Communicating Processes,
Safety and Dynamics:
the New occam

Peter Welch and Fred Barnes
Computing Laboratory
University of Kent at Canterbury
{phw, Frmb2}@ukc.ac.uk

IFIP WG 2.4, Dagstuhl, Germany (14th. November, 2002)

Processes (CSP)

occam

Communicating Sequential

transputers

\

?7?7?

occam 2 1 Handel-C
occam 3 occam-T «— JCSP (Java)
N\ /
CSP-n

CCS / m-calculus: mobile data,
channel-ends and processes

|

Dynamic occam

Introduction to Dynamic occam
¢ Motivation and Principles

Details
Channel Ends and Direction Specifiers
Mobile Channel Structures (and SHARED Channels)

*
*
¢ Dynamic Process Creation (FORK)
¢ Extended Rendezvous

*

Process Priorities (32 levels now supported)
¢ Extensions (parallel recursion, nested PROTOCOL definitions, ...)

Examples
¢ Dynamic Process Farms
¢ Intercepting Channel Communications
¢ Networked Channels

¢ RMoX and occWeb
Summary

Motivation and Principles

= Motivation

¢ Classical occam <> embedded systems; hence pre-allocated
memory (i.e. compile-time defined concurrency limits, array
sizes and no recursion). It’s long been time to move on!

¢ Remove static constraints (but retain as a voluntary option
for use in hardware design and some embedded systems).

¢ Move towards general-purpose capabillity (because occam is
too good to keep to ourselves ©).

= Principles for changes/extensions
¢ they must be useful and easy to use;
¢ they must be semantically sound and policed against misuse,
¢ they must have very light implementation (nano-memory and
warp speed);
¢ they must be aligned with the core language (no semantic,
safety or performance disturbance).

Channel Ends and Direction Specifiers

in out

X —— > X

y X+Yy
z integrate X +Yy + 2z

PROC integrate (CHAN INT in?, out!)

An occam process may only use a channel parameter one-way
(either for input or for output). That direction is specified (? or !),
along with the structure of the messages carried — in this case,
simple INTs. The compiler checks that channel useage within
the body of the PROC conforms to its declared direction.

Channel Ends and Direction Specifiers

z integrate

out

- X

Xty

X+Yy+z

PROC integrate (CHAN INT in?, out!)

INITIAL INT total 1S O:

WHILE TRUE
INT x:
SEQ
in ? x
total := total
out ! total

Implementation

serial

Channel Ends and Direction Specifiers

in out

X — > X
y X+y
z integrate X+y +2

PROC integrate (CHAN INT in?, out!)

parallel
Implementation

Channel Ends and Direction Specifiers

in

integrate

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR

plus (in?, c?, al)
delta (a?, out!, b!)
prefix (0, b?, c!)

parallel
Implementation

X in out X
< _|_ _
y X+y
Z X+y+2z
Integratelnt

class Integratelnt implements CSProcess {

private final Channellnputint in;
private final ChannelOutputint out;

public Integratelnt (Channellnputint in,
ChannelOutputint out) {
this.in = in;
this.out = out;

}

public void run O

X in out _ X
y L
z X+y+z

Integratelnt

public void run) {

One20neChannelInt a
One20neChannellnt b
One20neChannellnt c

Channel .createOne20nelnt (;
Channel .createOne20nelnt ();
Channel .createOne20nelnt ();

new Parallel (
new CSProcess[] {
new Plusint (in, c.in(), a.out()),
new Delta2int (a.in(), out, b.out()),
new Prefixint (O, b.-in(), c.out())

+
).run O;

Channel Ends and Direction Specifiers

in

integrate

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:

PAR
plus (in?, c?, al) g
delta (a?, out!, b!)

prefix (0, b?, c!)

Mobile Channel Structures

req! __ _, req?
buf? . BUF .MGR ? — buft
ret! __ _, ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT req?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

Channel types declare a bundle of channels that will always
be kept together. They are similar to the idea proposed for
occam3, except that the ends of our bundles are mobile ...

Mobile Channel Structures

req! __ _, req?
buf? . BUF .MGR ? — buft
ret! __ _, ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT req?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

... and we also specify the directions of the component
channels ...

Mobile Channel Structures

req! __ L req’;?
buf? . BUF .MGR ? — buft
ret! __ _, ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT req?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

... [channel bundles, like atomic channels, have two ends
which we call, arbitrarily, the “?” (or “server”) end and the “!”
(or “client”) end] ...

Mobile Channel Structures

req! __ _, req?
buf? . BUF .MGR ? — buft
ret! __ _, ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT req?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

... the formal declaration indicates these directions from the
viewpoint of the “?” end.

Mobile Channel Structures

req! __ L req’f
buf? l BUE . MGR o — buf!
ret! __| _, ret?

For these mobile channel types, variables are declared only
for their ends. Those ends are going to be independently
mobile — not the channel as a whole.

BUF.MGR! buf.cli: -- “client”-end variable
BUF.MGR? buf.svr: -- “server”-end variable

They are allocated in pairs dynamically:
buf.cli, buf.svr := MOBILE BUF.MGR

Mobile Channel Structures

req! __| _, req?
buf? l BUE . MGR o — buf!
ret! _ | _, ret?

buf.cli, buf.svr :=

MOBILE BUF.MGR

Those variables need to be given to separate parallel
processes before it makes sense to use them — e.g:

MOBILE []BYTE b:
SEQ
buf.cli[req] ! 42
buf.clifbuf] ? b
use b

buf.clifret] !' b

MOBILE []BYTE b:
INT s:
SEQ
buf.svrlreq] ? s
b := MOBILE [s]BYTE

buf.svr[buf] ! b
buf.svrfret] ? b

Mobile Channel Structures

req! __ _, req?
buf? . BUF .MGR ? — buft
ret! __ _, ret?

buf.cli, buf.svr = MOBILE BUF.MGR

However, it's more flexible (and fun) to take advantage of
their mobillity.

Mobile channel-end variables may be assigned to each other
and sent down channels — strong typing rules apply, of course.

Recall, also, the basic rules of mobile assignment and
communication: once assigned or communicated from, the
mobile variable becomes undefined. It may not be used
again until re-allocated, assigned or communicated to.

Mobile Channel Structures

gen erator
cli.chan SVvr .chan
(BUF.MGR 1) (BUF _.MGR?)
client server

CHAN BUF.MGR!
CHAN BUF.MGR? svr.chan:

PAR

cli.chan:

generator (cli.chan! svr.chan!)
client (cli.chan?)
server (svr.chan?)

Mobile Channel Structures

generator
= | BUF.MGR ? &
cli.chan SVvr .chan
(BUF.MGR 1) (BUF _.MGR?)
client server

BUF.MGR! buf.cli:
BUF.MGR? buf.svr:
SEQ
buf.cli, buf.svr := MOBILE BUF.MGR

Mobile Channel Structures

generator
i
cli.chan 2 SVr.chan
(BUF_MGR1) $ (BUF _MGR?)
client server

BUF.MGR! buf.cli:

BUF.MGR? buf.svr:

SEQ
buf.cli, buf.svr := MOBILE BUF.MGR
cli.chan ! buf.cli

Mobile Channel Structures

generator
cli.chan SVvr .chan
(BUF.MGR 1) (BUF _.MGR?)
client = ! BUF.MGR ? 2 server

BUF.MGR! buf.cli:
BUF.MGR? buf.svr:

SEQ

buf.cli, buf.svr

cli.chan ! buf.cli
svr.chan ! buf.svr

-- buf.cli and buf.svr are now undefined

= MOBILE BUF.MGR

Mobile Channel Structures

generator
= | BUF.MGR ? &
cli.chan SVr.chan
(BUF.MGR1) (BUF .MGR?)
client server

PROC client (CHAN BUF.MGR! cli.chan?)
BUF.MGR! cv:
SEQ

Mobile Channel Structures

generator
i
cli.chan 2 SVr.chan
(BUF_MGR1) $ (BUF _MGR?)
client server

PROC client (CHAN BUF.MGR! cli.chan?)
BUF.MGR! cv:
SEQ
cli.chan ? cv

Mobile Channel Structures

cli.chan generator
(BUF_MGR1) | %
2 SVr.chan
$ (BUF . MGR?)

real.client server

PROC client (CHAN BUF.MGR! cli.chan?)
BUF.MGR! cv:
SEQ
cli.chan ? cv
real.client (cv)

Mobile Channel Structures

cli.chan generator
(BUF_MGR1) | %
2 SVr.chan
$ (BUF . MGR?)

real.client server

PROC server (CHAN BUF.MGR? svr.chan?)
BUF.MGR? sv:
SEQ

Mobile Channel Structures

cli.chan
(BUF.MGR1) | generator

sSVvr.chan
(BUF _.MGR?)

real.client = ! BUF.MGR ? & server

PROC server (CHAN BUF.MGR? svr.chan?)
BUF.MGR? sv:
SEQ
svr.chan ? sv

Mobile Channel Structures

cli.chan . | svr.chan
(BUF.MGR1) generator (BUF .MGR?)

=

real.client = ! BUF.MGR ? 5 real.server

PROC server (CHAN BUF.MGR? svr.chan?)
BUF .MGR? sv:
SEQ
svr.chan ? sv
real .server (sv)

Mobile Channel Structures

cli.chan . | svr.chan
(BUF.MGR1) generator (BUF .MGR?)

v[¥

real.client = ! BUF.MGR ? K real.server

PROC real.client (BUF.MGR! call)

PROC real.server (BUF.MGR? serve)

Mobile Channel Structures

cli.chan .
(BUF.MGR1)

generator

| sVvr.chan
(BUF _.MGR?)

real.client

(BUF .MGR)
—

real.server

PROC real.client (BUF.MGR! call)

PROC real.server (BUF.MGR? serve)

Shared Channel-Ends

server
SHARED BUF.MGR! s_.buf.cli: -=- “client”-end variable
BUF.MGR? buf.svr: -- “server”-end variable
SEQ

s.buf.cli, buf.svr = MOBILE BUF.MGR

PAR

n.clients May
be computed at
run-time

PAR i = 0 FOR n.clients
client.2 (s.buf.cli)
server (buf.svr)

Shared Channel-Ends

server

PROC client.2 (SHARED BUF.MGR! s.buf.cli)
CLAIM s.buf.cli
MOBILE []BYTE b:
SEQ
s.buf.cli[req] ! 42
s.buf.cli[buf] ? b
... use b
s.buf.clifret] ' b

s.buf.cli
may not be
used outside
of a CLAIM
block

Only s.buf.cli
channels may be
used within its
CLAIM block and
no nested CLAIMS

Both Ends Shared

SHARED BUF.MGR! s_.buf.cli: -=- “client”-end variable
SHARED BUF.MGR? s.buf.svr: -- “server”-end variable
SEQ

s.buf.cli, s.buf.svr = MOBILE BUF.MGR

PAR

PAR i = 0 FOR n.clients
client.2 (s.buf.cli)
PAR i = 0 FOR n.servers
server.2 (s.buf.svr)

n.clients/servers
may be computed
at run-time

Both Ends Shared

PROC server.2 (SHARED BUF.MGR? s.buf.svr)

CLAIM s_.buf.svr
MOBILE []BYTE b:

Other channels

s.buf.svr

INT s: and nested client
m Not
SEQ ay no I.Je CLAIMs may be
s.buf.svr[req] ? s used outside used within a

b := MOBILE [s]BYTE
s.buf.svrfbuf] ! b
s.buf.svrfret] ? b

of a cLAIM
block

server CLAIM
block

Both Ends Shared

PROBLEM: once a client and server process have made
their claims, they can do business across the shared channel
bundle. Whilst this is happening, all other client and server
processes are locked out from the communication resource.

SOLUTION: use the shared channel structure just to enable
clients and servers to find each other and pass between
them a private channel structure. Then, let go of the shared
channel and transact business over the private links.

Both Ends Shared

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD
CHAN BUF.MGR? svr?:

Set up a similar network, but with the shared channel type
being CARRY.BUF.MGR (rather than BurF.MGR).

Both Ends Shared

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD

CHAN BUF.MGR? svr?:

A client process makes both ends of a non-shared BUF.MGR
channel and claims the shared channel. When successful, it
sends the server-end of its Bur.MGrR down the shared channel.
This blocks until a server process claims its end of the
shared channel and inputs that server-end.

Both Ends Shared

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD
CHAN BUF.MGR? svr?:

Note that the client process, having output the server of its
(unshared) sur.MGr channel, no longer has that server-end
and cannot use it or send it anywhere else. Only that client
has the client-end and only the receiving server has the

server-end.

Both Ends Shared

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD
CHAN BUF.MGR? svr?:

Once that client and server finish their business, the server
should return the server-end of the Bur.mMerR channel back to
the client, who may then reuse it to send to someone else.

With a slightly modified definition of Bur.MGR, its server-end

may be sent back down itself to the client. ©

Dynamic Process Creation

The PAR construct creates processes dynamically, but the
creating process has to wait for them all to terminate before
It can do anything else.

This Is not always what we want! Many processes need to
be able to fork off new processes (whose memory will need
to be allocated at run-time) and carry on concurrently with
them. Examples include web servers and operating
systems.

But we are not operating a free-for-all heap in our new
occam — strict aliasing control is maintained even for
dynamically allocated structures. So, we must take care
about memory referenced by long-lived forked processes.

Dynamic Process Creation

SEQ Can only FORK
.- processes within
FORKING a FORKING block

SEQ
WHILE test
SEQ

FORK P (n, answer, in, out)

All FORKed
processes must

terminate before
a FORKING block

can terminate

Dynamic Process Creation

SEQ

FORKING MOBILE data and

VAL data are

SEQ copied into a channel-de_nds are
- FORKed process moved into a
WH:ES test FORKed process

FORK P (n, answer, in, out)

Otherwise, it may
have ceased to
exist before the
FORKed process

terminates

Reference data
must be SHARED
and declared
global to the
FORKING block

Dynamic Process Creation

(D.CONN?)

v

in

to.sw
—
(C.CONN)

fe.farm

Dynamic Process Creation

(D.CONN?)| iin

A 4

to.sw

. J Y a A!

(C.CONN)

fe.proc

fe.proc

fe.farm

fe.proc

(D.CONN)| (D-CONN)

(D .CONN)

Dynamic Process Creation

PROC fe.farm (CHAN D.CONN? in?, SHARED C.CONN! to.sw)
D.CONN? local:

FORKING
INITIAL INT ¢ IS O:
WHILE TRUE
SEQ
in ? local
FORK fe.proc (c, local, to.sw)
c :=c+1

Outline of the front-end process farm
handling incoming connections to the
dynamic version of the occam web server.

PROC fe.proc (VAL INT n, D.CONN? in, SHARED C.CONN! to.sw)

Dynamic Process Farms (RMoX)

A pool _manager is responsible for a pool of workers who
gueue up to request work packets from a farmer.

The pool _manager must ensure that at least min.1dle
workers are always waiting to request new packets.

Each worker must keep the pool .manager informed as to
whether it is working or idle. The pool .manager maintains
a count of how many workers are idle and FORKs off new
ones as the need arises.

Of course, this means the number of workers can never

decrease — it can only ever keep growing. Limiting the
number of idle workers to max. 1dle is left as an exercise.

Dynamic Process Farms (RMoX)

CHAN TYPE W.IN

MOBILE RECORD
CHAN BOOL request?:
CHAN MOBILE []BYTE work!:

(W. IN)
farmer | E——

pool _.manager

» . (W-OUT) | [cHAN TYPE W.OUT
Al'VESTLEI | MOBILE RECORD

CHAN MOBILE []BYTE result?:

Dynamic Process Farms (RMoX)

VAL INT min.idle IS ...

SHARED W_IN! in.cli:

W.IN? In.svr: -

Ccreate any-1
SHARED W.OUT! out.cli- channels
W.OUT? out.svr: e
SEQ

in.cli, In.svr := MOBILE W.IN

out.cli, out.svr -= MOBILE W.OUT create network

PAR
farmer (In.svr)
pool .manager (min.idle, in.cli, out.cli)
harvester (out.svr)

Dynamic Process Farms (RMoX)

PROC farmer (W.IN? workers)
WHILE TRUE

MOBILE []BYTE packet:

farmer

(W. IN)
——

SEQ
... manufacture work packet
BOOL any:
workers[request] ? any
workers[work] ! packet

PROC harvester (W.OUT? workers)

WHILE TRUE
MOBILE []BYTE packet:

harvester

(W.OuT)

SEQ
workers[result] ? packet
consume result packet

Dynamic Process Farms (RMoX)

(W. IN)

farmer PN

pool _.manager

(W.0ouT)
harvester ¢

Dynamic Process Farms (RMoX)

(SIGNAL)
: — pool .manager

(W. IN)

farmer

(W.0ouT)
harvester

CHAN TYPE SIGNAL
MOBILE RECORD
CHAN INT count?: -- working (-1) or idle (+1)

Dynamic Process Farms (RMoX)

PROC worker (SHARED W.IN! 1in,
SHARED W.OUT! out,
SHARED SIGNAL! signal)
WHILE TRUE
MOBILE []BYTE packet:
SEQ ° o
CLAIM 1in
SEQ
in[request] ' TRUE
infwork] ? packet
CLAIM signal
signalfcount] ! -1 -—- say we are working
... do the work
CLAIM out
out[result] ! packet -- hopefully, a modified one
CLAIM signal
signalfcount] ! +1 -— say we are idle

Dynamic Process Farms (RMoX)

(SIGNAL)
: — pool .manager

(W. IN)

farmer

(W.0ouT)
harvester

CHAN TYPE SIGNAL
MOBILE RECORD
CHAN INT count?: -- working (-1) or idle (+1)

Dynamic Process Farms (RMoX)

PROC pool .manager (VAL INT min.idle,
SHARED W.IN! in, SHARED W.OUT! out)

SHARED SIGNAL! signal.cli:

SIGNAL? signal.svr: . create any'l

channel

SEQ
signal.cli1, signal.svr = MOBILE SIGNAL

FORKING
INITIAL INT n.idle IS O:
WHILE TRUE
SEQ
... (n_.idle < min.idle) ==> FORK new workers
INT n:
SEQ
signal .svrcount] ? n -— working/Zidle (-1/+1)
n.idle = n.idle + n

Dynamic Process Farms (RMoX)

{{{ (n.1dle < min.idle) ==> FORK new workers
VAL INT needed IS min.idle — n.idle:
IF
needed > O
SEQ
SEQ 1 = 0 FOR needed
FORK worker (in, out, signal.cli)
n.idle = min.i1dle
TRUE
SKIP

idd,

Dynamic Process Farms (RMoX)

The dynamic management of process farms is one
of the common design idioms used to support:

RMoX ("Raw Metal occam ix")

- an experimental operating system for general and
real-time embedded applications, built exclusively
on this extended €SP model and programmed
(almost and eventually) entirely in occam.

Extended Rendezvous

This I1s a convenience — and it's free!

walit for input
but do not
reschedule

outputting

process!

SEQ

In 7?7 X €«
rendezvous block

The outputting
process is
unaware of the
extended nature
of the rendezvous

reschedule outputting process
only after the rendezvous block
has terminated

Extended Rendezvous

They can be used as ALT guards:

ALT
a? x e
react
In ?? X

rendezvous block
react (optional and outside the rendezvous)
tim ? AFTER timeout

react \

Extended Rendezvous

Here is an informal operational semantics:

C 7?7 X
... rendezvous block

BOOL any: c SEQ

SEQ "BE ? X
c ! 42 ... rendezvous block
c.ack ? any| ¢-ack c.ack ! TRUE

Extended Rendezvous

Not that it’s iImplemented that way!

C By ? X
‘LI 1 ... rendezvous block \

= No additional overheads for normal channel
communication.

Implementation is very lightweight (approx. 30 cycles):
¢ no change in outputting process code;

¢ new occam Virtual Machine (eVM) instructions for “?7?”.
Solves a long-standing semantic anomaly of unhandled

tags in variant protocols:
¢ ((d ! apple) || (d ? CASE banana)) = STOP

Extended Rendezvous Taps

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD

CHAN BUF.MGR? svr?:

A client process makes both ends of a non-shared BUF.MGR
channel and claims the shared channel. When successful, it
sends the server-end of its Bur.MGrR down the shared channel.
This blocks until a server process claims its end of the
shared channel and inputs that server-end.

Extended Rendezvous Taps

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD
CHAN BUF.MGR? svr?:

Once that client and server finish their business, the server
should return the server-end of the Bur.mMerR channel back to
the client, who may then reuse it to send to someone else.

With a slightly modified definition of Bur.MGR, its server-end

may be sent down itself back to the client. ©

Extended Rendezvous Taps

Note: client and server processes are unchanged.

Extended Rendezvous Taps

Q@‘ ‘Q@
58 N

logger

Intercept the sent BUF.MGR? and forward our own.

Extended Rendezvous Taps

D O~ 9 ©

tap
O @ '@ ©

logger

FORK I .tap process and plug in loose ends.

Extended Rendezvous Taps

D O~ 9 ©

tap
O @ '@ ©

logger

client and server processes cannot detect the taps.

Extended Rendezvous Taps

PROC tap (CARRY.BUF.MGR? in, out, SHARED LOG! log)
FORKING
WHILE TRUE
BUF.MGR? client.svr, tap.svr
BUF.MGR! tap.cli
SEQ
tap.cli, tap.svr := MOBILE BUF.MGR
in[svr] ?? client.svr
out[svr] ! tap.svr
FORK I.tap (client.svr, tap.cli, 10Q)

PROC I.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! 1log)
PAR
tap the req channel
tap the buf channel
tap the ret channel

Extended Rendezvous Taps

PROC 1.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! loQ)
PAR
tap the req channel
tap the buf channel
tap the ret channel

Extended Rendezvous Taps

PROC I.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! lo0g)
PAR
{{{ tap the req channel
WHILE TRUE
BOOL b:
infreq] ?? b
out[req] ' b
CLAIM log
log[report] ! request; b
134,
tap the buf channel
tap the ret channel

Extended Rendezvous Taps

PROC 1.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! loQ)
PAR
tap the req channel
tap the buf channel
tap the ret channel

Extended Rendezvous Taps

PROC 1.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! loQ)
PAR
... tap the req channel
{{{ tap the buf channel
WHILE TRUE
MOBILE []BYTE b:
out[buf] ?? b
infbuf] ' b
CLAIM log
log[report] ! supplied; SIZE b
i}

tap the ret channel

Extended Rendezvous Taps

PROC 1.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! loQ)
PAR
tap the req channel
tap the buf channel
tap the ret channel

Extended Rendezvous Taps

PROC I.tap (BUF.MGR? in, BUF.MGR! out, SHARED LOG! log)
PAR
tap the req channel
tap the buf channel
{{{ tap the ret channel
WHILE TRUE
MOBILE []BYTE Db:
infret] ?? b
out[ret] ! CLONE b
CLAIM log
log[report] ! returned; b

i34,

Networked Channel Structures

CHAN TYPE CARRY.BUF.MGR
MOBILE RECORD
CHAN BUF.MGR? svr?:

Back to the original design ... but this time, we want to stretch
the shared (cArRrRY.BUF.MGR) Channel over some communication
network without changing the semantics of the system.

Networked Channel Structures

NETWORK
(TCP/IP, Firewire,
1355, ...)

‘ Note: client and server processes are unchanged ... |

Networked Channel Structures

¢ g‘ 12 R P ¢
S © O @

NETWORK
(TCP/IP, Firewire,
1355, ...)

‘ Note: client and server processes are unchanged ... |

Networked Channel Structures

NETWORK
(TCP/IP, Firewire,
1355, ...)

‘ ... and still detect no change in system semantics. I

Networked Channel Structures

NETWORK
(TCP/IP, Firewire,
1355, ...)

‘ ... and still detect no change in system semantics. |

Networked Channel Structures

“kroc://[foo.ukc.ac.uk”

To set this up, the KRoC programmer (designer) only
constructs the named network channel structure —the
processes supporting the network are automatically
forked and have no impact on system semantics.

Process Priority

Currently, support for 32 levels of priority (O = highest)

Priorities are dynamic (not using PR1 PAR)

¢ but a process may only change its own priority;
¢ which enables very low unit time overheads.
Currently, priorities set by library routines:

PROC SETPRI (VAL INT p.absolute)
PROC RELPRI (VAL INT p.relative)
PROC INCPRI (VAL INT p.up)

PROC DECPRI (VAL INT p.down)

A process may discover its own priority:
INT FUNCTION GETPRI Q)

GETPRI does not damage the referential tranparency of

occam expressions.

Process Priority

Pre-emption by a (newly ready) higher priority process
takes place only at the next scheduling point:

¢ blocked synchronisation (e.g. on a channel);

¢ waiting for a timeout;

¢ loop-end.

“Immediate” pre-emption is possible — but with higher
overheads ...

s Micro-benchmarks (800 MHz. Pentium Ill) show:
¢ channel communication: 52 ns (no priorities) = 75 ns (priorites);
¢ process (startup + shutdown): 28 ns (without) = 67 ns (priorites);
¢ change priority (up /\ down): 63 ns;
¢ Independent of number of processes and priorities used.

Additional occam Extensions

STEP size in replicators

Fixing the transputer PRI ALT bug

¢ Reversing the AL T disable sequence (as done by JCSP)
(PR1) ALT, SKIP guards and pre-conditions
Run-time computed PAR replicators

Parallel Recursion
RESULT Parameters and Abbreviations

Nested PROTOCOL Definitions

In-line Array Constructors
Anonymous Channel Types
¢ e.gc SHARED CHAN BYTE screen!

Summary

Everything available in KRo€C 1.3.3 © © ©

¢ GPL (and some L-GPL) open source
¢ http://www.cs.ukc.ac.uk/projects/ofa/kroc/

= occam is now directly applicable to a wide range of
iIndustrial/commercial practice:
¢ embedded systems, safety-critical, real-time (of course) ...
operating systems (RMoX), web servers (occWeb) ...
¢ web farms, e-commerce, Internet and parallel computing ...

Working on:
¢ KRoC Network Edition (Mario Schweigler)
¢ mobile processes (that carry state)
¢ graphics/GUls (again!)
Can someone come up with areally good name?!!

URLS

www.comlab.ox.ac.uk/archive/csp.html
www.cs.ukc.ac.uk/projects/ofal/jcsp/

www.rt.el.utwente.nl/javapp/

@®Ro& www.cs.ukc.ac.uk/projects/ofa/kroc/

www.cs.ukc.ac.uk/projects/ofa/java-threads/

www/wotug.org/

Stop Press

JCSP Networking Edition
KRoC Commercial Support

JCSP.net

KRoC

www.quickstone.com

Stop Press

0 get the dynamic capabillities presented
In this talk, you need KRoC 1.3.3 or later.

The current (Linux/x86) on the KRoC
website (www.cs.ukc.ac.uk/projects/ofa/kroc/)
IS 1.3.2. Pre-releases of 1.3.3 are
available from the occam webserver

pages (wotug.ukc.ac.uk/ocweb/), which links
off the KRoC site.

Raw Metal occam IX;

Peter V
Computing L
University of Ken

o
[at

t at Canterbury
{Trmb2, phwi@ukc

f a
U -.adl

Stop Press

A boot image of the RMoX demonstrator Is
available from the occam webserver pages

(wotug.ukc.ac.uk/ocweb/), which links off the
KRoC site.

To switch between the demo applications,
use the Function keys, F1 through F6.

	Communicating Processes, Safety and Dynamics:the New occam
	Dynamic occam
	Motivation and Principles
	Channel Ends and Direction Specifiers
	Channel Ends and Direction Specifiers
	Channel Ends and Direction Specifiers
	Channel Ends and Direction Specifiers
	Channel Ends and Direction Specifiers
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Mobile Channel Structures
	Shared Channel-Ends
	Shared Channel-Ends
	Both Ends Shared
	Both Ends Shared
	Both Ends Shared
	Both Ends Shared
	Both Ends Shared
	Both Ends Shared
	Both Ends Shared
	Dynamic Process Creation
	Dynamic Process Creation
	Dynamic Process Creation
	Dynamic Process Creation
	Dynamic Process Creation
	Dynamic Process Creation
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Dynamic Process Farms (RMoX)
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Extended Rendezvous Taps
	Networked Channel Structures
	Networked Channel Structures
	Networked Channel Structures
	Networked Channel Structures
	Networked Channel Structures
	Networked Channel Structures
	Process Priority
	Process Priority
	Additional occam Extensions
	Summary
	URLs
	Stop Press
	Stop Press
	Raw Metal occam iX:(RMoX)
	Stop Press

