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Ab3hact. Tlis is a study rsviewing and developins m.thodolosi* esseatial to en-
sineels who need io develop low-cost lal ligh-p.llolmance codputins applications.
Emersins studalds will lequire lhe adoplion of techniqnes that ofier perfo.nance
and se.uliiy lo a lev€l ai l€st lhat provid.d by tlE m.thodolDsies p.esented in ihG
6ludy for n$s nuket enbedded appLicalions Md other a!es. Ou neilodolosiG
.re bded upon th. multiprocessing compuiiAg model defrned by CSP atrd irlesiaied
wiiiin the occam proeranhins ldn8u!9.. TIb study is lhe.esult of joiri coopela-
tion beiweed rd€archeB and industrial useB in rhe gI( (u veBiiy of Ke nr, wno
lurhored thG srudy) and rhe Nerhensnds (univ*siry ot Twenle and Rierschoren &
Eouwers. Rotteidm).

This study rcvi.ws rhe gen€ral notion ol deadlock (and livelock) in ptual€l syF
tems bded lpon synchlonis.d n.$agc pNnl8 and r.llles lhem to ile mrb wo.se
problem of udetected daia-lN in ayRchronous or shar.d-meno.y conmnnicalions.
Two d€sisn p*adi8m (I/o-PAR s^d cli.nr.s.ru.') are prdenied r[ suaruiee
Iredon frcn deadloc! Io. synchronG.d connunicalion r€siDe (both corlinuous

d nr€sular dara,flo*). Th. pa6dism3 lre bsed lpon lh. lotion oI 'synchrods&

tion das'for proc* th.l ie clG€d ulder c..lain torms of p&ail€l compcition.
Chcking for deadlock-f.eens d.votv6 io ch.clins lhd ih. bNe ?roc66 bdon6
io the corrci dN6 rd liat -ti. conp6iiion tu16 rr. obelved. Tle complexity
of this cheding is at wo6i O(n'), wh.r. tr is lh. nunber otp@.!r.rin the sysl€m,
$ oppced io O(r"), where s i! tle (Averiee) lunber of,rdr.ri! €eh prccs. Tlc
lartcr *ould be requted for an rbilra.y parluel d6isn. The aqtonaled chchns ol
th€e d6is! .nl6 i: therelorc highly p.&ticd.

Iligh-p€rfornuce applicdiion6 (e.e. lhysictl sFtem dod.lli(s, €mbedd€d r.aL-
liDe systeN, ...) sener..ly comGt ofiwo conpoNrl.i l[e codputatioaally inieroive
pari (sbch is NuaUy losicaUy simpl. ud cm exploit ihe 7O-P,44 pa.ldism) and
iis controlliq apparrius (whicl cu bc higl'ly.ohplcx but can exploii the dlieflr-
Serud. puldign). This study repons on ihe d.sign .!l$ for hybrid combinaiiors
olthc two paradigns that pi€s.rv. ihen d.ldloct-Ir.e prop€lties. ExmpLes wil be
present€d. The clNsic 'Di.ine Philosoph.r' syslen b s\own io illusi!4re ar 1/O-P,4n
Ciier!.se.u.rhybdd lhal bcak6 these ruler,

IinnUy, iLe Client-,9dr,.r pMddign will be looked ri llom tLe pon,t of view oI
tlLe spe.idl Ld8uded strpport provid.d by occ.n3r.

Introduction

The real-world is a dema.adrag and complex eoviroomeol in which io enrbed computer
systems. U ihe Iather axe to be of any use to lhe {ormer, we must frnd E'a.ys of desigaitrg
lhem that ca,D saJely eatrage both the pedormarce atrd complexihy issues. In general,
parallel methods lead to implementations bhat a-re simpl€I ihar their serial equivalelts,
since they build up their complex behaviours in the sam€ way a.s the real-world (i.e.

rocc.n is a regiltered t.ademark ofINMOS Limitcd.



throrgh the simple inieraction of;trclepeodenl and simple etrtities). They also lend
ihemselves to high-perfbrma ce execlrlion siace their parallel components offer nrary
possibilities lbr parallel execubioo on mulbi-processors.

However, uoderstanding and controlling ihe globa.l properties of neiworks of 'simple

interactions' betveea processes requires atr additionai set of skills from the pa,rallel sys,
tem engioeer. The mosb subtle of these skills lies in guardiag agaimt accidental daba-loss
during process irfe.aclioa aod pa"rtial (or globa,l) deadlock/Iivelock. For a,n arbrcrary
parallel design, there is no mechanical way to ioduce, from a complete knowledge of the
locol process inleractioN, ihe ooerdll behaviour of tbe rehwork. Many designs give fise
io ihese problems in ways ihat are non-deierministic - i.e. dependenl on the scheduling
order o{ processes or the relative speed of processors. When this happens, ihe bene-
fits claimed earlier tbr the.elative simplicity of parallel design will have been lost and
parallelism will appear to be a, very diActli and daote.ous bool to mastcr.

Forirraa.iely, there a,re disciplines of parallel design that rcsult in systems whose
deadlock/data-loss properties ca,n be analysed, althouth rot nece$arily itr a completely
systemalic maoner (i.e. huoa.n a.ssistance may still be aeeded). Foremost oI bhese are
the occam/ CSP rulesr process itrteractioo only via synchroaised message passing and no
shared variabies! These eliminate accidental data-loss because data is only ira,nsferred
wheo space has been allocaied to receive it and dafa cannol get zapped behind your
back. Asynchronor"Ls commlrnication requires eibher inflnite buferiag o. a high-levei
elror-recovery profocol to guarartee its security, both of which imply serious run-iime
peaaliies. A sha,red 'valiable' does not have ihe simple engineering semaibics ot a
variable (e.9. consecrbive readings o{ its value oughi to produce the same result) and
requires very ca.relul maaagemetrt. This maaagemeot (e.g. semaphores) operaies a,t too
low a level and badly compromises the overall simplicity and, therefore, security of the
parallel approach.

Synclrrorised messa,ge-passing Ieaves us only wiih deadlock/livelock aod some special
emciency issues to resolve before the distribried {unciionality ofa simple parallel design
can be accepled. The eficiency problems rela,ie to proc€sses being uaabie Lo contil(e
wiih uselul work whilsb awaiLiflg synchroDisa.tion aod ihe actua.l messa,ge-transfer costs.
TIre first is avoided by havirg stfficient'Panllel Slacl<qess' [1] in ihe design (i.e. alwa.ys
having other processes waiiiog io rur whenever a currently executing process becomes
blocked) combined with a very lor,{, context-switch overhea.d (less thar a micro-secoad
on a transputer). The second can be avoided by not having loo mu c[ 'Parallel Slackoess'
ir [he desigo (e.g. by usint systematic ways of reducing'? parallelism [2]) and ha-rdware
support for simultaneous data-transfer and computatiotr (e.g. as provided by a transputer
oetworli3).

This study concentlales oo paradigms for parallet d€sign hhat yield sysiems whose
operatiom are artonr,atically free from deadlock.

'In 
sene.al, we ,holld es oo the side of ioo hu.h parallelism io our dsisn ' removing pErallelism

is nuch eaie. ihan adding it!
3'lbe T9000lC10l atchir.clure providB a dramsiic inciese in this suppoct compaled with ihe ee-

tut 'r2/aU/78 s6i6. "fhe plopNed d,lamr.lion d6i8n from INIIIOS ial6 lhi5 couidc.ably fu.ihe!-



The choices made in lhe design of ihe occam multi-processing laaguage mean tha,t avold-
ance of cieadlock (a.nd livelock) is lhe responsibiliiy oI the occam engineer. In safety-
critical applicalions, this responsibility must i.ot be evaded sioce Lhe consequences of
a broken systern are intolerable. occam does not allow the run-lime detection ol (ard,
helce, recovery liom) arbilrary deacllock/livelocli conclitions, sirce the necessary rru-
lime checks woulcL require global nrturmation on tLe sla.te of the nelwork and woulrl,
fherelbre, be ine{Icient aod uascalable. Insiea.d, *-e must verify as Jonnalls as possible
bhat our syslem is free tiom srch errors as a normal part of bhe design process an
'o1f-line' activiiv rrilh no rutr-time cosil

To ensrue deadlocli tieedod, we must sholv thab t[ere is ao siate iuto lvhich lhe sys-
tern c:.o geh hom which no turiher action (i-e. commMication or, p€rhaps, terninalion)
is possible. Livelock tieedom is a lilble stronger: lhere musb be no slate $om which all
,rrer,)al co m{nications may be r-elirsecl, eveo ihough inieraal activily Eray contimre
incle6niiely.

The orLmber o{ states in a muliiprocess neiwork is bornded by lhe prodrct ol lhe
numbers of ihe states in each component process. Even for quite modest systems (e.9. a
10 process netlvork, where each process har 10 slates), we cart have hhe order of a billion
states to chech olril For almost aJI praciical systems, exhaustive testing by generaling
€ach possible stale is impossible.

lnstead, our veriica,tion musl consisi of a,n exhamtive reasoring thro{gh all possible
'categories' of state, where lhe mmber of difiereni caiegories is srnall- The choice o{
calegorles will depend upon ihe nattre olthe system being analysed ard, in general, witl
reqrire intelligent insight ioto its behaviour (a classical example of ihis beiag ihe proot
of deadlock treedom in lhe'Dining Philosophers' problem [3]). This lype oI verification
cannol be automaled!

This study reviews sone reslrictecl sets of rdes for parallel design that have the happy
property of guariurteeing deadloclc {reedom (because general lheorems a.boub their prop-
erties can be proved). Ir this care, veifying the absence ofdeadlock devolves io checkilg
thal ihe design r es have been tbllowed a mechanical process thah can be a tomated
with lolv comprtational cost. We ciaim that tLese design rdes are suitable lbr most
high-performance high-complexiiy applications.

3 Kflow Your Enerny

lVhilst occam cannoL preveni ils syslems being mis-programmed and reacbiag a deacl-
locked sta.ie, it does make us well arvare of the danger. Il even go€s so far as to provide
a language primitive ihat explicitly generates ii STOP!

Veri fy ing the Absence of Deadlock

i

Figure l :  A Deadlocted Process



Coosider the process in Figure 1, where the compute fold contains no commlr icaiion.
Ii petforms no usefd function, sioce ihere is Do way lbr its environoent to obfain fhe
reslrlis o{ any of its irrtemal conprtations. Noihing it wa's progra,mmed to do io ibs
anythint lbld, lvhich may have ilcllrded external communication, will ever take p1ace.
lVorse tha,n ihis, it is a danger to iis enviroumeni since alry commitied attempb to
colnmrnicabe with ii will deadlock lhe process that makes the aihemptl

Figure 2: An Equivalent Deadlocked Process

The process in Figure 2 caraot be distinguished by its environment tiom b)re process
of Figure 1, even if the irterna.l compuiaiions are compleiely diliereat. The Figure I
arcl Figure 2 processes are semantically icleutical - boih represent dea.dlock and are
Lrseless ancl dargerors to hheir envircnmenis.

Figure 3: An Equivalent Livetocl<ed Process

Figure 4: Another Equivalent Livelo&ed Process

The processes in Figure 3 and Figure 4 represeot livelock. To thei. eEviroomedts,
they behave in just the sane way as tbe earlier deadlocked oaes: they ref$e all com-
nuaica.tions aad compuie uothiug that can be accessedl From lhe poini of view of
processor resource, ihey arc slightly worse. At lealb, the deadlocking processes eventLr-
ally siop executiug and just sit upoD some memory resource - the livelo&ing processes
continue to burn up comprtation resource at welll

d  r  4 3

AHILS TRUE

SEQ

TRUE



All these processes oller the stLmesemantic threat to their eovironments. They are en-
iiiies tha.t will not respond lo any exielnal enquiry and will deadlock any exiernal agenr
lhai ctlrelessly makes one spreading the area o{ coniaminatiorl. High performancc ap
plicalions cannol tolerabe s ch clangers- At best, time on a very expeasive machine will
have been wasted. Ai worsi, people will be killed.

This may seem like a goocl reason lo clrop parallel algorithms alrogerher or,attedr,
the occam moclel ol it. UnfbrtuDa.teLy, the alternatives are so much worsel Our abitiry to
manage serial algorithars does rot scale lvith lheir complexity. Mis programmed parallel
systems based upon asynchronous commllnication pdmiiives or shared vadables simply
become co|l.L1pt, b(t appear to carry on'working'l It is much better for erroneous
systems or sub systems to jam or chatter awa.y harrnlessl','lo themselves - at leasr we
lirow thai those paris of orr applicaiion with which we are h touch are inviolaie

For sa.fety'critica.l applicaiiolls, we can build logical'fire walls' betveen physically
separate srb-systems (that can independenily fail for hardware or soliware rearons), so
lha.f failure in one will not bring down iis ueishbo rs [1115]. Such frre walls rvlll contarn
an explicitly programrned asynchrolots commun;cation (constructed from synchronisecl
ones), but for which th€ necessary daia-loss is deliberate and conlrolled.

occarn gives us excellent visibility of its commLldcations and Buarantees that ea.ch
of them indivicLually is secue. That makes a preity good place ftom which to siarl
looliing for general results iiborLt deadlock/livelock.

ClieDt-Server Networks

The problem wiih ihe deadlocked process ir Figure 2 is il:ai each of its srb-processes
committed lhemselves ro differcnt commlrnicalions with ea.ch other. The opposed di-
rections of these communic.rtions is irrelevani deadlock world still resuit even if both
internal channels flowed the same way (one process try;ng lo speiik down one channel
arrd the oiher Iistening on the wrorg one). U we are going to allow multiple channels
beiween processes (and, in general, we mtst), we neecl to inpose some discipline on the
way they are used. Two such regimes a* the client-seruer pdnciple (this section) and
1,zO-P,4-A lnext seclionl.

Figure 5: ClienfServer Conmrnications

Tle cli€r1r-rerler principle rela.tes to ihe pattern of communications across a. collection
of channels joiding two processes. Ii is an albibule of this channel butrdle, raibe! ihan
ihe pfocesses, and deftres an ordering or the connectiotr ihat is independenl of the
direction of the data flows wiihin ii. One end is labelled the clten, arrd the oiher
is callccl lhe sen-,er. The pxocesses aitached to ihese encls much conform Lo ceria.in
behaviou patterns when usirg the connection. Fignre 5 shorvs a. simple exanple.



/1.1 Cl ient Behauiour

A client-senet ftar,saction is always initiated by the process at the c/ient end (process
A iD Fi8ure 5). ThG will be a communicatioat (ihat may be jusr a si8nal car.yin8 oo
da.ta.) down a distinguished channel ia tire connection, calied the ctain,cha.nnel. (In
Figue 5, request is hhe clcirn cirannel and mav welt carry some da.ta.)

lVe a.ssume ihat this clairn will always be accepted within a. fiuite rime (see section
a.2 below). If we are in a time-crificat stb-sysiem of a rea.l-liime apptica.iion, we will
need to be lold an upper bound to this a.ccepiance time.

At ihis point, the processes a.f each end ha.ve synchronised at bhe start of their
respective clienf"qeruer transaction rortines. They complete bhe hansaction with a
firite seclrence of cornmrnicalions using any of the channels iD ttre conDection set clata
may be hr-anslerrcd in eiiher direciion. The precise orcler ol these commrnicatiorN nay
be pre'defined or daia-dependeni- During tbis tra.rrsaction seqrence, the c/i,en, process
iray per{brm fLrrther relevanl comprbalior (provided tiris a.lways terminates), bui is rol
dlloved io abbempt commlrnicaiion olrisicle the client serber connection sei- The c/t€n,
may asslrm€ that all transaction communicalions (wiihin ihe set) will complete wiihin
:r botncLed iime.

In praciice, hhe rich and varied rressage slructures aforded by occam PRaTOCOLs
mea,n th.!t only one chaonel in each direciion is ever needed bo support such transac-
tions (e.9. the request and answer cha.nnels in Figure 5). It is advisable to keep bhe
tra.nsaction seq{etrce as simple as possible to avoid mis,progra.mming. A common lorm
is just a single reply to the opening signal tbr example, the transaci;on roLrtine m
process A may be sinlply:

SEQ

dseer ? results

Nofe Lh:.f some cLient'server cor\teclions may only need to bransfer data in ooe cl;
rectioa. Il hhis is from the clienl io the seruer, ody one channel will Lrsually be oeeded.
If if is liom the s€r?er to Lhe client, ,. clain,channel ca.rying a. da.fa.less signal from
the cLient to ihe seraer will also be needed (to oper the transaction).

1.2 Sener Bchat iour

The process ai the seruer erd of a cl.;ent-seruer con1ect;on musi always a.ccept a. .LdinL
from iha,t connection wiihin a finite lirne. The simplest way io conlrol this is to
implemeDf the strrler as ar 'interrupt-hancller' tor LhaL claim i.e. something arar
rema.ins dormant (apart from some intema.l housekeeping) ouiside eadr hans.icfion.
For example:

SEQ
.. .  in i t ia l ise internal state

{Ijsually, bui noi necessarily, ihis will be an outptri.

- -  the c la im
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aasoer I i4fornation -- end of tradsa.ction

Serrer processes are allowed to se ice more ihan just on.e clienf. For example:

Figure 6: Seryer ibr a-o Array of Clients

This code refers to ihe server pmcess in Figure 6. Ea,ch tra,nsaction is 'a,tomic'ifl

tbe seNe tba,t it canaot be interupted with other trrt'ice hra,nsactions - a client has
exclusive a.ccess to the server whilsi it is being served. lNote that this code is not
quite suficient, since there is no guarantee that a particular ciient may aot be starved
by the deoaods ol an e€pecia,lly active colleague. I{owever, tl.is is ea.sily deatt witi by
staadar,l iechdques for a'Iair'AlT 16] aad is oor discussed hece.]

Tbe compute and update folds in the a,bove sener codes must, of course, be guar-
anteed to t€rmiaate. Unlike clienf traasactioa lothines, we do a.llow ser?ers to commrr-
dcate during a traDsa.ction - ihey may Deed to obtaio informa,tion not held localiy to
satisfy the clieni recluest. Communication may therefore take place withil ihe comput e
fold, but oaly ar the clienfend of a client-ser'ret connection - see Figure 7.

For example:

{{{ conpute inlornation

SEQ
...  i [ i t iat ise intelnal  st  a. t  e
WHILE s€.v1ctng

A L T i = 0 F 0 R S I Z E r e q u e s t
request [ i1 ? paraneters

arslrert i l  I  infornat iod
. . ,  u P u c L c

--  c laim

-- end of tra-rsaction

-- c l ier l i  t rarsact ion

. we car handle request locally

. . .  conpute lnfonEtion here

. ue need outsida help

heLp. request I paranete.s

s lD wb icb  .asF,  tbe  d /d ,n  chat rne ls  a . l  have !o  be  inpurs  to  the  server .



Figure 7: A Serve! also Acting as a Clielri

help. arswer ? infolmation
] I l

Thus, otr some of its client-seraerothe$ as a.c/ie,'r. a0",,,,,"";.""J'J;;';"J:;i*:i:;Tff:,:T";j;:n#,:;
(ouL may also be done elsewbere). Since we assume that r/;ent transa.ctions arrvays
;,";1ji:':J':T: :,,::lnded 

time, we can maintai' our suar;,;" .f ;;;;;;,."""..""

l.S Clie -Sener Dead.tock/Liuetock

?,":jj]illil"r*u,=rysis of a nerwork of processes commuoicarios solely ihmuctr a1ecttent-seruer pat aiJgm is particularlv

"onoe"tioo aino"s fi-;fi;u.*r#T,J. 
".::l4eror 

rull details Each ctient'sener

Client-Server Theoreln

Any network of ctient,sen er coon€ctioos that is acyclic with respect to the caenl_ser?,er orcredng is deadlock/iivelock lree.

_j{ 
,"oi:tt?"..":. aay topotogical sorrms {ctienr-semer ordering) of the processes.r 

TJl::::l. 
is rhar each process wru accepr a.ny a*"i .ig; *Tin;. i#;ti_..

,rre Doicom process in the ropolosical.so *,t* 
"" 

a"i*a. 1.. 
-.';;;;; 

," *"ocaer process in the oetwork. Eactr seiocauy or by a "/'",, du-;; o;;i; 1"#::,;".1i"1? i:l""iJ:i:T J,:ffi,:li'.l;:are serviced properly, since we are onl.
o"t*-k H';'""'" 1;;;;;;';;:'J":i11""9'b'"" 

deadrock arisins r'vithi. the
nmre rrme a.rd rhe process wi1loop -".::T"-l:,t:Y"o " "omPleted in a (computable)
base case o{ rhe ind.uct;;,;;;.*"'".,"ady 

ro accepi fufther cla.ims. This is rle

,^:\:li1l"a',"r."" las ro;rablkh the h,"obh€sis on a.ny orhe! process, asslrnuns r!ror a.lt processes below it in the c&enJ_ser
; l"oit"a .itr'u. to".t; ;';'; i'if;?:l 

'rderios ln this case' each se*ice reqtesr
outside the retwork. By inu'r",ron onoo-tl"ll-'o 

a Process lower in the ordering or
th"s. bardlitrs ;;;;;d;i#;.;;:'.::'" 

rne- same reasonins as rbr the base case, alr
wiu€€r rea.dy - withi., n.n,,i-i]J",'"l',$,*rl**i ji;,i,""1"0".. rbar rtris pcocess

This completes ihe incluction a.od weretwork Hence, exf eril;; _i;";"T ",.11'::::'"T::ji":ir:il:,;:.ji;



to coramunicate wiih processes in the nelwort duriDg transactions initiatecl bv caoseprocesses and which those processes loca,lly guarantee io compleie. Thus, no external
cornmunicatioos are ever refused by the aeiwork ancl it is a"uato.t/ti"etoit<-t 

"".
o.E.D.

4. 1 Cross-Mounted. Seners

Figure 8 shows a ietwork bhat breaks the rules Ior the client_seruer t heorem. For exa.mple, server.A aDd serve!.8 may be separaLe file-servers, each with iheir irdividual
sets of r/t€nti. Somerimes, the files required by a clienr tubtachecl ro server. A a;e Mt.
available on server.B. In this case, server.A has to become a. clietrt 

"f;"."";.;';;ob|ain ihe necessary information. Si ilarly, server,Bmay neecl io obrain in" 
"errtc.,of server. A on behal{ of its cliertr.

Figure 8: Cross,Mounted Servers

So lotrg ar these cross-se*ice demands do not occur too heavily, this system may pass
iis vatidatioD irials and sta.r[ being used. Trouble will eveorual]y a.ris€ when se.,er.e
aad server.B both become committed io malcing a .ldifl to ea.ch other,s selvice, at a
result of two unfortunately tim€d local rcquests. At this point, reitber claim ever gers
accepted and the file-server netwolk deadlocksl fNote: this is a true storvlll

Adea.dlock-freedesignisgiveaidFigrre9,wherethereisnownocyct;ot t ." t ;"nt
s€D€r orderisg. Exlernal clien, process€s are no longer specifically attached to ei
t[er server.A or server.8. Imtead tbey cornect ihrough nuttiptex processes itrat
mute transactioDs to the correci fil€-selver, possibly by frst consulting alr illdepenclent
nane - server to decide which one to use.

.!.5 The Cloch Problent

Figure 10 shows a clock process that signa,ls on its tick channel ai a resular irme
irterval. This iime-idterval is initialised by sending a value dowa its reser chaa-oel aad
can be changecl by sending turther values down ihe leset:

PRoC clock (CHAN oF B00L t ick, CFAN 0F INT reset)



Figure 9: Deadlock-I'ree Multiple Servers

Figure 10: A Clock with Speed Control

TIMER t ird:
I N T  t ,  6 a p :

reset ? gap
t i n ? t
t  := t  PLUS tap
WHILE TRUE

PRI ALT
reset ? tap

SKIP
ti.n ? AFTER t

SEQ
tick ! TRUE
t := t  PLUS gap

This process acis as a seruer lor iis reset channel (and lor its iateroal TIt"lER) and
as a clieni on its tick-channel (which it assumes will be ta.kea before its next tick is
4"4.

Suppose we wa[t to use clock in an application v'her€ the process being stimulated
by the ticks needs io control thai tick rate - see Figurc 11.

Suppose this user is simple enough to be implemented as a, serial process. We have
a cycle in tlre client/senter ord,ering and, there{ore, tro guarantee against deadlock! In
fact, lhe potential for deadlock is very real.

--  only read bhe absolute cime once

10



Figure 11: Clock Controiled by its User

Seruer processes a^re allowed to make clienl ca.lls for its owa re:$ons or oa behall
of its owD clierrs. Uader the coaditioas of the theorem, Lhis does not matter silce we
know tha,i those calls will always be a-uswered. The'dorrr-time' of a. semeris the period
between its decision to make such a call and aclually making ii. During this dorra-rimd,
it is clepend€rt upon oiher serl'ers to enable it io complele its c/ient traNaction a.od
resume its own role as a. seruef-

For tbe clock p.ocess, this d,oun-tine runs ftom accepting its time-onL goard and
aitempting the tick - sa,y a,bolrt 3 micrc-seconds on a, transputer. The user process car
keep its doun-lime simila.rly small, since it can always check its tick chaonel just before
aibenpfitrg a reset. Il these trMo doun-times evet ovetlap, there will be deadlockb.

If the average clock rate set by ihe user were (say) on€ tick every 12 rnilli-seconds,
the probability of atr iadividual reset causing deadlock is abort (3 + 3)/12000, rvhich
is 0.05%. If ihe user adjusted tbe clock rate oo average once every 10 secoods, ajter
nea,rly 3 hou$ continuorls operation (i.e. 1024 resets) our chauce of not being dead-
locked reduces to 60%. After 24 hours, we have a less thatr 17o chance oI still being
a.live.

The above rate of deadlock ought to show up ulder rcasonably pe.sistent system
testing. However, suppose the parameiers of this systeo were somewhat difterent.
Suppose that the reset were generaied by humao (€.t. pilot) intervention with tbe
us6! process and tha.i this happened very rarely - say ollce every 24 houls flying-time.
ln this ca^:e, we would have to wait 2 flying-years before our dea,cllock chances reachecl
60%. This deadlock would easily be missed io iesting and only show up several years
iDto ihe actual seNice of the planell Such a. ra.re deadlocl< is tftly deadly.

The wa.y no, to'cure'lhis problem is to add extra. bufering in the feedback loop -

see Fig$e 12.
The id prccess cycles through waiting lbr a. user..€set aad passing ii oD to Lhe

clock. It achs as a se'?e' to the user.reset channel aDd a, client lo tbe reset. We
still have a cycle ia the elient/semer Eelatrioaships aod oo tuarantee against deadlock.

However, the chaaces o{ deadlock are greally reduced. The user proce$ must issue
a user.reset, charye its mitrd fairly quickly a.nd issue another one. The first reset,
propaga,ted th.orgh id, must a.rive at the clock dulitrg its do?u4-hme (probability
0.025%). Also, the tickgenerated ab the end of that pedod raust rearh the user during
the d,oun-t;me for its second user.reset (probability 0.025%). Thus, the ploba,biiiiy

dNote: we aie resooing herc sboui occ.n process ^nd can make !o ssumptiom aboui ih€
mechMilms of sDy multi-procosiog scheduler (should th6e procs€ be allocated io ihe same proces-
sor). Relyins on such properti* to verify ihe abserce of deadLock is implemenialion dependedi and,

11



Fipure 12: Butrered Resel Connection

of deadlock axisitrg from a randomly generated reset is about 0.000006%, which still
implies a 50% cha.oce of failure after aboui six mooths flyiag-time (ass[miDg resets
a,veragi g once every lea seconds).

II we programmed lhe user to promise some minimrm tick-service hime bebween
any consecuiive (user.!eset-generating) down-times, tben deadlock could be avoided.
This minimum time musl cover the propagation delay in routiog the reset hhrough
id plus the doull-tine ol |b,e clock plus lhe service tiee for the reset by the clock.
But depeoding upon such real-time analysis for verilying this fuodametrbal prcperty is
complex and hard to mainta.in. Atry change to the speed or number of p.ocessors in lhe
system, bhe scheduling algoribhm or number of processes, the implemenia,tion of clock
or id would lequire re-calcdation of the iiming consh.ainls bo be used within user.
Adn-inir t rat ion ol  such side-effects? is noc simple engineeriogl

The correct way io solve lhis problem is io use a, design hhat meeis lhe cotrdilions
of the clienr-seruer theorem. The system will iheq be free Jrom deadlock regardless of
the deiails listed at the end of the previous paragrapL. Figure 13 applies two standard
occam idioms: a.n a.uto-prompter (pronpt) and ao overwriiing bufer (owB), here with

capaciiy for just one item.

Nigure 13: Secure Reset Couection

The prompt cycles through the sequence <req!, ans?' reset!> aDd acts onty aB

a client o\ its tr,vo conDeciions. The ollB is a pure sener, accepting user.r:esets at

a-oy time (whicb may overwdte previously senl values) and requests (provid€d it is trol

empty).

?Noie lhsi addins blfering k similarly no solution lo ihe cr@mounied server d€adlock ofsechon



Although there are iwo obvious cycles oI data-flow in the system, there is no cycle
in ihe clienfsert'er orderiog and, therefore, no deadlock. The 0t/B/pronpr sub system
provides an asynchronaus canr.ecl;on for propagatitrg the reset signal. The dala-loss
ilevila.ble trom stch a link is explicitly mana.ged wiihin OllB - i.e. ii is Lrnder control.
This clala-loss (of an ea.r'lier reset vallle) is no problem in this applicaiion since it is
only caused by tfie arrival ot a cha.nge of mind rnessa.ge. The only process tha.t may be
blocked indefinitely is prompt, as it a.ttempts lo request a resei signal tha.t may never
be sert. Bui pronpt does not have lo promise semtr,, io anyone and so lhe design ,s
immrne io this sacrifrce. This syslem will {y lbreverl

4.6 
'I'he Farm Worlter

CIient-Seruer Closure

Ary collection of processes thal commrnicate only using the olirat seruer paradigm
ancl hi"s an acyclic topolo8y (wiih respecl ta client-renrer rela.tionships) itself connr

cates with its environnent by lhe clietrt-se|uer paladr}tl'.

!\'e jusr have io show that se ice is guarani€eJ io iis e\ternal lrl;€n[. This is an
imnrecliate corollary ol th.e client-serur theorem, which promises that the collection LS
dadlock/livelock tiee.

o.E.D.

Figur-e 14 shows lhe implemeniation of a Forke. in a sinple processing 'farm'. It
consists ot tbur siimdard 'harness' processes (buffer, pronpter, catch a-od mux) ard a

Figure 14: Farm Worlec H"rn.ss
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sork process ihat is special to the problem beitrg farmed. The buffer is a pure s€ru€r,
servicitrg ils extemal link (from which new worlc-packets arrive) and request_contrec[ions
fiom vork aDd proept6r.

The pronpter, as before, is a pure client, malciag demands otr bhe buffer aDd
forwarding anything it geis to the next sorker io the farm (see Figure 15). ?he centra_r
Irork process has the same communicatiorl behaviou al the prompter _ ii is a pure
clieni, obtaiuing work-packebs from buffer, processing them aad outpuftitrg resrlt-

The mux plocess services result-packets lrom its two input coonections and mulil-
plexes thern (a,s a client) on to its external output link.

The catch process is a ooe-place bufier (like i.d), forwarding result-packets ftom rlle
previous vorke. to eux. Its puryose is to service Lhe exterDal link in.resuLt so irrat
it ma.y operate in parallel with out . resutt. In {act, a.Il fo1r. e.:temal liaks of sorker
may opela.te simultaneously (aDd thei! r€spective haldlem operate at higher priority
than lrork to let this happeo whenever possible).

Figure 15: A Farrn

This design has oo clieal-serrrer cycle aad worker is, therefore, deadlock/livelock-
free a.Ad may be t.eated as a client-semer compoteot. A complete farrn is shown ln
Figure 15, wbere the firsl sorker omits the catch process and the last ooe omits the
pronpter. The oorker-pipeline is a semer to the farner (who does oot know which
oorker will service which packet) al,d a. clieflt io the harvester (who does not kDo\il
ri,hich sorker produced which result). We have a simple pipeline of p arallel cliezfseruer
conoections atrcl are, therelore. dea.dlock-free.

s I/O-PAR and I/O-SEQ Networks

Colrsider a pbysical system whose compotr€nts behave in a wa.y determined only by
Ureir ow! state and those of their immediaie neighbours (e.g. fluid flow, lodc circuits,
road-trafic, heart muscles, real-time control laws, buogee jumping, ...). Such a system
cao be precisely emulaled by a. aetwork of communicatitrg p.ocesses, ea.ch of which
models one compooeol, aad whose topology exactly refl€cts that of the leal systero.

Ar I/O-PAR nornal lonn l8ll9l is a process tbat has a cyclic serial implemeDraiiotr,
except for its communicahioDs which a.Iways operate in parallel:

HHILE running

.. .  pa.ral lel  i /o (once oD at l  chann€16)

.  . .  c o n P u t e

A'r I/O-SEQ xormal forn is similar, except ihat the paraliel inputs are doDe iD
sequence with uhe parallel outpucs:
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WHILE running

.. .  paral lel  inputs (a11 input channels)

.  .  .  conPute

. .  .  paral lef  outputs (a11 output charu.els)

. . .  c o r P u i e

Components of the physical system described above may alwa.ys be implemented in
oae of bhese Eormal forms. 1/O-SEQ is usually applied in systems whe.e bhe component
iole(actioo is trot symmebric (e.g. logic circuits atrd cootrol laws). In practice, the
system domaiD is divided up 'geornelrically' iato regions conla.ining simitar numbers of
componenl - the tr mber of regions equalling the numbe! of processors ab our disposal.
Th€ compotreots in each region are modelled iog€ther as a single normal Iorm, wrth
each one being placed on its own processor. A simpl€ iransformalion (using the laws of
occam [10]) is usually pe|formed ho overlap input/ortp l with all possible computation
(so we don't have to pay the transler fees):

HHILE lurnrDg

PR] PAR
. .  .  e x c b e g e  b o u o d a r y  d a t a  ( p a r a l 1 e l  1 / o )

. ^ h n n + o  ^ D  n  i . . l . r  1  0  ^ l_ -  _ _ _ . _ .  j  r e g r o u
..  .  conpute on boundaries

Nofe bha.t tbe above is sema.niically equivalent to the pure I/O-PAR rclonl totm -

i.e. ildistinguishable by any enviroametrt.

UO-PAB Theorem

Any network ot l/O-PAR nornal forn processes is deadlock-h"e.

Lemma: any occam program wiih no ALTS js d.eterministic (in the sease oI CSP [3]).
[By defiuition, lbe parallel operator, ll, oI CSP is deterministic. However, ihe hiding
operabor, \, may iniroduce notr-determinisn and the occam PAR opera.tor automaiically
iniroduces hiding (for aII i!.temal commrnicabioas). We leave it to the reader io verity
thah hicling all internal events beiween 6SP parallel processes still lea,wes deierminism
iahacl. l

Lemma: if oae ininite trace exists for a. d€termidsbic process, cll trac$ cao be
extetrded - i.e. ii is dea.dlock-ftee. [Again, this is left as an exercise.j

Clearly, any tretrrork of I/O-PAR ptucesses coolaiDs Do ALTS so it is determioistic.
I{ the oeiwork is scheduled as if there were a global 'balder syrchronisation' ai tbe end
oI ea.ch aormal form cycle, it is again clear that il will run forever - i.e. this gives aD
infinite brace. Hence, any tra.ce resuliitr8 from aoy scheduling patterD can be cotrtinued.

o.E.D.

A full proof may be found in [9j, which also introduces ihe following notions.
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Ao 'l/O-Rnet'ts any contrected tretwork of I/O-PAR ari, I,/O-SEQ normal forns.
Ar'IrtO-SPnet'is a,tt I/O-Rnet gnch thab there is oo closed loop consistiog oaly ol

I/O-SEQ nornnlforns and ao pa,tb ftom externai input to extemal output coosisting
only ot I,/O-SEQ normal Jorms.

Two processes are 'p-equ;ltalent' il they caDtrob be distingdshed by any I/O-Rnet

l/O-PAFI/SEQ Closure

Any l/O-SPnet ),s p-equi,ralent to aa I/O-PAR normal Jorn.

see lsl.
o.E-D-

Note that p-equiuale4ce is weaLer th,an ttace-euuilalence- A no*trivi l/O-SPnet
cannot be seria.lised i, o ar I/O-PAE normal lorn using transformations that obey
the la.ws of occam. For instanc€, an I/O-SPnet with several I/O-PAR normal Jotms
will a.llow traces in which some external communicatioos have taken place many more
times tha,o otlrers. A siagle I/O-PAR normal .form witl only allow traces in which ihe
numbers of occurrences of each chanrel difers by at most one. Thus, we could create an
enviroameai in which bhe normal form dea.dlocks bul ihe network does not. However,
tot aJl I/O-Rnet environmeahs (which are the only environments for which they are
designed) either they bolh deadlock (alhhough oot recessa ly a,fter the same trace) or
they both do oot deadlock.

l/O-PAFTSEa Theorem

Lry I/O-S Pnet is d,eadlock/livelock-free.

Suppose it is noil Then there is a irace (oI ei<iernal communicatjons) afher which all
{rlrther exierDa.l commu!.icatioos may be refused.

Coastruct att l/O-Rne, envilodment to support lhis irace as folows- To each exterDal
chamel ol the I/O-SPnet, attach a. pipe-Litre ('spoke') of I/O-PAR notmal lorms ot
Iength equal to the ouraber of occurrences of tbe cbaoael h the deadlocking/livelockiog
Urace. Conoect the ead processes of each adjaceal 'spoke' together to form a. co!trected
IrtO-Rnet. 'lldis envimnmert will a,ccept the trace (wiih each normal form cycliag by
one more tha.a its disiance from the'riII!').

Apply ihis I/O-Rnet to l|s p-eq iualent I/O-PAR notmal fonn Sioce ihe original
netrvork cleacllocked/livelocked in this eoviroDmeni, so - dt sonle siage - should the
normal {o.m. Since hhe oorma.l lbrm only has exterlal channels and ca,DAoi cycle
ivithout using theo, Iivelock is impossible - i.e. it must deadlock with lhe ervironmeot.
But the environment coosists solely ol I/O-FAR nonnal fonns - i.e. the combiDed
system catrnot deadlock (by the /O-P,4lt theorem). Coutradiction!

Therefore, tbe trace from which tJre /O-finet was coostructed camot exisl a.nd the
I/O-SPnet ml*t be deadlock /livelock-ftee.
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Ttris closure properrv gives us design rules lbr ."*rr*.lrlf o*"u", emularo$ rbra wide range of physical syste*rs as Jdeadrock ani,iveio;il "il;'il;:;,:'il:ff:"|i":" 
:i: *iTl,* :Hn*1A[ the lowest levet are simple normal forms e_u]ariot rhe 
";;; 

"i-*r."l.i 

", 
,0"sysiem,

,- 
lf,]-S*es (1n$ imptemenrs) a cofttrlrcrive sefialisarion from an a$iftaty I/O_Spnetto tts p-equ;nalent normal form. Thisa'romare rhe procruciion or optim;;; JJ. iji::j:,;A1"fi::"lTilrT:::Hr::

srtio ' of the system. Thus, clistribuiing the oflgio. finely_grainecl massivelv paralteldesign o't to aoy (smaller) number of pa.ra.lel priessors 
";"il;;;;-, "

6 Hybrid Networks

TLe client-seruer patudi8m supports regular desigos (such as farming) bui is especralty
;""j:, 

r;i.jn:x,::";1sirlcli,o::!rrecJar aeblvorks trrat mocrer co_1r"*,y","i i,,ro_
utu r /v.rLt j l  paradrgm ooty s,rpporrs rhe model l ing of r"gul. , r

:]""j:T: P' 
wbjch domaiu decomposicioo is the applopriacc srraregy. Horiever. if wewarrt the La.fter io be more ihan imt arr""aiJ ""' ii" "*.,i.','ffi':,"4: ;: jil:j'Tj::i::lJif ,:;:.:l'J: ffi ;T:]rameiers), we will need ro build a. rich interfa.ce.. The right t""ir"it*" 

"-"'rrJ-""ru".which means that we must be able to de

, Hybrid nets .," ".f" o.;J;. ;$'fi,'ji; ;:$_"#1#i1f?f*:.:jni:,
ot Detwork Ls ialact sub_systems, evea though Lhe-sane processes *r"'i.'O*, 

"fdifferently typed sub"systems.

Figure 16: A Hybrid Componenr

. 
For example, Figure 16 shows a worker process, rope, for modelling a section of atrerastic- rope in rhe simularion of a ,bungee jump, { .1.'ti ;s 7O_ran 3" ii.-nJ*taIinlis, but a.cts as a. server on iLs contro't line and c/,en, 

", 
i;*;;;;;1, 

"""'

HHILE runlint

PRI PAR
PAR

...  r /o-para1let ho. izontaUy

. . .  pot l  cor irot  fo,  nes paranerers
.. .  conpute on hrddle
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.  .  .  compute on boundaries

. .  .  dump current srate (occasronatty)

. . .  update current par:ameters ( i f  necessary)

If we ignore the control and dump channels, rope !,s an I,/O-pAR normal Jorm aact
may be replicaied (horizontally) to form a deacllock-free model ot ihe complete rope.
lVe rllay llow assume that bhe horizontal commenicatiors always succeecl.

Ercir rope process is Dorv counecied ttrrorgh its dunp channel to .a cLient-seruer
nelwork thdi mulllplexes the state infor:ma.tion to a graphics device. Each rope process
acts as a pure clien, to this s b,networh and graphics is a pure serr€r. So long as tLis
srb-network is buih according to ihe r-.ules of the clicnt serrer theorem, rve Lno$,thal
it will never refuse ihe dump requesl iroru rope.

LNote: rope aeecl not make a dunp on every cycle, sitrce ihat may take too mrch time
aocl block progress on the compuiation. Pari of ihe graphics deliver.y neiwork rlay
resicle or the same processor a"s rope, so tha.t ihe physical oriput of srare intormatiol
from lhe processor can be execulecl io palaU€l over several cycles o{ rope. Only a
one place buffer (e.s. id) ; needed tbr this.J

As iaf as ihe control line is concerned, tle rope pfocess now looks like a ,bnsy

waiting' s€rrer. lVhenever a controt message arrives (carrying new paralDeter rnror-
mation lor the sir:rulation - e.g. lime step, rope elasticiiy, gravity, viscosity or even
new position ancl velociiy da.ta lbr some or all of the rope particles), th,5 rope process
g[aranlees Lo complete ibs curenl cycle and accept the signal.

\\'e ma.y bheretbre place above each rope process a cltenfs€rrer netlvork rhar dehvers
the control iatbrmation. The rope process now appears to be a ptlre s€rrer to rtrrs
sub-network and will not deadloch it.

Figure 17: A Hybrid Nehworh
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Figue 17 shows ihe complete sysiem. Ii is a hybdd oI two separa,te client-sener r,er-
works joined z,lol1 ai I/O-PAR sea:rr. The I/O-PAR p\peline handles the main com-
prtaiional tuuciions an,l. the client-serrer tels deliver interactive control and graptrlcs
visualis:r.tion. Th€ user. interface process will have a rich irterna.l client seruer suruc,
inre io manage simply its diverse responsibiliiies. Two oI its iniernal processes will

sa Lave I/A-PAE narnal jorns with respect lo iheir co rectiotrs to the ends of bhe
I/O'PAR prpeline.

In general, it is .t te safe for a process to ha,ve c/ient connectiom, ss.?er connections
and I/O-PtlR (,or I/O-SEQ) connections - bui ihev must, of cou$e, all be dillerenr. So
long :!s lhe individnal sub-netrotks constmciecl from these hybricls sa.tisfv eiiher the
rules 1br tbe chent-serDer theoren ot arc Il/A-SPnets, lhe overall system will remarn
l i"-  l rom , l - ,dlo. l t  an, l  l iv- lo k.

lNoler the sysiem ir Figue 17 may be direclly conigured on Lo existir\J T2/TI/TB
DetworLs rNing ihe aubomatic 'v i r iual  channel roul ing'opt ion provided by lhe t" tesi
occam ToaLset from INIvIOS. Alternatively, a specia.l-purpose roLlting nelwork (cor
strrLcfed Lo a deadlocL< lree clienfse'mer design) can be added. Fat T?A0A/C10,1 net-
lvorks, all the virt[al channels aad route$ needed tbr direct €xeculion ol ihe system
are provided by lhe hardware.l

An exarnple ot a hybrid network tha.t does not lbllorv these r es is ihe model of
collegiate li{e described in the 'Dining Philosophers' story. Eac! phrlosophe. is a.n
|/O-P. R nornal Jorrn who cycles through 'ihinking' (compulabion), 'grabbins the
lotl<s' (/A-PAR signals), 'eatins' (conpuiaiion) and 'puttins down the lbrla' (/O-
PAn sigrals). [Note: some versions o{ this tale have the philosophers picking up (a.od
putting down) their lbrhs in a particula,r order - in which case, /O-PAn is replaced by
r/o.sEQ.l

On the other hand, each fork is a pLrre seruerha-ndling sigrals from lhe philosopheIs
on eilher side. A tra.EsactioD covers the period from beiag 'picked up' by one of the
philosophers (this is ihe claim signal) to beiag 'put ciowa'.

The college coNists of a. ring of alternaiing philosophers and forks. For each
connectioo, one side ihiBlis it is part of aa I/O-PAR commlrnicatioD and the other
thinks it is part o{ a cli€r}t-ser?er ooe - confusion reignsl None of the conditions required
Ior the theorems iha.t Buararlee deadlock ireedom applp Tbe college deadlocks.

7 occam3 Support  for Cl ient-Server Networks

occam3 [12] provicles language stppori lbr clienfseruer transactions. This enables the
compiler to enstle bhat individral clients and serrers conform to the beha.viour patterns
specified lbr lhem in sections 4.1 and 4.2 as well ar to getrerate much faster codes tbr
their implerDmta,tiotr. lve have both a.dded securiby aod a.dded performance.

First o{ all, occam3 introd[ces challnel-tgpn, which allow us to grorp togebher ar a
single unit the variorLs channels (ca.rrying dillerent protocols and clirections oI daia-flow)
that make rp a single clt€'f-ser?er connection.

Secondly, it allows a pariicular insiance of such a connection to be s^ared between a
single serrer process and aoy number of c/ients - see Figure 18.

Sharing autonatically itrtrochces a c/atr'-channel iato the conBeciion (or some[hing
eqrivalent that performs this liuctioa). A client initiates a hansaciion by makJng a
c/atrn on the shared collectior. !\4ren lhis clatrn is sranted (by the seruel), hhe clien,
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has exclusive rse ol ihe charrnel resonces provided by the connection to intera.ct wrth
the -qer"er. For the shared conneciion called X.bus in Figue 18, a c/t€nr iransaction
boks ] ike:

C L A I M  X . b u s
. . .  u s e  X . b u s  t o  i n t e r a c t  w i t h  t h e  s e r v e r

The langrage will not allow c/i€nts lo use X. bus cha.nnels o iside slch a CLAIM. Inside
the body of the CLAIM, only X. bus channels may be used no other synchronising events
are permitted. When the body of ihe cLAtM terllrina.tes, the transaction is comprere
and the clienf yields con|Iol of the connection. This seqtence of ctaiming, using and
releasing tJre shared medirm cannot be violated.

The seruer process manages in-coming c/aims on a FIFO-queue. If the queue is non
empLy, it must grani a.ccess on the X. bus io the process at the hea.d of the queue withil
a bounded iime. A serrer hransa.ction looks like:

GRANT X.bus
. . .  u s e  X . b u s  t o  i n t e r a c t  r i t h  a  c L e n t

As before, hhe sert'ermay only tlse x.bus channels withir srch a GRANT. Untike clien,s
ihough, a serrer ma.y indulge in other synchroDisaiions witJrin the body of the GRANT
(such as making a CLAIM to another se/r€r oo behalf of its crLrrent client'). When the
bocLy of the GRANT terminales, the transaciion is conplere aod rhe i€ner regains iis
arthority on x.bus (and should check ils quete a.gain). This sequence of Branrrng,
using and regaini g control of the sharecl medirm cannot be viola.ted.

As a resrdi, cltenrs have mutually exclusive a.ccess to the sdruer. The serler,fairly'
granbs a.udiences to its clientr on a fiIst come-frrst-served basis. Each GRANT is managed
with a consta-nt overhead we no longer Jrave tire ALT penalty, wJrose overhead grows
linearly with the nLrmber of c/tenls. {Horvever, ALT G retained in occam3, since a FIFO

Iigure 18: Single-Server-/Vlultiple-CLients in occam3
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maDa.Sernent ot compeirng events is not always what we wa.nt. Also. CRANTS
6ed ds glrdr.ls ro ALTS ro char a rr,"1rdr mdy service serpral sers oi clieurs oo

shared connectioDs - see Figure 20.]
However, occam3 does not do everyrhing tbr rsl !tr'e stil have to perform lhe higher

Ievel checks of enstring ihere are no cycles Ln the c/ieztseluer ordeiing trVe also musl
check the low-level algoriihm in each sertcr to guarantee that it waiis on its servrce
liues ir ea.ch cycle. iAlthough, for simple loops, occam3 provrcles a SERVER process
.te. ld.rdiron .har s 'rpnl ies rhis gurlanrep but we.hal l  not -xamrne rhis Lere I

I  t  l l  b tmDle  a tmm: l  h rm

The absiraction oI a shared connectioo is Dot restricted b), physical confrAuration. The
cl ienrs and t l reir  ser?er may be distr ibuted ovcr any number ot proceslrrc.  Tg00U/Ct0, l
conllgrLrations will support a distributed shared conneciion iD harclware. ,

Figure 19: AD occam3 Fa.m

Figure L9 shows an occam3 design ibr a farm oI worlier processes. It is extremely
shrple (ar il should be) a.nd quite takes a.wa,y rhe fun we used ro ha.ve implementing
such ihilgs. Each work process, u, is a pure clienf (as it was h Figure 14), but this
time it makes clairns directly oa the (renote) faxrer a,od harvester, who a.re now
both selr,€rs (compale lvith Figure l5).

The farmer and harvester simply wa;h on reir respective service lines. The farmer
responds to a claira by outputting another work-packei. The harvester respoqds io
a clatrn by irpuiiiag a result-pa.cket. As wirh the ea.rlier ta.rm, neither needs ro know
(and does nol care) wiih which worker ii is dealing.

Tbe worker, l{, simply cycles through claiming !,he tarnar, pro.sssiag the work,packet
and cldimlng Lhehaxvester. To save beiDg blocked whilsi claiming, it might bulier one
wo.k aad ooe result packet interna-lly (either by iDcludiag two otre-pla.ce buffer processes
or tumint iiseff into a! I/O-PAR - or CIAI,\I-PAR - normat form).

Clearly, lhe fa.r.m has no clienfserler cycle and is bheleforF cleac ock/liveloclc{ree.

7.2 An occam? Iann oJ Seners

A more sophistica.led larm is shown in Figure 20. This time the workers are themserves
srrreru, S, ofie ng their ser-vices to the lvorlcl-ai-1a.rge. The thrmer is no\\ a. nanuler,
fi, controLling the allocaiion of fa-rm services to clients, C. Clients .wanL to be eiven the
first a.vailable sprurr aad do not mind wbich one [hey eec.
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Figure 20: A Farm of Servers

The manaser, M, services trvo sha.red conneciions: a public one tbr use by clienfs
requesiing service a,rd a privaie ooe known only Lo the reDeri. Wben a serrer is iree,
if reports bo the manager by making a CLAIM on ils privale li e. The manaser lebs
ihese queue Lrp until a cltenl makes a CLAIM on the p[blic 1ine. To service the cltezt', ii
waits for a serrer CLAIM (possibly lviih a. time out - ii's up to the cltear). The seruer
tells ihe nlanorer its name and issues a password (erd o{ s€',€r transaction) and these
details are forwarded to tbe clienl (end of cl'ienl transaction). The client then calls on
ihe aa.med seruer, uses the password and gets the desired service.

It there is a recession (not erough clienfs), the seruers wilt end tp qrLeueing for
lvork. lf fhere is a boom (too many c/tents), the rl'i€n,s will have to qLreue tbr service.
The queres are automatically managed by the mechanics o{ the shared channels no
programrring is needed!

This seraerfarm can be made highly secure agaimt dlient misuse, especially if occams
CALL charnels can be used lor the public ser,er connecbions. CALL clLanDels sholdd
be rLsed for client-seruer conneclions when we do noi 4eed compuiaiional support or
independenl decision making from lhe c/ienl during an individual tra.nsa.ction. The
clienl process is smpended during a cALL, whilst the ser?sf process ruls the transaction
:rnd has been given certain access rights to cerlain c/ienl resources (e.9. data struclures).
Beca,use only the rerr€r pfocess is aclive, the ha,rsacbion cannol dea.dloclt because of
mis-progral1tmill8 between the .li€n, and sdr"er.

The beDefit row is that ihe ren er, S, can immediat€ly terminate a. cl;eat CALL if a.n
incorrecl password is srpplied (or al any time duing lhe rransaction if it so chooses).
The .lienr, rro matler holv it has beea proglammed, ca.nuot resist thisl Since each serzer

Beneraies a nerv password each time it reports Lo the manager, a. cliefl, caDooh by pass
lhe mdnoJer and try bo pick up a seruer directly. Even when ii has been alloca.iecl a
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sefue/, ii caonot ha.Eg on ho it indeliDiiely!
The seraer may also sei an iDteraa.l time-oub on the va.lidity of its password, startiDg

from the end of its transactioa with the manajer. If the c/iefl, does Dot CArL in time,
tbe ser?er goes back to the manager. Ia this rva.y, a clieal ca@ot acquirc a serrer io
advance oI its a,ctual need ard sit on it - an anti-socia.l pa.ibern of behaviourll

Tltis nrulbi-client/mu}li-server system coatal,ns no client-server cycles ancl is sale.
I

Surnrnary and Discussion

Two paradigms have bee! presented for parallel systeo design using synchroaised
messate-passing lhat $ralaolee freedoo from deadlock and livelock.

I/O-PAR d,esig s cover tbe comprtationally iniensive core of srper-compuiing or
high-perfbrmance embedcled a,pplica.tions that model physical phenomeoa through (do-

mair decompos;bionr. They may be combined with cllent-semer neblvorks to provicLe
idieractive coutroi aad visualisa-tion. They may be tuned auiomatically to prodrce
opiimised codes for difterent numbers of processor.

Clienrsener pti\ciples cover the design of processor '{arms' for high-performance
applications lvhose parallel decomposition is logically regular, but requires dynamic
Ioad-balancing. They are also suitable for the safe and mainiainable conslructior of
reiworl$ ,,vith irregular iopology. These greatly simplily the impLementation ot €ver-
increasing levels of sophisticaiion in real-worlcl intedaces (such as an X-window server

[7]1131), where the specifica,tions demand similarly irregula.r functiona,lity.
The ana,lysis o{ cl;e4r-ser?er pitrcipl€s iD this study is trqt compleie. In particular,

its closure property is too strong. For example, if w€ combined ihe prompt and 0IB pro-
cesses of Figure 13, we would get a componetrt with the same cliear-ser?er connections
as the !d process of Figule 12 - aDd an appareat cycle in lhe clienfseruf. orderiEg!

We need bo intrcduce the ̂ olion ol tlepend.ency between serrer and .liefl, conneclions
to the same process. For a serial process, tbe ,eeru€l connections are always dependent
upoo the bounded acceptance of all client tra,Dsactions that are attempted - aDy fa,ilure
will break the promise it must maintaio to its owa clienis. However, the user.reset
sem€l" cooaectiotr on a combined prorpt/owB process is not dependetrL on the reset
ciieni connection being accepted-

Se?.l)er conrectioqs cao also become depeDdent upon other seruer connections! For
example, when bhe buff6r process in the worker harness (Figure 14) is fllll, the buffer
refuses service on its in. work conDection. This connectiolr then becomes depetrdent on
its sibling conneciiotrs (botb serrer ones) being called in order lor ihs olvn service to be
resumed. Tracing this hhrough, we see thab ihe j.lt.itork sdrret line is depeadenb upor
the out.$ork and out.!esu1t cl;eat lires. ?he in.result seruer is dependent only
rpoo lhe out. result cli€nr.

These dependencies should be part of lhe specifica.tion of a clietr-s€ttdr componeni
a]rd the rules reed io be wori<ed out lbr how these dependetrcies are inherited by'prop-
erly' composed client-semer nebworks. The 'proper' composition r les are a. rela"\ed
velsion oI those pr-esented here tbat only lorbid cycles of clienl-se.?et connectioDs tbat
ar'e all pa,ir'wise depetrdent.

However, the cttrreDb rules - a.lthough too restrictive in the case oI clieflt-seners -

a.re flexible etrorgh to allon the design of a very wide range of higb-perfomance aad
safeiy-c.ibicdI applicaiions.
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Para.llelism gives us simpliciiy and physical coocurretrcy- Syncluonised message
parsiag a,nd Do sbared variables give us secue commulications (i.e. oo uoe4)ect€d clata,-
Ioss). Paraliel slackaess, auto-serialisatioo, micrcsecond context-switches and hardwa.re
suppori lbr concuretrt computaiion-with-coromunicatioo give us eftcietrcy. Finally,
the client-sener ard, I/O-PAR paradigms, wiih their respective closue rules, give us
freedom from deadlock and livelock (without the need lbr state a,na,lysis of the sysrem
desrga).

occam a.trd the transputer have a.Iways supporled all ihese principles. occanl ard ihe
rcw T9000 fan:.ily snpport lbem to a considerably greater depth. The need tor occams
bo be implemented ;n /rll is crucial for the widespread developmeot of these ideas atrd
the sale exploitatiotr of High-Performance Compuliag io general.
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