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Communicating Mobile Processes

= Introduction
+ Motivation and Applications
¢ CSP and occam-M
+ Mobility and location/neighbour awareness
¢ Simplicity, dynamics, performance and safety
s occam-M
¢ Processes, channels, (PAR) networks and (ALT) choice
¢ Mobile data types - review
¢ Mobile process types - new
¢ Mobile channel types - review
¢ Performance

=« Some applications
+ Operating and field-programmable embedded systems (RMoX)
¢ In-vivo €= In-silico modelling (UK ‘Grand Challenge’ 3)

= Summary




Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:
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The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

@ ... hannite ... human-... astronomic ... ﬂ




Motivation and Applications

= Thesis

+ Natural systems are robust, efficient, long-lived and
continuously evolving. We should take the hint!

+ Look on concurrency as a core design mechanism — not
as something difficult, used only to boost performance.

=« Some applications

+ Hardware design and modelling.

+ Static embedded systems and classical parallel
supercomputing.
* Field-programmable (or evolving) embedded systems
and dynamic supercomputing (e.g. SETI-at-home).
¢ Operating systems and games.
+ Biological system and nannite modelling.
¢ eCommerce and business processes.
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Mobility and Location Awareness

= Classical communicating process applications
+ Static network structures.
+ Static memory / silicon requirements (pre-allocated).
¢ Great for hardware design and software for embedded controllers.
¢ Consistent and rich underlying theory — CSP.

» Dynamic communicating processes — some questions
¢ Mutating topologies — how to keep them safe?

Mobile channel-ends and processes: dual notions?

Intuitive operational semantics (and, hence, implementation)?

Process algebra theory: extend CSP or go for the pi-calculus?

Location awareness: how can mobile processes know where they
are, how can they find each other and link up?

Programmability: at what level — individual processes or clusters?
Overall behaviour: planned or emergent?
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Requirements and Principles
Simplicity
¢ There must be a consistent (denotational) semantics that matches
our intuitive understanding for Communicating Mobile Processes.

¢ There must be as direct a relationship as possible between the
formal theory and the implementation technologies to be used.

¢ Without the above link (e.g. using C++/posix or Java/monitors),
there will be too much uncertainty as to how well the systems we
build correspond to the theoretical design.

Dynamics
¢ Theory and practice must be flexible enough to cope with process
mobility, network growth and decay, disconnect and re-connect
and resource sharing.
Performance

¢ Computational overheads for managing (millions of) evolving
processes must be sufficiently low so as not to be a show-stopper.

« Safety

¢ Massive concurrency — but no race hazards, deadlock, livelock or
process starvation. The theory must be practical.
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occam-M

+ Processes, channels, (PAR) networks

+ (ALT) choice between multiple events

+ Mobile data types - review

+ Mobile process types - new

¢ Mobile channel types - review

¢ Performance - measured in nanoseconds

+ Semantics - not in this talk (Jim Woodcock,
Xinbei Tang)

Processes and Channel-Ends

in N out

y i X+y
z integratg X+y+z

PROC integrate (CHAN INT in?, out!)

An occam process may only use a channel parameter one-way
(either for input or for output). That direction is specified (? or!),
along with the structure of the messages carried — in this case,
simple INTs. The compiler checks that channel useage within
the body of the PROC conforms to its declared direction.




Processes and Channel-Ends

- in i — out .
y — x+y
z integrate X+y+z
PROC integrate (CHAN INT in?, out!)
INITIAL INT total IS O:
WHILE TRUE
INT x: serial
SEQ implementation
in ? % P
total := total + =
out ! total
X in out o«
X +
y y b y
z xX+y+z

ini&rate

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR

plus (in?, c?, a!)
delta (a?, out!, b!)
prefix (0, b?, c!)

parallel
implementation




With an Added Kill Channel
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kill

). integrate.2

PROC integrate.2 (CHAN INT in?, out!, kill?)
CHAN INT a, b, ¢, d:
PAR
plus (in?, d?, a!)
delta (a?, out!, bl!)
prefix (0, b?, c!)
poison (kill?, c?, d!)

parallel
implementation

With an Added Kill Channel

o in b — out > X
y — x+y
z integrate.2 X+y+z

PROC integrate.2 (CHAN INT in?, out!, kill?)
INITIAL INT total IS O:
INITIAL BOOL ok IS TRUE:

main loop

serial
implementation




Choosing between Multiple Events

in

kill
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WHILE ok -- main loop
INT =x:
PRI ALT

kill ? x .
ok := FALSE serial

in ? x implementation
SEQ

total := total + =x
out ! total

Copy Data Types

DATA TYPE FOO IS ... :

CHAN FOO c:
PAR

A (e!)

B (c?)




Copy Data Types

DATA TYPE FOO IS ...

PROC A (CHAN FOO c!) PROC B (CHAN FOO c!)
FOO x: FOO y:
SEQ SEQ
set up x ... some stuff
c ! x

Copy Data Types

DATA TYPE FOO IS .

PROC A (CHAN FO0O e!) PROC B (CHAN F0OO e!)
FOO x: OO y:
SEQ SEQ
set up x ... some stuff
c ! x c?y
more stuff ... more stuff

x and y reference different pieces of data




Mobile Data Types

DATA TYPE M.FOO IS MOBILE ...

CHAN M.FOO c:

PAR
A (e!)
B (c?)

Mobile Data Types

DATA TYPE M.FOO IS MOBILE ...

PROC A (CHAN M.FOO c!) PROC B (CHAN M.FOO c!)
M.FOO x: M.FOO y:
SEQ SEQ
... 8set up x ... some stuff

c ! x




Mobile Data Types
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DATA TYPE M.FOO IS MOBILE ... :

PROC A (CHAN M.FOO c!) PROC B (CHAN M.FOO c!)
M.FOO x: M.FOO y:
SEQ SEQ
set up x ... some stuff
c ! =x c?y
more stuff ... more stuff

The data has moved — x cannot be referenced

Mobile Process Types

Mobile processes exist in many technologies — such as
applets, agents and in distributed operating systems.

occam-M offers (will offer) support for them with a
formal denotational semantics, very high security and
very low overheads.

Process mobility semantics follows naturally from that
for mobile data and mobile channel-ends.

We need to introduce a concept of process types and
variables.




Mobile Process Types

Process type declarations give names to proc header
templates. There are no restrictions on the types of
parameters — they may be channels, data, timers,
ports ... and processes types as well.

PROC TYPE Il.OUT.KILL (CHAN INT in?, out!, kill?):

The above declares a process type called 1w.ouT.®ILL.
Note that the earlier example, integrate.2, conforms to
this type.

Process types are used in two ways: for the declaration
of process variables and to define the implementation
interface to a mobile process.

Mobile Processes

Mobile processes are entities encapsulating state and
code. They may be active or passive. Initially, they
are passive.

When passive, they may be activated or moved. A moved
process remains passive. An active process cannot be
moved or activated in parallel.

When an active mobile process terminates, it becomes
passive — retaining its state. When it moves, its state
moves with it. When re-acfivated, it sees its previous
state.

The state of a mobile process can only be discovered by
interacting with it when active. When passive, its state is
locked — even against reading.




Mobile Process Example

MOBILE PROC mobile.integratoxr.2

INT total: -- private state

CONSTRUCT () -- constructor 0
total := 0

CONSTRUCT (VAL INT i) -- constructor 1
total := i

IMPLEMENTS IN.OUT.KILL (CHAN INT in?, out!, kill?)
active code body

This is not an object — honest!

Mobile Process Example

MOBILE PROC mobile.integrator.2
private state (total)
constructors (initialise total)

IMPLEMENTS Il.OUT.KILL (CHAN INT in?, out!, kill?)
INITIAL BOOL ok IS TRUE:
WHILE ok

INT =x:
PRI ALT
kill ? x
ok := FALSE
in ? %
SEQ
total := total + x
out ! total




Mobile Process Types

process.out

PROC A (CHAN IN.OUT.XILL process.out!)
IN.OUT.KILL p:
SEQ

-- p is not yet defined (can’t move or activate it)

P := MOBILE mobile.integrator.2 ()
-- p is now defined (can move and activate)

process.out ! p
-- p is now undefined (can’t move or activate it)

Mobile Process Types

inl lkill

process.in process.out

> x|

lout

PROC B (CHAN IN.OUT.XILL process.in?, process.out!,
CHAN IN in?, out!, kill?)
IN.OUT.KILL q:
WHILE TRUE

SEQ -- loop body
... input a process to q
... plug into local channels and activate g

... when finished, send it on its way




Mobile Process Types

inl lkill

process.in - process.out

|

lout
SEQ -- loop body
-- g is not yet defined (can’t move or activate it)

process.in ? q
-- g is now defined (can move and activate)

q (in?, out!, kill?)
-- q is still defined (can move and activate)

process.out ! gq
-- q is now undefined (can’t move or activate it)

Mobile Process Network
inl lkill

A > B ————P> auna

lout

CHAN IN.OUT.KILL c, d:
CHAN INT in, out, kill:
other channels
PAR
A (c!)
B (e¢?, d!, in?, out!, kill?)
other processes




Mobile Processes and Types

A process type may be implemented by many mobile
processes — each offering different behaviours.

A mobile process may implement many process types — so
it can be activated to provide different behaviours.

A process variable has a specific process type. Its value
may be undefined or some mobile process implementing
its type. When defined, it can only be activated
according to that type.

To activate one of the other behaviours offered by a mobile
process, its process variable must first be re-typed. This is
a security issue — managed statically by the compiler with
no run-time cost.

Mobile Process Example

MOBILE PROC mobile.integrator.3
private state (total)
constructors (initialises total)
IMPLEMENTS IN.OUT.KILL (CHAN INT in?, out!, kill?)

active code body

IMPLEMENTS REFRESH (CHAN INT dump!, reset?)
SEQ
dump ! total
reset ? total

PROC TYPE IN.OUT.KILL (CHAN INT in?, out!,
PROC TYPE REFRESH (CHAN INT dump!, reset?):

kill?):




Mobile Process Network

CHAN IN.OUT.KILL to.net, from.net:
PAR

HQ (to.net!, from.net?)

network (to.net?, from.net!)

Mobile Process Network

INT net.info:
SEQ

WHILE TRUE

to.net
IN.OUT.KILL q:
SEQ
from.net ? g
- \ REFRESH g RETYPES q:
from.net CHAN INT dump, reset:
PAR

g (dump!, reset?)

INT reset.val:

SEQ
dump ? net.info
... decide reset.val
reset ! reset.val

HQ receiving
process code




Mobile Process Network

HQ

./

The reFrEsH process type can be hidden within
the HQ process - i.e. network processes cannot
RETYPE the 1n.our.kr1LL mobiles sent out from HQ.

Mobile Channel Structures

req! req?
buf? 1 BUF. MGR ? buf!
ret! ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT regqg?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

Channel types declare a bundle of channels that will always
be kept together. They are similar to the idea proposed for
occam3, except that the ends of our bundles are mobile ...




Mobile Channel Structures

req! __| Ly req?
buf? & BUF . MGR ? — buf!
ret! __| > ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT reqg?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

... and we also specify the directions of the component
channels ...

Mobile Channel Structures

req! req?
buf? ] BUF.MGR ? buf!
ret! ret?

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT regqg?: -- requested buffer size
CHAN MOBILE []BYTE buf!: -- delivered array
CHAN MOBILE []BYTE ret?: -- returned array

... the formal declaration indicates these directions from the
viewpoint of the “?” end.




Mobile Channel Structures

svr.chan
(BUF .MGR?)

cli.chan
(BUF.MGR!)

~_client|

CHAN BUF.MGR! cli.chan:

CHAN BUF.MGR? svr.chan:

PAR
generator (cli.chan! svr.chan!)
client (cli.chan?)
server (svr.chan?)

Mobile Channel Structures

svr.chan
(BUF . MGR?)

cli.chan
(BUF.MGR!)

J client| ‘

BUF.MGR! buf.cli:
BUF .MGR? buf.svr:
SEQ
buf.cli, buf.svr := MOBILE BUF.MGR




Mobile Channel Structures

svr.chan
(BUF .MGR?)

cli.chan
(BUF.MGR!)

BUF.MGR! buf.cli:

BUF.MGR? buf.svr:

SEQ
buf.cli, buf.svr := MOBILE BUF.MGR
cli.chan ! buf.cli

Mobile Channel Structures

gonerator

4 | BUF.MGR ? f

svr.chan
(BUF . MGR?)

cli.chan
(BUF.MGR!)

|client,

BUF.MGR! buf.cli:

BUF.MGR? buf.svr:

SEQ
buf.cli, buf.svr := MOBILE BUF.MGR
cli.chan ! buf.cli
svr.chan ! buf.svr

-- buf.cli and buf.svr are now undefined




Mobile Channel Structures

| | BUF.MGR ? B

svr.chan
(BUF .MGR?)

cli.chan
(BUF.MGR!)

e

PROC client (CHAN BUF.MGR! cli.chan?)
BUF.MGR! cv:
SEQ

Mobile Channel Structures

svr.chan
(BUF . MGR?)

cli.chan
(BUF.MGR!)

PROC client (CHAN BUF.MGR! cli.chan?)
BUF.MGR! cv:
SEQ
cli.chan ? cv




Mobile Channel Structures

cli.chan
(BUF.MGR!)
svr.chan
(BUF .MGR?)

PROC client (CHAN BUF.MGR! cli.chan?)
BUF.MGR! cv:
SEQ
cli.chan ? cv
real.client (ecv)

Mobile Channel Structures

cli.chan
(BUF.MGR!)
svr.chan
(BUF . MGR?)

ratotont 7] | sover

PROC server (CHAN BUF.MGR? svr.chan?)
BUF .MGR? sv:
SEQ




Mobile Channel Structures

cli.chan
(BUF.MGR!)
svr.chan
(BUF .MGR?)

PROC server (CHAN BUF.MGR? svr.chan?)
BUF .MGR? svVv:
SEQ
svr.chan ? sv

Mobile Channel Structures

cli.chan svr.chan

(BUF .MGR!) ‘__S,éhefatbr (BUF . MGR?)

— e — ‘

PROC server (CHAN BUF.MGR? svr.chan?)
BUF .MGR? sv:
SEQ
svr.chan ? sv
real.server (sv)




Mobile Channel Structures

svr.chan
(BUF .MGR?)

cli.chan
(BUF.MGR!)

1 sur.ner 71 :|'|: )

PROC real.client (BUF.MGR! call)

PROC real.server (BUF.MGR? serve)

Mobile Channel Structures

svr.chan
(BUF .MGR?)

cli.chan
(BUF.MGR!)

| al serv ‘

(BUF . MGR) | ||

PROC real.client (BUF.MGR! call)

PROC real.server (BUF.MGR? serve)




Process Performance

Memory overheads per parallel process:

¢ <= 32 bytes (depends on whether the process needs to wait on
timeouts or perform choice (ALT) operations).

« Micro-benchmarks (800 MHz. Pentium Il ) show:

+ process (startup + shutdown): 28 ns (without) > 67 ns (priorites);
change priority (up /A down): 63 ns;
channel communication (INT): 52 ns (no priorities) = 80 ns (priorites);

channel communication (fixed-sized MOBILE): 120 ns (priorities,
independent of size of the MOBILE) ;

+ channel communication (dynamic-sized MOBILE): 180 ns (priorities,
independent of size of the MOBILE) ;

+ all times independent of number of processes and priorities used —

until cache misses kick in.

* & o

Process Performance

p process pairs, m messages (INT) per pair
— where (p*m) = 128,000,000.




Process Performance

« Micro-benchmarks (800 MHz. Pentium Il ) show:

No. of pairs co;m;gon
10 80 ns
100 77 ns
1,000 81ns
10,000 455 ns
100,000 455 ns
1,000,000 494 ns

Process Performance

= Micro-benchmarks (2.4 GHz. Pentium IV ) show:

No. of pairs corcnm::c::;on
10 97 ns
100 97 ns
1,000 112 ns
10,000 115 ns
100,000 119 ns
1,000,000 120 ns




Process Performance

‘FAIR’ ALTing

128 writers (p active), m messages (InT) per
active writer — where (p*m) = 128,000,000.

Process Performance
« Micro-benchmarks (800 MHz. Pentium Il ) show:
No. of active ‘fair’ ALT ‘pri’ ALT
writers (out of 128)  communication communication
128 126 ns 106 ns
64 - 107 ns
8 1124 ns 788 ns
1 1986 ns 1393 ns
0 10,000 ns 9,600 ns




Process Performance
« Micro-benchmarks (800 MHz. Pentium Il ) show:

‘fair’ ALT

L fixed overhead cost per guard
communication

‘stressed’

(events always (80 + 32) ns 14 ns
being offered)

11 t d,
(:: ZJ::fseon 2000 ns * 63 ns

offer - initially)

*for 128 guards (= ‘stressed’ cost when no guards are ready)

The Raw Metal occam eXperience (RMoX)

= An operating system based on (extended) CSP
¢ Simple, fast and safe concurrency (natural ‘plug-and-play’)
¢ Design confidence (mature theory of refinement)

= Written in occam-M
+ Good testing ground for our dynamic extensions and priorities
Low memory footprint and very quick
Compositional development
Interrupts mapped to channel communications
Millions of processes (per processor)
Scaleable across networks
Fun 11!

= Applications
¢ Field-programmable embedded systems (including real-time)
¢ General operating system (with support for Linux)

® & 6 6 o o




RMoX: Initial Process Network
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RMoX: Serial Drivers

serial.(

\\\\\\\\\\\\\\\\\\\\\\\\\\\

H“ﬁ”“
) Sl €]
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RMoX: Dynamic Process Network
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Modelling Bio-Mechanisms

= In-vivo €= In-silico
¢ One of the UK ‘Grand Challenge’ areas.
¢ Move life-sciences from description to modelling / prediction.
¢ Example: the Nematode worm
¢ Development: from fertilised cell to adult (with virtual experiments).
¢ Sensors and movement: reaction to stimuli.
¢ Interaction between organisms and other pieces of environment.

= Modelling technologies
¢ Communicating process networks — fundamentally good fit.
¢ Cope with growth /decay, combine/ split (evolving topologies).
¢ Mobility and location/neighbour awareness.
¢ Simplicity, dynamics, performance and safety.
= occam-M (and JCSP)
¢ Robust and lightweight — good theoretical support.
¢ O(10,000,000) processes with useful behaviour in useful time.
¢ Enough to make a start ...




Location (Neighbourhood) Awareness




Location (Neighbourhood) Awareness




Mobility and Location Awareness

= The Matrix

¢ A network of (mostly passive) server processes.

¢ Responds to client requests from the mobile agents and,
occasionally, from other server nodes.

¢ Deadlock avoided (in the matrix) either by one-place buffered
server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.

¢ Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).
= The Agents
+ Attached to one node of the Matrix at a time.
¢ Sense presence of other agents — on local or neighbouring nodes.

+ Interact with other local agents — must use agent-specific protocol
to avoid deadlock. May decide to reproduce, split or move.

# Local (or global) sync barriers to maintain sense of time.

Summary - 1/2

= occam-M

+ All dynamic extensions (bar mobile processes) implemented in
KRoC 1.3.3 (pre-16).

+ Mobile processes proposed with denotational semantics (CSP-M)
in first draft (Jim Woodcock, Xinbei Tang) — implementation not too
hard.

+ Hierarchical networks, dynamic topologies, safe sharing (of data
and channels).

¢ Total alias control by compiler : zero aliasing accidents, zero race
hazards, zero nil-pointer exceptions and zero garbage collection.

¢ Zero buffer overruns.

¢ Most concurrency management is unit time — O(700) nanosecs on
modern architecture.

+ Only implemented for x86 Linux and R =X - other targets
straightforward (but no time to do them <)

+ Full open source (GPL / L-GPL).

¢ Formal methods: FDR model checker, refinement calculus (CSP
and CSP-M), Circus (CSP + Z).




Summary - 2/2

= We Aim to Have Fun ...
+ Interesting applications everywhere ...
+ Beat the complexity / scalability rap ...
¢ Would anyone like to join us ... ?

= Google — I'm feeling Lucky ...

Any
Questions?

¢ KRoC + ofa - - occam (official)
¢ occam + web server -- occam (latest)
¢ JCSP -- CSP for Java
¢ Quickstone -- JCSP Networking Edition (Java / J#)
¢ Grand Challenges + UK -- In-vivo €= In-silico
¢ CPA 2003 + Sept -- ‘Communicating Process
- - Architectures’ conference
WoTUG -- Lots of good people ...

*
= Mailing lists ...
¢ occam-com@kent.ac.uk
¢ java-threads@kent.ac.uk




