channels will have an extra synchronisation on a read
monitor object. This synchronisation is around the method described above to ensure that only one
reader can be invoking read() at any one time. If this was not done, a second reader could come
along while the first is waiting (and therefore not holding the monitor) and enter the method and
may cause the Channel to be left in an inconsistent state.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 21 1-May-1998

NOTE: When the wait() call is made only the lock from synchronising on the same object as
wait() was invoked on is released. Therefore, when the reader has synchronised on the
read monitor then waited on the channel monitor no other readers will be able to gain the
read monitor. The other readers will have to wait until the reader is notified and regains
the channel monitor and releases the read monitor. The writers will however be able to
get through the write monitor and gain the channel monitor while the reader is waiting.

3.1.2.2.3 The write method
The basic functionality of the write() method is the same for all the different channels. The
channels with a cardinality of Many writers provide extra synchronisation around the method to
ensure exclusive access.

The purpose of the write() method on a Channel is to provide the correct synchronisation for
the Channel between the writer and reader, and to place the next Object in the Channel. The
following diagram shows the interaction between the Channel and the ObjectStore.

 : Channel data : Object
Store

write(Object)

[state = FULL] wait()

notify()

putObject(Object)

getState()

Figure 10 - Class interactions for the Channel write method

The write() method is a synchronised method so that only one process can access the Channel.
The putObject() method will be invoked to store the value in the Channel. The notify()
method will then be invoked to schedule any waiting readers. The method will block (using the wait
method) if the ObjectStore is FULL (this provides the synchronisation between the writer and
the reader). The synchronisation on the Channel monitor is released when the wait method is
invoked allowing the reader to call the read() method, the read method will then notify this
writer when it has finished reading the data. The writer will then regain the Channel monitor and
exit.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 22 1-May-1998

The write() method for the Many writer channels will have an extra synchronisation on a write
monitor object. This synchronisation is around the method described above to ensure that only one
writer can be invoking write() at any one time. If this was not done, a second writer could come
along while the first is waiting (and therefore not holding the monitor) and enter the method and
may cause the Channel to be left in an inconsistent state.

NOTE: When the wait() call is made only the lock from synchronising on the same object as
wait() was invoked on is released. Therefore, when the writer has synchronised on the
write monitor then waited on the channel monitor no other writers will be able to gain the
write monitor. The other writers will have to wait until the writer is notified and regains
the channel monitor and releases the write monitor. The readers will however be able to
get through the read monitor and gain the channel monitor while the writer is waiting.

3.2 Alternative Construct
The Alternative construct in the JCSP class library is based on the Alternative class developed
by Peter Welch. The class is modified so that only AltingChannels may be selected upon and
common code has been factored out into utility methods.

NOTE: The ALT construct in OCCAM is actually a process. In this version of the Java
Alternative, it is not a process. Future versions may be implemented differently, there
was not enough time at the end of the project to describe details here.

The addition of the Alternative construct should not radically alter the interface to existing
classes.

3.2.1 Interface

3.2.1.1 Alternative
The interface to the Alternative class must provide methods to perform alternation under the
following circumstances.
• Alting on input Channels only
• Alting on input Channels with SKIP
• Alting on input Channels with a timeout
• Alting on input Channels with guards
• Alting on input Channels with guards and SKIP
• Alting on input Channels with guards and a timeout

The interface will define several versions of the select() method with varying arguments. Each
version will accept an array of AltingChannelInput (see next section for definition)
containing references to the input channels. The select() method will return the index of the
Channel in the array that is ready, or –1 if the skip or a timeout occurred.

The interface for the Alternative class is shown below.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 23 1-May-1998

public class Alternative {
 public int select(AltingChannelInput[] c);
 public int select(AltingChannelInput[] c, boolean skip);
 public int select(AltingChannelInput[] c, long msecs);
 public int select(AltingChannelInput[] c, long msecs, int nsecs);

 public int select(AltingChannelInput[] c, boolean[] guard);
 public int select(AltingChannelInput[] c, boolean[] guard,
 boolean skip);
 public int select(AltingChannelInput[] c, boolean[] guard,
 long msecs);
 public int select(AltingChannelInput[] c, boolean[] guard,
 long msecs, int nsecs);
}

Code 15 - Alternative class - public interface

To use the Alternative interface a new Alternative is constructed. When selection is
required, one of the select() methods is invoked with the array of AltingChannel as a
parameter. The index returned from the method can either be used directly to invoke read() on
the Channel in the array or using a switch statement as shown in the example below.

Code 16 – Alternative interface - example

Alternative alt = new Alternative();
AltingChannelInput[] altChans = {in1, in2, in3};
Integer i;
switch (alt.select(altChans, 1000)) {
 case 1:
 i = in1.read();
 out.write(new Integer(1));
 out.write(i);
 break;
 case 2:
 i = in1.read();
 out.write(new Integer(2));
 out.write(i);
 break;
 case 3:
 i = in1.read();
 out.write(new Integer(3));
 out.write(i);
 break;
 default: // timeout
 System.out.println(“Time Out”);
 Break;
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 24 1-May-1998

The interface for the Alternative class includes facilities for boolean guards, timeouts and
skips as parameters to the select method. Therefore, it is only necessary to modify the interface to
the channels that allow alternative selection to have the required methods.

3.2.1.2 Alting Channels
To implement selection on channels there needs to be two methods. The first method will enable the
selection on the channel and return true if data is immediately available. The second will disable the
selection on the channel after one of the channels has been selected.

The easiest way to add alting to the existing channels it to add the declarations of the enable()
and disable() methods to the ChannelInput class and then require the concrete channels to
implement the bodies of these methods. This nieive approach has the following disadvantages.
• It is not safe to implement alting for all types of channel, the only types of channel that may

implement alting on input are those which may only have one reader.
All methods defined in interfaces are declared to be public, this is would enable any class to call the
enable() and disable() methods when in fact only the sub classes and the Alternative
class should be able to call them. This requires that the methods be defined in a class in the same
package as the Alternative class. The class should be defined as an abstarct class with the
methods defined with package visibility.
• Adding the methods would require the modification of the existing interfaces, it would be better

if alting could be added without modifying the existing interface.

The method used is to define two extra abstract classes. The first AltingChannelInput
implements the ChannelInput interface and defines the format of the enable() and
disable() methods, this class will be used to pass channels into processes which ALT on the
channel. The second AltingChannel extends the AltingChannelInput and implments the
Channel interface, no new methods are defined, this class is the super class of all
AltingChannels.

The channels which enable alternative selection must extend the AltingChannel class and
define the enable() and disable() methods instead of implementing the Channel interface.
These are the only interface changes required. As the methods are defined to have package visibility
only this package can define classes that extend AltingChannel.

The declaration of these new classes and the class digram is shown below.

Code 17 - AltingChannel - interfaces

public abstract class AltingChannelInput
 implements ChannelInput{
 abstract boolean enable(Alternative alt);
 abstract boolean disable();
}
public abstract class AltingChannel
 extends AltingChannelInput
 implements Channel {
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 25 1-May-1998

AltingChannel

AltingChannelInput

Channel
<<Interface>>

ChannelInput
<<Interface>>

ChannelOutput
<<Interface>>

Figure 11 – JCSP Channel interface relationships with Alting

AltingChannel

AltingChannelInput

enable(alt : Alternative) : boolean
disable() : boolean

Channel
<<Interface>>

ChannelOutput

write(o : Object) : void

<<Interface>>
ChannelInput

read() : Object

<<Interface>>

Figure 12 – JCSP Channel interfaces with Alting

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 26 1-May-1998

3.2.2 Implementation

3.2.2.1 Alternative
The bulk of the Alternative class is mainly implemented within the select() methods
defined in the interface with some private methods to perform some of the work. The general
algorithm for selection on channels with no timeouts, guards or skips is shown below.

Code 18 - Algorithm for selection of Channels

To implement the selection with timeout, if no channel is ready the wait call will have a timeout
value that will cause the select to awake after this time.

To implement the selection with skip, if no channel is ready there is no wait call, the channels are
disabled immediately.

To implement the selection with guards the loops to enable and disable each channel will only
enable/disable a channel if the boolean variable in the guards array for that channel is true.

The Alternative class defines a package visible method schedule() that must be invoked
when a Channel has been enabled for selection to notify that data has become ready instead of the
usual notify() invocation. The schedule() method will invoke the notify() method on
the Alternative class.

The interaction diagram below shows the interactions between the various classes for the simple
select() statement.

synchronize on Alternative
 for each channel c
 enable(c)
 end for
 if no Channel ready
 wait for writer
 end if
 for each channel c in reverse order
 if disable(c) = has data
 selectedChannel = index of c
 end if
 end for
 return selectedChannel
end synchronize

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 27 1-May-1998

reader :
CSPProcess

alt : Alternative : AltingChannel writer :
CSPProcess

select(AltingChannelInput[])

* enable(Alternative)

wait()

write(Object)

schedule()

notify()

* disable()

For each Channel in
in the Array passed to
select

For each Channel in
in the Array passed to
select

Figure 13 - Alternative - select

The enable all and disable all channels functionality is factored out into several private methods that
contain the loops that perform the work. These loops have been modified so that when a channel is
enabled and returns true indicating it is ready the loops will short-circuit at that point improving
performance.

3.2.2.2 AltingChannel
The AltingChannelInput and AltingChannel classes have no implementation as they are
abstract classes. However discussion on the implementation of the AltingChannel sub classes
must be considered.

The two channels which may implement selection are One2OneChannel and
Many2OneChannel as the Many2OneChannel only adds extra synchronisation on write only
the implementation of the One2OneChannel needs to be considered.

To extend the AltingChannel class the implementation must define the enable() and
disable() methods. The implementation of the enable() method simply stores the reference

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 28 1-May-1998

to the Alternative passed as the parameter in a private attribute indicating it is enabled and
specifying the Alternative construct that is performing the selection. The diable() method
sets the private attribute to null indicating no selection is being performed and the normal
synchronisation between reader and writer should be used.

The implementation for the write() method must be modified so that if the private attribute for
the Alternative class is not null the schedule method must be invoked on the reference
otherwise notify() must be invoked as per normal channels.

The interaction diagram below shows the interactions involved for the version of write for
AltingChannel.

 : Channel data : Object
Store

alt : Alternative

write(Object)

[state = FULL] wai t()

[alt == null] notify()

[alt != null] schedule()

putObject(Object)

getState()

Figure 14 - AltingChannel - write

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 29 1-May-1998

3.3 Parallel Construct and Processes
The implementation of the parallel functionality evolved through first using Java threads to
encapsulate the processes with specialist versions of read and write. Followed by the development
of a Parallel class that was primarily used just for reading and writing processes. Finally, the
adoption and improvement of the Parallel class to model the implementation of the PAR
construct in OCCAM with added functionality to add and remove processes.

NOTE: The current implementation does not implement PRI PAR but this is being considered for
future versions.

3.3.1 Interface

3.3.1.1 Using Java Threads
The first approach to generating CSP process networks in Java was to create a new subclass of
Thread for each PROC. The constructor of the class models the PROC declaration and the run()
method models the body of the PROC. The constructor of the class also causes the Thread to be
started when constructed. The class stores the parameters passed into the constructor in private
attributes so that the run() method can access them.

When executing several processes in parallel the join() method must be invoked on each process
after the last process has been constructed to wait for all of the processes to finish executing. This
gives the same functionality as PAR. To execute a process so that the calling process is not blocked
(i.e. asynchronously) the join() method should not be invoked.

The code below shows how a simple process is constructed and how a network of these processes is
constructed.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 30 1-May-1998

Code 19 – Parallelism using threads

import jcsp.lang.*;

class Successor extends Thread {
 private ChannelInput in;
 private ChannelOutput out;

 public Successor(ChannelInput in, Channeloutput out) {
 this.in = in;
 this.out = out;
 start();
 }

 public void run() {
 while (true) {
 Integer i = in.read();
 out.write(new Integer(i.intValue() + 1));
 }
 }
}

// declarations of Delta and Prefix go here

class Nos extends Thread {
 private ChannelInput out;

 public Nos(ChannelOutput out) {
 this.out = out;
 start();
 }

 public void run() {
 Channel a = new One2OneChannel();
 Channel b = new One2OneChannel();
 Channel c = new One2OneChannel();
 Prefix p = new Prefix(new Integer(0), a, b);
 Delta d = new Delta(b, out, c);
 Successor s = new Successor(c, a);

 // wait for the processes to finish
 p.join();
 d.join();
 s.join();
 }
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 31 1-May-1998

3.3.1.2 OCCAM style PAR Construct
After using the first method to develop some test and demonstration programs, it became apparent
that there were several problems with this approach.
• Definition of a process was long
• Construction of process networks was long winded
• Long winded approach to waiting for all of the processes to terminate
• Execution of fine grained processes such as channel reads and write still required parallel

versions or a PAR construct.
• Difficult to control the execution of all the processes in the PAR construct
• Processes could not be re-used after termination

To overcome the problems a new approach was needed one that followed the OCCAM/CSP model.
This section describes the interfaces to the classes required to implement the PAR construct in Java
as similar to the OCCAM version as possible. There are three classes
• CSProcess (PROC)
• Parallel (PAR)
• ProcessNetwork (asynchronous execution of a CSProcess)

3.3.1.2.1 CSProcess
The CSProcess interface defines the methods that all processes that are to be executed using the
Parallel construct must implement. This is equivalent to defining named processes (PROCs) in
OCCAM.

Unlike the OCCAM PAR construct, it is not possible to execute single statements in parallel, only
classes that implement the CSProcess interface can be executed in parallel.

 Code 20 – CSProcess interface

The run() method of classes which implement the CSProcess interface will contain the body of
the process.

To pass channels and parameters to the process the classes that implement the CSProcess
interface the class must be defined with a constructor that accepts the parameters and store
references to the parameters in private attributes. To execute the CSProcess it can either be run
as part of the Parallel Construct (equivalent to PAR), Sequential construct (equivalent to
SEQ) or the run() method can be invoked (equivalent to SEQ). The following Code demonstrates
how to create a simple process.

public interface CSProcess {
 public void run();
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 32 1-May-1998

 Code 21 – CSProcess example

3.3.1.2.2 Parallel
The design of the Parallel class aims to provide similar functionality as the PAR construct in
OCCAM that is also easy to use. The interface has constructors that create a new PAR construct
with an array of CSProcess’s or with no processes. The Parallel class implements the
CSProcess and defines the run() method to execute each of the CSProcess’s once in
Parallel and returns only when all the CSProcess’s finish executing.

Parallel

CSPProcess

<<Interface>>

-processes 1

0..*0..*

1

Figure 15 - Relationship between Parallel and CSProcess

The interface also defines methods to add and remove CSProcess’s from the Parallel class.
There are two addProcess(…) methods one that will add a single CSProcess and another that
will add and array of CSProcess’s. The removeProcess(…) method will remove the
CSProcess. These methods are synchronized (as is the run() method) which means processes
can only be added or removed if the run() method (or any of the other methods) is currently being
executed.

public class ProcessExample implements CSProcess {
 private Object o;
 private ChannelOutput out;

 public ProcessExample(Object o, ChannelOutput out)
{
 this.o = o;
 this.out = out;
 }

 public void run() {
 while (true) {
 out.write(o);
 }
 }
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 33 1-May-1998

 Code 22 – Parallel interface

NOTE: The Sequential class has the same interface as the Parallel class.

The code below shows how a simple process is constructed and how a network of these processes is
constructed.

NOTE: The example uses an advanced feature of the Java language to declare an array of
CSProcess’s as a parameter to the Parallel constructor. This makes the code for
using PAR look similar to the OCCAM version.

public class Parallel implements CSProcess {
 public Parallel();
 public Parallel(CSProcess[] process);
 public synchronized void addProcess(CSProcess process);
 public synchronized void addProcess(CSProcess[] processes);
 public synchronized void removeProcess(CSProcess process);
 public synchronized void run();
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 34 1-May-1998

Code 23 – Parallel Example

3.3.1.2.3 ProcessNetwork
In the Java version it would be useful if a process network could be constructed and be executed
asynchronously and to have a mechanism to suspend, resume or stop the entire network when it is
no longer required.

The simplest method of performing this functionality would be to create a new Thread within a
new ThreadGroup to execute the CSProcess. The problem with this method is it requires the
software constructor to perform several steps to implement the functionality. In addition, if the class

import jcsp.lang.*;

class Successor implements CSProcess {
 private ChannelInput in;
 private ChannelOutput out;

 public Successor(ChannelInput in, Channeloutput out) {
 this.in = in;
 this.out = out;
 }

 public void run() {
 while (true) {
 Integer i = in.read();
 out.write(new Integer(i.intValue() + 1));
 }
 }
}

// declarations of Delta and Prefix go here

class Nos implements CSProcess {
 private ChannelInput out;

 public Nos(ChannelOutput out) {
 this.out = out;
 }

 public void run() {
 Channel a = new One2OneChannel();
 Channel b = new One2OneChannel();
 Channel c = new One2OneChannel();
 new Parallel(new CSProcess[] { // PAR
 new Prefix(new Integer(0), a, b),
 new Delta(b, out, c),
 new Successor(c, a)
 }).run(); // run the processes and wait for them to
terminate
 }
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 35 1-May-1998

library were re-written to implement some new form of parallelism all other code would have to be
re-written to support the new interface.

ProcessNetwork
CSPProcess

<<Interface>>

0..1

-process

11 0..1

Figure 16 - Relationship between ProcessNetwork and CSProcess

The interface of the class is shown below.

 Code 24 – ProcessNetwork interface

3.3.2 Implementation

3.3.2.1 Using Java Threads
There is no implementation required to implement the Parallel class using just Java Threads, as
there are no extra classes to be implemented. The implementation would consist of a set of
guidelines on how to construct processes and networks. As this method is not going to be used, the
guidelines have not been written.

3.3.2.2 OCCAM style PAR Construct
The implementation of the Parallel construct described below uses the Java Thread mechanisms
to provide the parallel execution of processes. As the external interfaces to the classes have been
designed to hide the actual implementation it would be possible to change the actual
implementation of the Parallel class to provide some other more efficient mechanism in the
future.

There are four classes used to implement the parallel functionality, the interfaces for CSProcess,
Parallel and ProcessNetwork were defined earlier. The ParThread class is used in the
implementation of Parallel to execute the processes in parallel. Figure 17 shows the
relationships between the classes.

public class ProcessNetwork {
 public ProcessNetwork(CSProcess process);
 public void stop();
 public void start();
 public void suspend();
 public void resume();
 public void join();
}

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 36 1-May-1998

ProcessNetwork

ParThread
(from Parallel)

Parallel

0..*1

-par

0..*

-parThreads

1

CSPProcess
<<Interface>>

1 0..1

-process

1 0..1

1

0..1
-process

1

0..1

0..*

1-process es

0..*

1

Figure 17 - Parallel Class Diagram

The ProcessNetwork executes one CSProcess.

The Parallel class implements the CSProcess interface, has zero or more CSProcess
classes to be executed in parallel and has zero or more ParThreads which execute each of the
CSProcess’s .

3.3.2.2.1 CSProcess
As the CSProcess is an interface, there is no implementation to be described.

3.3.2.2.2 Parallel
The Parallel class executes each of the CSProcess’s once in parallel when the run()
method is called, any threads that are created are done within the run() method. The pseudo code
below shows the basic functionality of the run method.

 Code 25 – Parallel run() method – pseudo code

The simplest method of implementing the run() method would be to create a special Thread
class that would call a method on the Parallel class before the process is executed to increment
a reference count. The Thread would then execute the run() method of the CSProcess. When
the CSProcess terminates the Thread would then execute another method on the Parallel
class that would decrement the reference count, if this was the last process the method would then
notify the run method and wake it up. The Thread would then terminate. This simple approach
would require a new set of threads to be created for each call to the run() method causing extra
overhead.

The approach used is similar to described as above except the special Thread (ParThread class)
is actually a class that implements the Runnable interface. The constructor of this class creates a
new Thread to execute the run() method and starts it running. The run() method of the

for each process
 restart process
end for
wait for processes to finsih

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 37 1-May-1998

ParThread has an infinite loop that executes wait() at the beginning of the loop, then executes
the CSProcess and then executes the method on the Parallel class to decrement the reference
count. As the Thread now does not terminate it can be used to execute the CSProcess more
than once thus saving on the overhead of Thread creation (apart from at initialisation).

The ParThread class defines a start() method which is called by the Parallel class to start
the CSProcess running. The start() method calls the method on the Parallel class to
increment the reference count and then calls notify to wake up the run() method on the
ParThread.

The interaction diagram shows the sequence of method calls involved in the Parallel class’s
run() method. The diagram includes some extra method names (enter() and finish())
which have until now not been named.

process : Parallel : ParThread : CSPProcess

run()
*start()

enter()

[count != 0] wait()

finish()

[count == 0] notify()

wait()

notify()

run()

Figure 18 - Parallel – run()

There is one last point that need to be considered in the design of the ParThread class. This is the
topic of race hazards. It would be possible for the constructor to return before the run() method

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 38 1-May-1998

has been started by the Thread (and therefor the wait() method not reached). The Parallel
class could then call the start() method on the ParThread (causing notify() to be
invoked). The ParThread would then be waiting for a notification that has already occurred.

This race hazard can be avoided by including a synchronised block around the start() method
invocation on the Thread in the constructor. In this synchronised block would also be a wait()
invocation to wait for the thread to be created and the run() method invoked. At the top of the run
method there would be a notify() to indicate the thread has started. Once the wait() call is
reached in the run() method the control would then return to the constructor. The race hazard is
now removed.

The enter() method is called by the ParThread class to increment the reference count of the
number of CSProcess’s being executed.

The finish() method is called by the ParThread class to decrement the reference count of
the number of CSProcess’s being executed. If the count is 0 the run() method will be notified.

The Parallel class will store the CSProcess’s to be executed in an array, when the class is
constructed the array will be created and the references to the CSProcess’s copied into the new
array. There is a flag processesChanged, which will be set to true if the number of
CSProcess’s into the array changes.

The addProcess() method will add a CSProcess to the array by increasing the size of the
array and copying the old array into the new one, the processesChanged flag will be set to
true.

The removeProcess() method will search through the array to find the CSProcess. The old
array will be copied into a new one apart from the removed CSProcess , the
processesChanged flag will be set to true.

The ParThreads created by the Parallel class will be stored in an array and not disposed of
when processes are removed. The ParThread's will be created by the run() method so that the
ProcessNetwork class functions correctly.

When the run() method is invoked the processesChanged flag is checked. If it is false a
loop will invoke start() on each of the ParThreads to set them running again. If it is true a
first loop will loop through the ParThread array for each of the CSProcess’s , the
setProcess() method will be invoked to set the CSProcess for that ParThread to the
CSProcess and then it will be started. A check will be made to see if the CSProcess array is
greater than the ParThread array, if this is the case new ParThreads must be created for each
of the new CSProcess’s . The ParThread array will be enlarged to store the new
ParThreads . A loop will then create a new ParThread and the start() method will then be
invoked. The processesChanged flag will be set to false.

As described above ParThreads are created as they are needed by the run() method and only
done so when there are less ParThreads than CSProcess’s .

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 39 1-May-1998

If a program was written using a Parallel construct the program should terminate when the
run() method returns. The implementation so far does not do this. The reason is that the Java
program does not terminate until all non-daemon Threads have terminated. In the implementation of
Parallel there are non-terminating threads. To ensure the program terminates the threads create
by ParThread should have their daemon flag set to true.

The following state diagram shows the possible states and actions possible in the Parallel class.

idle/initialize

addProcess(process) removeProcess(process)

Restarting Processesrun

Waiting for processes to finish

restart next process[Not all processes started]

[All processes restarted]

finish[Not all processes finished]

finish[All processes Finished]

Figure 19 - Parallel State Diagram

One final performance improvement can be introduced that reduces the number of ParThreads
created. In the run method only n-1 ParThreads are created (where n is the number of
CSProcess). The last CSProcess will be executed in the same Thread as the run() method
by the run() method being invoked on the CSProcess method the wait() method is called.

3.3.2.2.3 ProcessNetwork
The ProcessNetwork class is implemented as a Runnable class that executes the run()
method of the CSProcess which is to be executed asynchronously. The class creates a new
ThreadGroup that will contain the Threads of all the CSProcess’s created by the top
CSProcess or any sub processes. The ThreadGroup will be used to control the execution of the
entire network. A Thread will be created in the ThreadGroup to execute the run() method of
this class.

The start() method will invoke start() on the Thread , this will cause the threads for the
network to be started.

The stop(), suspend(), resume() methods will invoke the corresponding method on the
ThreadGroup which will invoke the corresponding method on each Thread .

The join() method will invoke join() on the Thread , this will cause the current Thread to
wait for the thread to stop executing.

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 40 1-May-1998

Appendices

Appendix A Class Diagrams

A.1 JCSP Language Classes Overview

ChannelOutput
(from lang)

<<Interface>>

AltingChannelInput
(from lang)

ChannelI nput
(from lang)

<<Interface>>

Channel
(from lang)

<<Interface>>
ObjectStore

(f ro m l ang)

1 0..1

-data

1 0..1

Alternative
(from lang)

AltingChannel
(from lang)

0..1 0..*

+altChan

0..1

+alt

0..*

SingleObject
(f rom ut il)

Buffer
(from uti l)

OverwrittingBuffer
(from util)

Many2OneChannel
(f rom l ang)

One2OneChannel
(from lang)

Many2ManyChannel
(f rom l ang)

One2ManyChannel
(f ro m l ang)

ProcessNetwork
(from lang)

ParThread
(from Parallel)

Parallel
(from lang)

CSPProcess
(from lang)

<<Interface>>

0..1

0..1

0..*

-parThreads

1 0..*1

-processes 1

-process

11 0..1

-process

11

0..1

0..*0..*

1

Figure 20 - JCSP Language classes – Overview

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 41 1-May-1998

A.2 JCSP Language Classes Detail

A.2.1 Channel Classes

One2OneChannel

read() : Object
write(o : Object) : void

One2ManyChannel

write(o : Object) : void
read() : Object

Many2ManyChannel

write(o : Object) : void

Many2OneChannel

write(o : Object) : void

AltingChannel Input

enab le(alt : Alternative) : boolean
disab le() : boolean

ChannelInput

read() : Object

<<Interface>>
ChannelOutput

write(o : Object) : void

<<Interface>>

Alternative

select(channels : AltingChannelInput[]) : int
schedule() : void
select(channels : AltingChannelInput[], msecs : int) : int
select(channels : AltingChannelInput[], msecs : int, nsecs : int) : int
select(channels : AltingChannelInput[], guards : boolean[]) : int
select(channels : AltingChannelInput[], guards : boolean[], msecs : int) : int
select(channels : AltingChannelInput[], guards : boolean[], msecs : int, nsecs : int) : int
select(channels : AltingChannelInput[], s kip : boolean) : int
select(channels : AltingChannelInput[], guards : boolean[], skip : boo lean) : in t
enableChannels(c : AltingChannel Input[]) : boolean
disableChannels(c : Al tingChanne lInput[])
disableChannels(c : Al tingChanne lInput[], guards : boolean[])
enableChannels(c : AltingChannel Input[], guards : boolean[]) : boolean

AltingChannel

0..1

0..*

+altChan0..1

+alt0..*

Channel
<<Interface>

ObjectStore
$ EMPTY : int = 1
$ FULL : int = 2
$ NONEMPTYFULL : int = 0

getObject() : Object
getState() : int
putOb ject(o : Object) : void

1 0..1

-data

1 0..1

SingleObject

putObject(o : Object) : void
getState() : int
getObject() : Object
SingleObject()

(from util)

Buffer

/ size : int
count : int = 0

putObject(o : Object) : void
getObject() : Object
getState() : int
Buffer(size : int)

(from util)

OverWrittingBuffer

/ s ize : int
count : int = 0

putObject(o : Object) : void
getObject() : Object
getState() : int
OverWritingBuffer(size : int)

(from util)

Timer

putObject(o : Object) : void
getState() : int
getObject() : Object
Timer()

(from util)

Figure 21 - JCSP Channel classes - Detail

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 42 1-May-1998

A.2.2 Parallel Classes

ProcessNetwork

ProcessNetwork(process : CSPProcess)
start() : void
stop() : void
suspend() : void
resume() : void
join() : void

ParThread

ParThread(process : CSPProcess) : vo id
setProces s(process : CSPProcess) : void
getProces s() : CSPProcess
start() : void
run() : void

(from Parallel)

CSPProcess

run()

<<Interface>>

1 0..1

-process

1 0..1

1

0..1 -process

1

0..1
Parallel

Parallel()
Parallel(processes : CSPProcess)
addProcess(process : CSPProcess) : void
addProcess(process : CSPProcess[]) : void
removeProcess(process : CSPProcess) : void
run() : void
enter() : void
finish() : void

1 0..*

-parThreads

1 0..*

-processes 1

0..*

1

0..*

Figure 22 - JCSP Parallel classes - Detail

Java Communicating Sequential Processes Design of JCSP Language Classes

Paul David Austin 43 1-May-1998

Bibliography

[1] Martin Fowler with Kendall Scott. 1997, ’UML Distilled’, Addison Wesley, ISBN 0-201-32563-
2

[2] CGS-THOMSON Microelectronics Ltd. 1995, OCCAM 2.1 ’reference manual’, Prentice Hall.
[3] C. A. R. Hoare. 1985, ’Communicating Sequential Processes’, Prentice Hall.
[4] JavaSoft. 1997, 'JDK™ 1.1 Documentation', Sun Microsystems.

http://www.javasoft.com/products/jdk/1.1/docs/
[5] Peter .H. Welch. 1996, ‘Java Channels: A learning Experience’, University of Kent Canterbury,

England.
[6] Peter .H. Welch. 1998, ‘Java Threads in the Light of OCCAM/CSP’ p259-284 in 'WoTUG-21:

Architectures, Languages and Patterns for Parallel and Distributed Applications', IOS Press
(Amsterdam), ISBN 9051993919.

[7] Gerald H. Hilderink. 1997, 'Communicating Java Threads Reference Manual' p283-325 in
'WoTUG-20: Parallel Programming and Java', IOS Press (Amsterdam), ISBN 9051993366.

[8] Gamma. Helm, Johnson, Vissides. 1995, Design Patterns (Elements of Reusable Object-
Oriented Software), Addison Wesley, ISBN 0-201-63361-2

	Contents
	Figures
	1 Introduction
	2 Functionality
	2.1 Channels
	2.1.1 Cardinality
	2.1.1.1 One to One Channel
	2.1.1.1.1 Reading
	2.1.1.1.2 Writing

	2.1.1.2 One To Many Channel
	2.1.1.2.1 Reading
	2.1.1.2.2 Writing

	2.1.1.3 Many To One Channel
	2.1.1.3.1 Reading
	2.1.1.3.2 Writing

	2.1.1.4 Many To Many Channel
	2.1.1.4.1 Reading
	2.1.1.4.2 Writing

	2.1.2 Storage Types
	2.1.2.1 Single Object
	2.1.2.2 Buffer
	2.1.2.3 Over Writing buffer
	2.1.2.4 Timer

	2.2 Alternative construct
	2.3 Parallel Construct and Process’s

	3 Design & Implementation
	3.1 Channels
	3.1.1 Interface
	3.1.1.1 Reading and writing

	3.1.2 Implementation
	3.1.2.1 Inheritance Based Channels
	3.1.2.2 Bridge Based Channels
	3.1.2.2.1 ObjectStore
	3.1.2.2.1.1 Single Object
	3.1.2.2.1.2 Buffer
	3.1.2.2.1.3 OverwritingBuffer
	3.1.2.2.1.4 Timer

	3.1.2.2.2 The read method
	3.1.2.2.3 The write method

	3.2 Alternative Construct
	3.2.1 Interface
	3.2.1.1 Alternative
	3.2.1.2 Alting Channels

	3.2.2 Implementation
	3.2.2.1 Alternative
	3.2.2.2 AltingChannel

	3.3 Parallel Construct and Processes
	3.3.1 Interface
	3.3.1.1 Using Java Threads
	3.3.1.2 OCCAM style PAR Construct
	3.3.1.2.1 CSProcess
	3.3.1.2.2 Parallel
	3.3.1.2.3 ProcessNetwork

	3.3.2 Implementation
	3.3.2.1 Using Java Threads
	3.3.2.2 OCCAM style PAR Construct
	3.3.2.2.1 CSProcess
	3.3.2.2.2 Parallel
	3.3.2.2.3 ProcessNetwork

	Appendices
	Appendix A Class Diagrams
	A.1 JCSP Language Classes Overview
	A.2 JCSP Language Classes Detail
	A.2.1 Channel Classes
	A.2.2 Parallel Classes

	Bibliography

