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Abstract. This paper introduces occam-π, an efficient and safe binding
of key elements from Hoare’s CSP and Milner’s π-calculus into a pro-
gramming language of industrial strength. A brief overview of classical
occam is presented, before focussing on the extensions providing data,
channel and process mobility. Some implementation details are given,
along with current benchmark results. Application techniques exploiting
mobile processes for the direct modelling of large-scale natural systems
are outlined, including the modelling of locality (so that free-ranging pro-
cesses can locate each other). Run-time overheads are sufficiently low so
that systems comprising millions of dynamically assembling and commu-
nicating processes are practical on modest processor resources. The ideas
and technology will scale further to address larger systems of arbitrary
complexity, distributed over multiple processors with no semantic discon-
tinuity. Semantic design, comprehension and analysis are made possible
through a natural structuring of systems into multiple levels of network
and the compositionality of the underlying algebra.

1 Introduction

1.1 Mobile Processes in occam-π

A process, embedded anywhere in a dynamically evolving network, may suspend
itself mid-execution, be safely disconnected from its local environment, moved
(by communication along a channel), reconnected to a new environment and
reactivated. Upon reactivation, the process resumes execution from the same
state (i.e. data values and code positions) it held when it suspended. Its view
of its environment is unchanged, since that is abstracted by its synchronisation
(e.g. channel and barrier) interface and that remains constant. The actual envi-
ronment bound to that interface will usually be different at each activation. The
mobile process itself may contain any number of levels of dynamically evolving
sub-network.

1.2 Structure of this Paper

The rest of this section describes the background to this work, along with some
of the forces motivating it. Section 2 provides an overview of process and net-
work construction in the occam-π language, with specific details on mobile data,



mobile channels and dynamic process creation. The main work presented in this
paper concerns mobile processes, covered in section 3. Performance benchmarks
and figures for the various occam-π mechanisms are given in section 4. A notion
of duality between mobile channel and mobile process mechanisms, arising from
two of the benchmarks, is considered in section 4.6. Some application areas are
explored in section 5. Finally, section 6 draws some conclusions and discusses
the scope for future work.

1.3 Background

Twenty years ago, improved understanding and architecture independence were
the goals of the design by Inmos of the occam [1, 2] multiprocessing language
and the Transputer. The goals were achieved by implementation of the abstract
ideas of process algebra (primarily CSP) and with an efficiency that is today
almost unimaginable and certainly unmatchable.

We have been extending the classical occam language with ideas of mobil-
ity and dynamic network reconfiguration [3–7] which are taken from the π-
calculus [8]. We have found ways of implementing these extensions that involve
significantly less resource overhead than that imposed by the rather less struc-
tured concurrency primitives of existing languages (such as Java) or libraries
(such as Posix threads). As a result, we can run applications with the order of
millions of processes on modestly powered PCs. We have plans to extend the sys-
tem, without sacrifice of too much efficiency and none of logic, to simple clusters
of workstations, wider networks such as the Grid and small embedded devices.

We are calling this new language, for the time being at least, occam-π. Clas-
sical occam built CSP primitives and operators into the language as first-class
entities with a semantics that directly reflected those of CSP. occam-π extends
this by judicious inclusion of the mobility features of the π-calculus. In the in-
terests of provability, we have been careful to preserve the distinction between
the original static point-to-point synchronised communication of occam and the
dynamic asynchronous multiplexed communication of the π-calculus; in this, we
have been prepared to sacrifice the elegant sparsity of the π-calculus. We con-
jecture that the extra complexity and discipline introduced will make the task
of developing and proving concurrent and distributed programs easier.

A further, minor, difference between occam-π and the underlying process al-
gebra is its focussing on channel-ends in some places, rather than channels; this
is to constrain the direction of data-flow over any particular channel to one-way

only. More significant differences are apparent because of the direct language sup-
port for state information and transformation (such as variables, block structure
and assignment). These are orthogonal to concurrency considerations — thanks
largely to the strict control of aliasing inherited from the classical occam— and
greatly simplify its application to industrial scale problems.

We view occam-π as an experiment in language design and implementation. It
is sufficiently small to allow modification and extension, whilst being sufficiently
powerful to build significant applications. The abstractions and semantics cap-
tured are not settled and may change in the light of future experience and theory



(for example, into its formal semantics). However, it is sufficiently stable and ef-
ficient to invite others to play. The semantics will be denotational, retaining
properties of compositionality derived from CSP and a calculus of refinement.
This mathematics is built into the language design, its compiler, run-time system
and tools, so that users benefit automatically from that foundation — without
themselves needing to be experts in the theory. The new dynamics broadens its
area of direct application to a wide field of industrial, commercial and scientific
practice. The key safety properties of classical occam are retained by occam-π,
giving strong guarantees against a range of common programming errors (such
as aliasing accidents and race hazards). The language also provides high visibility
of other classic problems of concurrency (such as deadlock, livelock and process
starvation) and is supported by a range of formally verified design guidelines for
combating them. Its close relationship with the process algebra allows, of course,
these problems to be eliminated formally before implementation coding.

1.4 Natural Process Metaphors for Computing

The natural world exhibits concurrency at all levels of scale — from atomic,
through human, to astronomic. This concurrency is endemic: a central point of
control never remains stable for long, ultimately working against the logic and
efficiency of whatever is supposed to be under that control. Natural systems are
very resilient, efficient, long-lived and evolving.

Natural mechanisms should map on to simple engineering principles that
offer high benefits with low costs, but the mapping has first to be accurate.
In this case, the underlying mechanisms seem to be processes, communication
and networks — precisely those addressed by our process algebra. Our belief,
therefore, is that the basis for a good mapping exists, so that concurrency can
and should be viewed as a core design mechanism for computer systems — not
as something that is advanced and difficult, and only to be used as a last resort
to boost performance. Concurrency should simplify the design, construction,
commissioning and maintenance of systems.

This is not the current state of practice. Standard concurrency technologies
are based on multiple threads of execution plus various kinds of locks to control
the sharing of resources. Too little locking and systems mysteriously corrupt
themselves — too much and they deadlock. Received wisdom from decades of
practice is that concurrency is very hard, that we are faced with a barrage of
new hazards, that our intuition derived from experience in serial computing is
not valid in this context and that our solutions will be fragile. We are advised
to steer well clear if at all possible [9].

On top of these logical problems, there are also problems for performance.
Standard thread management imposes significant overheads in the form of ad-
ditional memory demands (to maintain thread state) and run time (to allocate
and garbage-collect thread state, switch processor context between states, re-
cover from cache misses resulting from switched contexts and execute the pro-
tocols necessary for the correct and safe operation of locks). Even when using
‘lightweight’ threads, applications need to limit implementations to only a few



hundred threads per processor — beyond which performance catastrophically
collapses (usually because of memory thrashing).

Threads are an engineering artifact derived from our successes in serial com-
puting. Threads do not correspond well with nature. They support only a tran-
sient concept of ownership (as they lock resources for temporary use), an indirect
form of communication (through their side-effects on shared data) and no notion
of structure (to reflect natural layering of process networks).

Processes, however, have strong ownership of their internal resources (other
processes cannot see or change them), communication (synchronous or asyn-
chronous) as fundamental primitives and structure (a network of processes is
itself a process, available for use as a component of a higher-level network).

We do claim performance wins from this process-oriented model of comput-
ing, but they are not the primary concern. The primary concern is a model of
concurrency that is mathematically clean, yields no engineering surprises and
scales well with complexity. We must be careful not to damage any of this as we
extend the classical occam/CSP model with the dynamics of mobility from the
π-calculus (and learn to exploit a few more tricks from nature).

2 An Overview of occam-π

The occam-π language is an extension of classical occam, incorporating: mobile
data, channels and processes; dynamic process creation; recursion; extended ren-
dezvous; process priority; protocol inheritance; and numerous other less language-
centric enhancements. For instance, a (generally) faster ALT implementation, a
fix to a long-standing bug with tagged-protocol communication, and greatly en-
hanced support for interacting with the system environment outside of occam-π.
A more concise list of new features can be found on the KRoC web-page [3].

An example of an ‘integrator’ component is used throughout this and the
following section. This particular component is a well-used teaching example,
due to its simplicity and range of implementations. The basic interface to the
process is two channels, one input and one output. Given the input sequence
x , y, z , the integrator will output running sums: x , (x + y), (x + y + z ) and so on.

2.1 Defining Processes

Figure 1 shows the design and implementation of a serial integrator. The code
is largely classical occam, with the exceptions of the removal of the ‘OF’ keyword
in channel declarations, the introduction of channel direction specifiers (‘?’, ‘!’)
on channel variables, and the use of an ‘INITIAL’ declaration [10, 11] (with the
obvious behaviour).

Channel direction specifiers declare channels as either being for input or
output, as shown by the arrows in the diagrams. In fact, the classical occam

compiler always deduced this information. This extension just makes that in-
formation explicit, bringing design and representation closer and enabling more
accurate compiler error messages if the programmer contradicts herself.



integrate
in? out!

PROC integrate (CHAN INT in?, out!)

INITIAL INT total IS 0:

WHILE TRUE

INT x:

SEQ

in ? x

total := total + x

out ! total

:

Fig. 1. Serial integrate design and implementation

Note that this process never terminates — evident from its ‘WHILE’ loop
condition. Neither occam nor occam-π provide mechanisms for forcefully, and
externally, terminating a process — this is dangerous. If we wish the process to
be ‘killable’, that behaviour must be engineered into it. Adding such support to
this serial integrator is trivial, as shown in figure 2.

out!
integrate.kill

in?

kill?

PROC integrate.kill (CHAN INT in?, out!,

CHAN INT kill?)

INITIAL INT total IS 0:

INITIAL BOOL ok IS TRUE:

WHILE ok

INT x:

PRI ALT

kill ? x

ok := FALSE

in ? x

SEQ

total := total + x

out ! total

:

Fig. 2. A killable serial integrator

The process alternates between its two input channels, giving priority to the
‘kill?’ channel. Ordinary input data values are added to the running total and
output as before. A communication on the ‘kill?’ channel causes the process
to stop looping and terminate normally.

It should be noted that certain behaviours by the environment can cause
deadlock with these processes. It would help to declare a “contract” [12] that
formally specifies how a process is prepared to interact with its environment. For
integrate.kill, the contract might specify that each communication on ‘in?’
will only be followed by a communication on ‘out!’, before any other commu-
nication (either on ‘in?’ or ‘kill?’) is accepted. Further, that a communication
on the ‘kill?’ channel will only be followed by termination. Such a contract



guides both the implementation of the process and its safe positioning in an
environment. This becomes even more of an issue for mobile processes, whose
position with respect to its environment may change! Contracts are discussed
further in section 3.5.

2.2 Process Networks

Static process networks in occam-π are no different from occam. Figure 3 shows
a parallel version of the integrator process. It is a network of stateless compo-
nents: an adder (that waits, in parallel, for a number on each input channel and
then outputs their sum), a stream splitter (that outputs each input number, in
parallel, on each output channel) and a prefixer (that initially generates a zero
and, then copies input to output). State (the running-sum) emerges from the
feedback loop in the network.

0

integrate

out!in?

c

a

b

+
PROC integrate (CHAN INT in?, out!)

CHAN INT a, b, c:

PAR

plus (in?, c?, a!)

delta (a?, out!, b!)

prefix (0, b?, c!)

:

Fig. 3. Parallel integrator design and implementation

Figure 3 implements a slightly relaxed version of the contract honoured by
the process in figure 1. Internal buffering allows two ‘in?’ events to occur before
there must be an ‘out!’. Formally, figure 1 is a refinement of figure 3.

A killable parallel version requires some careful engineering to avoid internal
deadlock. The “graceful termination” protocol described in [13] can be used to
this effect. Figure 4 shows the modified process network.

0

+
out!

integrate.kill

in? a b

c
d

kill?

PROC integrate.kill (CHAN INT in?,

CHAN INT out!, kill?)

CHAN TAGGED.INT a, b, c, d:

PAR

kill (in?, kill?, a!)

plus (a?, d?, b!)

delta (b?, out!, c!)

prefix (0, c?, d!)

:

Fig. 4. A killable parallel integrator



In order for the ‘integrate.kill’ process to terminate, all its parallel sub-
components must terminate. This requires some changes to those components.
The internal channels now carry a ‘TAGGED.INT’ protocol consisting of a boolean
and an integer, where the boolean indicates whether the integer data is ‘good’ or
this is a ‘kill’ signal. The implementation of each component must forward a ‘kill’
and then terminate. Care must be taken to do this in the right order or deadlock
(not termination) will result! Further discussion of this protocol is postponed to
section 3.4, where it is considered in the context of (mobile) process suspension

(which is a little more delicate than termination, since network state must also
be preserved).

2.3 Mobile Data

occam-π adds the concept of mobility to classical occam, incorporating mobile
data, mobile channels and mobile processes. Mobile processes are discussed in
section 3.

Communication and assignment in classical occam have a copying semantics.
That is, the ‘source’ in output or assignment remains safely usable after the
operation — the ‘target’ has received a copy. Clearly this precludes the creation
of aliases, but has implications for performance if the data size is large (on
shared-memory systems).

Mobile data types on the other hand have a movement semantics. That is,
the ‘source’ in output or assignment is not available after the operation — it
has moved to the target. This also precludes the creation of aliases. On shared-
memory systems, this is a constant-time operation (effectively a pointer copy).
If the communication is between memory spaces, copying has to happen — but
the semantics remain that of movement (i.e. the ‘source’ always loses the data).

Mobile data types are declared simply by adding the ‘MOBILE’ keyword. For
example:

DATA TYPE FOO

RECORD

... data fields

:

declares a classical occam data type; whereas:

DATA TYPE FOO

MOBILE RECORD

... data fields

:

declares the mobile version. No changes are required to process codes operating
on the type, but the semantics of communication and assignment on its variables
become those of movement.

Figure 5 illustrates the difference between copying and movement semantics.
Picture (a) shows the state of the system just before its communication — with



the ‘x’ variable in process ‘A’ initialised and the ‘y’ variable in ‘B’ undefined.
If ‘FOO’ were a classical (non-mobile) type, picture (b) shows system state just
after communication — where ‘x’ still has its data and ‘y’ has a copy. If ‘FOO’
were a mobile type, picture (c) shows a different state following communication
— where the data has moved to ‘y’ and ‘x’ has no data (i.e. is undefined).

x

A

y

B

x

A

y

B

y

B

c

c

cx

A

(a)

(b)

(c)

PROC A (CHAN FOO out!)

FOO x:

SEQ

... initialise ‘x’

out ! x

... continue

:

PROC B (CHAN FOO in?)

FOO y:

SEQ

in ? y

... use ‘y’

:

CHAN FOO c:

PAR

A (c!)

B (c?)

Fig. 5. Copying and movement semantics

The movement semantics leaves the ‘x’ variable undefined after the output —
picture (c). Any subsequent attempt by process ‘A’ to use the value of ‘x’, before
‘x’ is reset, will result in a compile-time ‘undefined’ error. This undefinedness-

check is an addition to the occam-π compiler, that now (pessimistically) tracks
the defined status for all variables and channels — not just the mobile ones.
There is also a ‘DEFINED’ prefix operator, applicable to any mobile variable,
that may be used to resolve ambiguity in the defined status at run-time. It is
impossible to write code that causes a null-pointer to be followed.

A copying semantics can be enforced on mobile data by use of the ‘CLONE’
operator. This creates a temporary mobile containing a copy of the data and it
is this copy that is moved. For example:

PROC A.copy (CHAN FOO out!)

FOO x:

SEQ

... initialise ‘x’

out ! CLONE x

... ‘x’ still defined

:



Dynamic Mobile Arrays. The mobile data described above has fixed-size
memory requirements, allowing the compiler to pre-allocate space statically —
despite their dynamic semantics.

occam-π has run-time sized arrays, whose allocation and deallocation must be
performed dynamically. Such arrays are always mobile. Non-mobile dynamic ar-
rays are currently not permitted — they are not strictly necessary, since ‘CLONE’
can be used to enforce copying semantics where necessary.

Dynamic mobile arrays are declared in a similar way to fixed-size mobile
arrays. For example:

MOBILE []REAL64 data:

SEQ

... process using ‘data’

Unlike a fixed-size array, this ‘data’ initially has no elements. Any attempt
to assign one of its elements would result in a run-time (array-bound) error.
Before the elements can be accessed, the array must be sized and allocated. This
is done using a special form of assignment:

data := MOBILE [n]REAL64

where ‘n’ is an integer expression, computable at run-time. Once allocated, the
elements may be accessed, but they must be written (defined) before they can be
read. The current occam-π compiler does not fully track this nested ‘definedness’
state, treating all elements as a single block — they are either all defined or all
undefined.

The semantics for assignment and communication of these dynamic mo-
biles arrays are the same as for the static sized mobiles. Note that, because
of the single-reference rule maintained by the semantics of mobility, no garbage-
collection is needed to manage these dynamic types. The compiler always knows
when that single reference is lost and automatically generates deallocation code.

The memory-allocation mechanism for these dynamic mobile arrays is based
on Brinch-Hansen’s allocator for parallel recursion [14], which is also used to
provide memory for the other occam-π dynamic mechanisms that require it.

2.4 Mobile Channel Types

Mobile channels types in occam-π provide a mechanism for moving channel-ends

— either by assignment or communication. This behaviour is not described in
standard CSP, where processes (or parallel operators) are bound to fixed event
alphabets. Moving channel-ends around means those alphabets are changing
as the system evolves. The π-calculus [8] however is centered on this concept
of channel mobility, allowing only channels to be communicated over channels
in its purest form. We have an operational semantics for mobile channel-end
communication, but do not yet have a denotational semantics.1

1 It is important for this to be addressed in the future — see section 6.



The mobile channels of occam-π are defined by means of a structured channel-
type (an idea partly taken from occam3 [10]). These define a group of one or more
channels, accessed individually using a record subscript syntax. For example:

CHAN TYPE IO.KILL

MOBILE RECORD

CHAN INT in?:

CHAN INT out!:

CHAN INT kill?:

:

Variables of the channel-type hold its ends and must indicate which end
explicitly. The terms ‘server’ and ‘client’ are used informally to refer to the two
ends, with ‘?’ and ‘!’ as respective formal symbols. The server-end uses the
component channels in the directions indicated by the channel-type declaration;
the client-end uses them in the opposite directions. The usage pattern need not
be ‘client-server’, however. For the above example, the channel-end types are
written ‘IO.KILL?’ and ‘IO.KILL!’, for ‘server’ and ‘client’ ends respectively.

Mobile channels are created dynamically, by means of an assignment similar
to that for mobile data, but where the right-hand side of the assignment produces
the two ends of newly created channel ‘bundle’. For example:

IO.KILL? io.svr:

IO.KILL! io.cli:

SEQ

io.svr, io.cli := MOBILE IO.KILL

... continue

Once allocated, the channel-ends ‘io.svr’ and ‘io.cli’ may be used for com-
munication or be themselves communicated (or assigned) to other processes (or
variables). The semantics of the latter operations are the same as those for mobile
data — the channel-end moves and the source variable becomes undefined.

Figure 6 shows a simple network consisting of three processes ‘P’, ‘Q’ and ‘R’,
that communicate an ‘IO.KILL’ client channel-end (which is, of course, a bundle
of three scaler channel-ends). The server-end of the mobile channel-bundle is
marked with an arrow pointing from the client-end — even though communica-
tion over the bundle will probably be in both directions.

Initially, processes ‘P’ and ‘R’ have no direct means of communication. ‘P’
creates a channel-bundle and passes its client-end, via ‘Q’, to ‘R’. ‘P’ and ‘R’ may
now communicate directly over the channel bundle, observing some agreed usage
pattern. For example:

INT x:

SEQ

svr[in] ? x

svr[out] ! f(x)

INT v:

SEQ

cli[in] ! 42

cli[out] ? v

where the code on the left is in process ‘P’ and the right is in ‘R’.



Pcli svr

Pcli svr

Qcli

cli R

Qcli

cli R

PROC P (CHAN IO.KILL! out!)

IO.KILL! cli:

IO.KILL? svr:

SEQ

cli, svr := MOBILE IO.KILL

out ! cli

... use ‘svr’ (‘cli’ undefined)

:

PROC Q (CHAN IO.KILL! in?, out!)

WHILE TRUE

IO.KILL! cli:

SEQ

in ? cli

out ! cli

:

PROC R (CHAN IO.KILL! in?)

IO.KILL! cli:

SEQ

in ? cli

... use ‘cli’

:

Fig. 6. Mobile channel-end communication

Currently, there are no restrictions on the communication of mobile channel-
ends, enabling process networks to re-wire themselves arbitrarily. Some discipline
will need to be enforced to render deadlock analysis, for example, manageable.

They also break another principle of occam that we hold dear, which is that
that there should be no hidden ties between processes — all the plumbing should
be visible (WYSIWYG) or their reusability as system components is compro-
mised. We have plans to restore this principle through the explicit declaration
of (typed) ‘HOLE’s in process interfaces, through which dynamically acquired
channel-ends must be wired before they can be used for communication [15].
This will assist the behavioural specification of processes using mobile channels
and maintain the compositionality of their semantics.

2.5 Shared Mobile Channel Types.

In addition to the point-to-point mobile channels described above, occam-π sup-
ports ‘shared’ channel-ends. These allow channel-ends (server or client) to be
connected to any number of processes, although only one may be conducting
business over it at a time.

A shared channel-end is communicated and assigned in the same way as a
non-shared one, except that output and assignment automatically ‘CLONE’ that
end — leaving it defined locally. Before a process may use any of the compo-
nent channels within a shared end, it must ‘CLAIM’ exclusive access. Whilst so



‘CLAIM’ed, the channel-end loses its mobility, preventing its communication or
assignment.

Figure 7 shows a network of client and server processes connected using a
shared channel-bundle.

server

client client client

PROC client (SHARED IO.KILL! cli)

... local state

WHILE TRUE

INT v:

SEQ

CLAIM cli

SEQ

cli[in] ! 42

cli[out] ? v

... update local state

:

PROC server (IO.KILL? svr)

... local state

WHILE TRUE

INT x:

SEQ

svr[in] ? x

svr[out] ! f(x)

... update local state

:

Fig. 7. Shared mobile channel bundles

The code to create this network is:

SHARED IO.KILL! cli:

IO.KILL? svr:

SEQ

cli, svr := MOBILE IO.KILL

PAR

server (svr)

PAR i = 0 FOR n.clients

client (cli)

In this example the mobile channel-ends are “hard-wired” into the processes
as they are created, but they could be communicated dynamically, if desired. An
earlier paper describing mobile channels [4] shows this in detail.

Simple request-answer patterns of use across a channel-bundle correspond to
simple CSP interleaving of the clients with respect to the shared channel-end.
Richer patterns require semaphore processes to manage the locking. Locking of
a resource, of course, opens new opportunities for deadlock. To reduce this risk,
the occam-π compiler disallows any ‘CLAIM’ inside the ‘CLAIM’ of a client-end,
but allows ‘CLAIM’s inside the ‘CLAIM’ of a server-end. This prevents the deadlock
of “partially acquired resource”, if multiple clients try to acquire the same set
of channel-ends.



2.6 Dynamic Process Creation

Shared channel-ends are useful in their own right, but particularly so when
combined with dynamic process creation.

In classical occam, networks are statically organised, with all potential con-
figurations of all processes known in advance. occam-π enables dynamic net-
work creation, in response to run-time decisions. Four mechanisms are provided
for this: mobile processes (covered in section 3); (self-)recursive processes; run-
time specified replicated ‘PAR’ counts (as in the network code from the previous
section); and the run-time “forking” of a parallel process. The last of these is
examined here.

Forking a process is expressed in a similar way to an ordinary procedure call,
but with an additional ‘FORK’ keyword. Classical occam (and occam-π) use a
renaming semantics for normal parameter-passing. Forked processes use a com-
munication semantics for their parameters, since the forked process may out-live
its given arguments — and that would break renaming. The use of communi-
cation semantics places restrictions on the parameter types that may be used:
specifically, the parameters must be communicable — e.g. no reference param-
eters. Mobile parameters (data, channel-ends and processes) are allowed, since
they have a well-defined communication semantics.

A common use of dynamic process creation is for setting up process ‘farms’[4].
The network creation code for figure 7, for example, could also be written as:

SHARED IO.KILL! cli:

IO.KILL? svr:

SEQ

cli, svr := MOBILE IO.KILL

FORK server (svr)

SEQ i = 0 FOR n.clients

FORK client (cli)

... do other things

The “other things”, in the above code, may include waiting for events that
trigger the forking of more clients — or, maybe, shutting some down. The code
uses just forking to create its parallel process network. The parallelism is derived
from the semantic model of the ‘FORK’, described in [16]. This involves an external
parallel process that receives, from the forking process, arguments for the forked
one and constructs an instance of the requested process, with those arguments,
in parallel with a recursive instance of itself. Forking offers no semantic power
over that available from parallel recursion, but for many applications it is more
convenient to program and has important implementation benefits (such as no
memory leakage and faster setup).

3 Mobile Processes

The main subject of this paper, mobile processes, combines aspects of both
mobility and dynamic process creation. The model for mobile processes, used by
occam-π, is summarised at the start of this paper (section 1.1).



Note that mobile processes, encapsulating data and code, exist in one of two
meta-states: active and passive — see figure 8. The internal (computational)
state of a mobile process is only relevant when the process is active and inter-
acting with the rest of the system. Initially, a mobile process is passive. In its
passive state, a mobile process may be activated or moved. Once active, a mobile
process only becomes passive either by suspending or terminating — these are
voluntary internal events, not imposed (though may be requested) by its envi-
ronment. The internal computational state (of data values and code positions)
is retained between suspension and reactivation, and moves with the process.
When reactivated, a mobile process sees exactly the same computational state
that it did when it suspended. Once terminated, the mobile process may not be
reactivated. Any attempt to do so behaves as Stop.

destroy

create

move

suspend

activate

terminate

activepassive

Fig. 8. Mobile process meta-state transitions

3.1 Process Types

The interface to a mobile process is defined through process types. For example,
the integrator.kill processes (sections 2.1 and 2.2) match the type:

PROC TYPE IO.SUSPEND IS (CHAN INT in?, out!, suspend?):

where we have renamed the ‘kill’ property to ‘suspend’ for this context.
Activation arguments must conform to the parameter template defined by

the mobile’s process type — the activator process does not usually know, or
care about, the actual process lying beneath that type. The activator sleeps
while its activated process runs. The environment of the activator becomes the
environment of the active mobile, interfaced through, and only through, the
arguments supplied to the mobile.

Process types serve two purposes: the definition of the connection interface
to a mobile process (section 3.2) and the declaration of mobile process variables
(section 3.3).

Note that the process type is not itself explicitly mobile. This allows process
types to be used for non-mobile mechanisms in the future (such as making clas-
sical, as well as mobile, processes first-class types so they may be passed through
parameter lists — similar to ‘function pointers’ in C).



3.2 Defining Mobile Processes

Mobile processes are defined in a similar way to ordinary occam-π procedures,
except that they must be explicitly declared ‘MOBILE’ and must indicate which
process-type is implemented.

Different mobile processes may implement the same process-type, assuming
that the code conforms to any contract (section 3.5) that may, in future, be
specified for the process type. For this example, a contract may be that an ‘in?’
event triggers an ‘out!’, and that a ‘suspend?’ signal triggers suspension of the
mobile. However, suspension must not occur until the number of ‘in?’ and ‘out!’
events are equal.

Figure 9 shows the design and implementation of a ‘suspendable’ serial inte-
grator that honours such a contract. To suspend itself, a mobile process invokes
the new ‘SUSPEND’ primitive process. This suspends the mobile process and re-
turns control to the activator. When next activated, the ‘SUSPEND’ terminates
and control resumes (on the line indicated) with its local state (in this case,
total and s) unchanged. The environment on the other side of its interface will
probably be different. Activation of a mobile is covered in the next section.

integrate.suspend
out!

in?

suspend?

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)

IMPLEMENTS IO.SUSPEND

INITIAL INT total IS 0: -- local state

WHILE TRUE

PRI ALT

INT s:

suspend ? s

SUSPEND -- return control to activator

-- control returns here when next activated

INT x:

in ? x

SEQ

total := total + x

out ! total

:

Fig. 9. A suspendable serial mobile integrator

The above mobile has a purely serial implementation. Suspending a mobile
with a parallel implementation is presented in section 3.4.



3.3 Declaring, Allocating, Moving and Activating Mobile Processes

Mobile process variables are declared with reference to a process type. They hold
instances of mobile processes, possibly many different ones during their lifetime.

Allocation of a mobile process is similar to the allocation of other mobiles —
via a special assignment. For example, an instance of the ‘integrate.suspend’
mobile process (defined in the previous section) is allocated by:

MOBILE IO.SUSPEND x:

SEQ

x := MOBILE integrate.suspend

... use ‘x’

After allocation, the process in ‘x’ may be communicated, assigned or acti-
vated. Communication and assignment follow the semantics of other mobiles —
which is that the mobile process moves, leaving the source undefined.

The ‘CLONE’ operator may be used to copy a mobile process, with a restriction
that the mobile must not contain any state that cannot itself be cloned. For
example, a mobile process containing an unshared mobile channel-end cannot be
cloned. Any attempt to do so results in a compiler (or run-time) error.

Activation of a mobile process connects its interface to a local environment
and transfers control to it. Control is returned when the mobile process either
terminates or suspends.

Figure 10 shows a network of two processes, ‘A’ and ‘B’. The ‘A’ process
simply creates a new mobile process then outputs it. ‘B’ inputs a mobile process,
activates it using channels from its own environment, waits for the activation to
suspend (or terminate), before passing on the mobile.

B
p.in? p.out!

in? out!

suspend?

out!
A

c

Fig. 10. A communicating mobile process network

The implementation of these examples are trivial:

PROC A (CHAN MOBILE IO.SUSPEND out!)

MOBILE IO.SUSPEND x:

SEQ

x := MOBILE integrate.suspend

out ! x

-- ‘x’ is no longer defined

:



PROC B (CHAN MOBILE IO.SUSPEND p.in?, p.out!,

CHAN INT in?, out!, suspend?)

MOBILE IO.SUSPEND v:

SEQ

p.in ? v

v (in?, out!, suspend?)

-- control returns here when ‘v’ terminates or suspends

p.out ! v

:

Note that the ‘B’ process is unaware what mobile process it is activating —
only that it carries the ‘IO.SUSPEND’ interface. Note also the strong synchroni-
sation between an activated mobile and its host. There is no way the host can
operate on the mobile while it is active — it has to wait for the mobile to suspend
or terminate. The parallel usage checker (implemented by the occam-π compiler)
views an activated process variable as writable — i.e. it may change state. This
means that that variable may not be observed in parallel with that activation —
i.e. it may not be activated, moved, cloned or overwritten. Any attempt to do
so is a language violation and will not be compiled.

The code implementing the portion of the network shown in figure 10 is:

CHAN MOBILE IO.SUSPEND c:

PAR

A (c!)

B (c?, p.out!, in?, out!, suspend?)

3.4 Suspending Mobile Networks

So far we have shown how a serial mobile process may be activated, suspended
and moved. We are grateful to Tony Hoare for providing insight into how a
mobile process, that has gone parallel internally, may be safely suspended and
efficiently re-activated. An earlier proposal for mobile processes in occam-π [4]
required the mobile to terminate before it could be moved. For parallel mobiles,
such termination is just the multi-way synchronisation of all sub-processes on the
termination event. So for each mobile process, introduce a hidden ‘suspension’
event for all its sub-processes to synchronise upon — this, then, is the meaning
of the new ‘SUSPEND’ primitive.

The suspension event barrier on which processes synchronise when executing
‘SUSPEND’ is internal to the mobile process and follows a similar implementation
to that described in [17] for multiway events. The main difference being that
whichever process completes the synchronisation must then arrange for control
to be returned to the activator. Barrier completion may also be triggered when
processes internally resign from the event (e.g. when terminating). The use of
this barrier synchronisation enables very efficient re-activation — since all sus-
pended sub-processes are on the queue (implemented by the barrier), they can
be instantly located and rescheduled together in a constant-time operation (by
appending the barrier queue to the kernel run-queue).



Parallel Suspension. As an example we consider a suspendable version of the
parallel integrator. The design of this integrator is similar to the earlier ‘killable’
parallel integrator and is shown in figure 11. As with the suspendable serial
integrator, the process is declared as implementing the ‘IO.SUSPEND’ interface.

0

+
a b

c
d

integrate.suspendsuspend?

in? out!

Fig. 11. A suspendable mobile parallel integrator

The top-level implementation of this mobile network is:

MOBILE PROC integrate.suspend (CHAN INT in?, out!, suspend?)

IMPLEMENTS IO.SUSPEND

CHAN TAGGED.INT a, b, c, d:

PAR

freeze (in?, suspend?, a!)

plus.suspend (a?, d?, b!)

delta.suspend (b?, c!, out!)

prefix.suspend (0, c?, d!)

:

Note that the internal channels carry a boolean tag:

PROTOCOL TAGGED.INT IS BOOL; INT:

where a ‘TRUE’ tag means that the INT part carried ‘live’ data (compute as
normal) and a ‘FALSE’ tag indicates ‘suspended’ data (forward and suspend).
The ‘freeze’ process is implemented:

PROC freeze (CHAN INT in?, suspend?, CHAN TAGGED.INT out!)

WHILE TRUE

INT x:

PRI ALT

suspend ? x

SEQ

out ! FALSE; 0 -- suspend signal

SUSPEND

in ? x

out ! TRUE; x -- live data

:

in? out!

suspend?



For structuring reasons and general reusability, we allow mobile processes to
invoke ‘ordinary’ PROCs (which is what is happening between integrate.suspend

and freeze). There is, therefore, the possibility some other application may in-
voke freeze by a chain of calls from a top-level process that is not itself mobile!
If that happens, ‘SUSPEND’ behaves as ‘STOP’.

The ‘graceful’ protocol safely distributes the suspend signal to all processes
that need it. The implementation of ‘plus.suspend’ and ‘delta.suspend’, there-
for, become:

PROC plus.suspend

(CHAN TAGGED.INT in.0?,

in.1?, out!)

WHILE TRUE

BOOL b.0, b.1:

INT x.0, x.1:

SEQ

PAR

in.0 ? b.0; x.0

in.1 ? b.1; x.1

IF

b.0 -- live data

out ! TRUE; x.0 + x.1

TRUE -- suspend signal

SEQ

out ! FALSE; x.1

SUSPEND

:

PROC delta.suspend

(CHAN TAGGED.INT in?,

out.0!, CHAN INT out.1!)

WHILE TRUE

BOOL b:

INT x:

SEQ

in ? b; x

IF

b -- live data

PAR

out.0 ! TRUE; x

out.1 ! x

TRUE -- suspend signal

SEQ

out.0 ! FALSE; x

SUSPEND

:

Unlike the other two ‘.suspend’ components, ‘prefix.suspend’ executes its
‘SUSPEND’ between input and output. It is the last process in the network that
receives the suspend signal and someone has to hold the suspended data. The
implementation is:

PROC prefix.suspend (VAL INT n, CHAN TAGGED.INT in?, out!)

SEQ

out ! FALSE; n

WHILE TRUE

BOOL b:

INT x:

SEQ

in ? b; x

IF

b -- input was live data

SKIP

TRUE -- input was a suspend signal

SUSPEND

out ! TRUE; x -- output is always live data

:



The way in which the ‘integrate.suspend’ network suspends is as follows.
A communication made on the external ‘suspend?’ channel is intercepted by
the ‘freeze’ process, which reacts by outputting a suspend signal before sus-
pending itself. The ‘plus.suspend’ component inputs this, in parallel with the
current running-sum, and outputs a suspend carrying the current running-sum
before suspending itself. ‘delta.suspend’ reacts to the suspend by forwarding
the suspend (and associated running-sum) on the feedback channel only, and
then suspending itself — no output is made to the external (integer) channel.
‘prefix.suspend’ is the final process to receive the suspend signal and reacts
by immediately suspending. At this point, all sub-processes have suspended and
the network, therefore, suspends, returning control to its activator.

When the network is reactivated (elsewhere), the sub-processes resume execu-
tion from their respective ‘SUSPENDs. The ‘prefix.suspend’ component returns
the saved running-sum to ‘plus.suspend’ and the network state is restored (as
though the suspend never happened).

So, this parallel mobile ‘integrate.suspend’ promptly suspends when its en-
vironment offers the ‘suspend?’ signal. It does this without deadlocking, without
accepting any further data from ‘in?’ and flushing on ‘out!’ any data owed to
its environment — i.e. it honours the contract that we intend to associate with
the ‘IO.SUSPEND’ process-type (section 3.5).

Care must be taken to implement this “graceful suspension” protocol cor-
rectly to avoid deadlock. If the sequence of output and suspension were re-
versed in any of the internal components, deadlock would occur. In fact, the
output and suspension could be run in parallel by all components except for
‘prefix.suspend’ (where deadlock would result, since its output would never
be accepted). For the moment, responsibility for getting this right lies with the
application engineer.

Note that the request for a suspend need not come from the environment
— it could be a unilateral decision taken by the mobile process itself, provided
that it conforms to any specified behavioural contract for the process (e.g. that
the number of ‘in?’s equals the number of ‘out!’s. In general, the decision to
trigger suspension in a mobile process network may happen in several places
independently. The protocol for managing safely the deadlock-free distribution
of the multiple suspend signals so generated is described in [13].

Finally, although the ‘integrate.suspend’ mobile behaves as a ‘server’, re-
sponding only to (‘in?’ and ‘suspend?’) communications from its environment,
this need not be the case. A mobile could behave as a ‘client’, gathering data
from its various environments (which behave as ‘servers’). Indeed, the relation-
ship between mobile and its environment could follow any pattern — but it
would help to formalise that into a contract.

3.5 Mobile Contracts

A “PROC TYPE” only defines a connection interface — a set of abstract events
that are bound to actual events each time its implementing mobile is activated.



Such an interface is necessary. It prevents arriving mobiles from accessing
resources the host is unwilling to provide. Activation is entirely under the control
of the accepting host, who must set up all connections to the mobile (as well
as actually activate it). An occam-π process cannot simply make “system calls”
(e.g. to access a file), unless it has been given the means to make them (e.g. the
file server channels). So, the host is in charge. If suspicious, the host may still
provide resource access channels, but route them via a monitoring “fire-wall”
process with whatever level of security it chooses. This is in marked contrast
to conventional mobile platforms (e.g. web browsers and common office tools),
which execute arriving code with the authority and permissions granted to the
platform. Various “sand-boxing” techniques are available to counter the worst
behaviour the mobile might throw, but these are foreign to the normal execution
model. For the process-oriented model around which occam-π is centered, such
“sand-boxing” is the way things are arranged anyway — and the security is
automatic2.

However, process type interfaces are not sufficient to guarantee safety. The
host environment needs further assurance of good behaviour from an arriving
mobile that it will use its given channels properly — e.g. that it will not cause
deadlock or livelock, and will not starve processes in the host environment of
attention (including a request to suspend). Conversely, a mobile process requires
similar guarantees of good behaviour from whatever environment activates it.

We are currently investigating ways to augment process-types with a contract
that makes some level of CSP specification about process behaviour. Initially
we are considering methods of specifying traces for a mobile process, that the
compiler can verify against an implementing mobile and any (potential) host
environment. Such a contracts would be burnt into an extended definition of the
process type. We have not yet made proposals for a syntax for these contracts.

For the ‘IO.SUSPEND’ process type, a contract might specify that implement-
ing mobiles are a ‘server’ on the ‘in?’ and ‘suspend?’ channels, responding to an
‘in?’ with an ‘out!’, and to ‘suspend?’ with suspension. This could be strength-
ened to indicate priorities for service, or weakened to allow some level of internal
buffering.

A particular behaviour that a contract may wish to prohibit (for the example
considered here) is that of suspension with an output outstanding on ‘out!’ —
i.e. that suspension may only occur when the number of ‘in?’ and ‘out!’ events
are equal. Without such a contract, a mobile could arrive that activates with an
‘out!’ to an environment that offers only an ‘in?’.

4 Performance

4.1 Basics

The implementation of the various concurrency mechanisms in occam-π are very
lightweight compared with other software technologies (e.g. threads in Java or

2 Like any software system, it is ultimately possible to circumvent guarantees such as
this — but not if all codes are compiled from source by a certified occam-π compiler.



C), while providing substantial guarantees about the integrity of concurrent
systems (an attribute preserved from classical occam and CSP).

The memory overhead for a parallel process is less-than or equal to 32
bytes, depending on what kinds of synchronisation it may choose to perform
(e.g. ALTing and/or timeouts). The memory overhead for setting up a network
of parallel process is approximately 16 bytes.

Table 1 shows the times for a number of “micro-benchmarks”, measured on
an 800 MHz Pentium-3 and a 3.4 GHz Pentium-4. These measure the minimum
time to perform an operation, where the code and data required by a process is
in the processor cache. Both machines have 512 Kbytes of fast cache. All times
derive from multiple runs on an otherwise quiet Linux machine and are rounded
to the nearest 10 nanoseconds.

Table 1. occam-π micro-benchmarks

Benchmark Time (nanoseconds)
P3 (0.8) P4 (3.4)

process startup + shutdown (no priorities) 30 0
process startup + shutdown (priorities) 70 50
priority change (up and down) 160 140
channel communication (INTs, no priorities) 60 50
channel communication (INTs, priorities) 60 40
channel communication (mobile fixed-size data, priorities) 120 150
channel communication (mobile runtime-sized data, priorities) 120 110
channel communication (mobile channel-ends, priorities) 120 110

The time for starting up and shutting down a process on the P4 running
the occam-π kernel, with no support for priorities, was too small to measure
accurately. The P4 (integer) channel communication costs were lower using the
kernel with priorities than without. This shows the problems of relying too much
on micro-benchmarks and we present them only as a guide.

4.2 Missing the Cache

A separate benchmark measures the penalty resulting from cache misses. This
communicates integer messages between pairs of processes, with the number of
pairs ranging from 1 to 1 million, increasing in factors of 10. The results from
this benchmark are shown in figure 12. Graphs are drawn showing the effect of
setting (and not setting) relevant optimisation flags to the compiler that in-line
certain kernel operations.

Up to 1000 pairs of processes, the total memory footprint for the benchmark
fits into cache. For 10,000 pairs and above, it does not. (In the case of a million
pairs, the footprint is around 100 Mbytes.) Each cycle of the benchmark exer-
cises all the data. Between each communication by any one process, all other



(20,000+) processes will have been scheduled once and cached state will have
been lost. There are ways of managing scheduling that attempt to minimise
cache displacement that might work for this benchmark. However, the KRoC
runtime for occam-π simply uses round-robin scheduling on each priority queue
of runnable processes. This benchmark uses no priorities, but it was run on the
standard KRoC system build supporting them.
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Fig. 12. Results for the communicating process pairs benchmark

As can be seen, the difference between optimised and unoptimised compiled
codes is minor and consistent (except where very small numbers of processes are
concerned). For the 800 MHz Pentium-3, the channel communication costs ceiling
out at (a still respectable) 520ns for 10,000 pairs (20,000 processes) and above
— measured up to 2M processes. The extra cost (over the minimum 80ns, when
all process state is permanently cached) results from the relatively slow memory
bus on that machine. The 3.4 GHz Pentium-4 machine has a more modern and
much faster memory — even so, the results are remarkable! The costs start
around 40ns and ceiling out at 70ns. Cache behaviour is not always what we
expect; but whatever it is that the P4 is doing (and it may involve parallel
operations from its Hyperthreading mechanism [18]), it is very well-suited to the
operation of our occam-π kernel. The figures for large numbers of processes do
reflect the worst-case memory behaviour that a large application might exhibit.

4.3 Mobile Process Basics

Table 2 shows micro-benchmark results for mobile process operations. All are
well under 1 micro-second. Even so, they are still slightly higher than we even-
tually hope to achieve, due to the relative immaturity of the implementation.



The figures given for suspension and re-activation only apply to a serial mobile
process (i.e. just one process synchronising on the hidden implementation bar-
rier). Note that mobile process activation and termination costs are similar to
those for ordinary procedure call and return.

Table 2. Micro-benchmarks for mobile process operations

Benchmark Time per visit (nanoseconds)
P3 (0.8 GHz) P4 (3.4 GHz)

Mobile process allocation and deallocation 450 210
Mobile process activation and termination 100 20
Mobile process suspend and re-activate 630 260

For a more application-oriented scenario, two further benchmarks have been
created that stress the memory cache and exercise mechanisms for mobility that
are relevant for large-scale modelling. The first, “tarzan”, provides mobility using
mobile channels; the second, “mole”, provides mobility using mobile processes.
Both do similar work and show a sense of duality between mobile channels and
mobile processes. This duality is considered further in section 4.6.

4.4 The Tarzan Benchmark

This benchmark measures the time taken to “swing” a process down a chain of a
million ‘server’ processes, using mobile channels. The process network is shown
in figure 13.

server server server server

Fig. 13. Process network for the ‘tarzan’ benchmark

Starting with a connection to the first process in the pipeline, the tarzan

process does some ‘business’ with the server and, then, receives from it the shared

mobile channel-end of the next server. tarzan overwrites its connection to the
current server (a shared mobile channel-end variable) with the connection to the
next server, and loops. In this way, tarzan ‘moves’ (swings) down the chain. In
fact, tarzan is actually fixed in memory and continuously running — only its
connection to the individual servers changes as it swings down the line.

Note that if each server had connections to both its neighbours, it would be
trivial for tarzan to move in both directions along the chain — in response to
run-time decisions based on his communications with the chain nodes. Step this



up one or two dimensions, add millions of other tarzans (and, maybe, some
janes) and we are into serious application modelling — see section 5.

The channel type that defines the service channels in this benchmark is:

RECURSIVE CHAN TYPE SERVE

MOBILE RECORD

... business channels

CHAN SHARED SERVE! next!:

:

The ‘RECURSIVE’ keyword causes the name ‘SERVE’ to be brought into scope
early, instead of at the end of the declaration. This allows a channel-type to
contain channels that communicate ends of its own channel-type (they may be
‘client’ or ‘server’ ends, shared or unshared). This is useful for many situations —
e.g. having some client give up its (typically unshared) connection to a server, by
communicating the client-end back to the server (for distribution to, and reuse
by, some other client not known to the original one). For this benchmark, the
feature enables a server to communicate (to its visiting tarzan) a ‘client’-end
connection to the next server in the pipeline.

The main loop of the tarzan process, for example, is implemented:

SEQ i = 0 FOR 1000000

SHARED SERVE! next.server:

SEQ

CLAIM current.server

SEQ

... do business using ‘current.server’ channels

current.server[next] ? next.server

current.server := next.server

The tarzan client measures the time it takes to swing through 1 million
server processes, and then reports. Table 3 shows the results for a client that
just swings through the servers, doing no business (other than getting the link
to the next server); and a client that asks each server a question (represented
by an integer) and receives a reply (another integer), which it uses on the next
server. Each visit by the tarzan client causes a cache miss as the service channel
is accessed and the corresponding server is scheduled. tarzan’s own state will
remain in cache (since it is repeatedly scheduled for each visit).

Table 3. Results for the ‘tarzan’ benchmark

Time per visit (nanoseconds)
Benchmark P3 (0.8 GHz) P4 (3.4 GHz)

‘just visiting’ client 450 120
‘question and answer’ client 770 280

These results show over 3.5 million interacting visits per second are possible
with this mechanism.



4.5 The Mole Benchmark

This benchmark is similar to the above in its basic operation (a visitor pro-
cess interacting with and moving down a chain of servers), but is implemented
using mobile processes rather than mobile channel-ends. Instead of moving a
server connection to the visitor, the visitor suspends itself and is moved by its
environment to the next server.

Figure 14 shows the process network for this ‘mole’ benchmark, with an
activated visitor, our mole, connected to one of the servers. When a visitor
arrives at the butler process, the latter forks a host platform and passes to it
the visitor, the local server connection and the connection to the next butler.
This host activates the mole, giving it the server connection. When the mole

suspends, the host sends it on its way to the next butler and terminates.
This protocol is complicated by the fact that we wish to allow multiple visitors

to connect to any single server at the same time. Our benchmark runs only
one such visitor, so the butler could have done the work of the host platform
itself without any extra concurrency (the forked host) — but then it could only
service one visitor at a time. This would reduce the overheads measured by the
benchmark, but also the realism of the scenario.

server serverserver

butler butler butler

Fig. 14. Process network for the ‘mole’ benchmark

The channel-types servicing, respectively, the server and butler processes are:

CHAN TYPE SERVE.2 CHAN TYPE BUTLER.2

MOBILE RECORD MOBILE RECORD

... business channels CHAN MOBILE VISITOR c?:

: :

where the process type of the mobile visitors is:

PROC TYPE VISITOR (SHARED SERVE.2! client, CHAN INT in?, out!):

The extra ‘in?’ and ‘out!’ channels in the ‘VISITOR’ type allow initial state
to be loaded into the mobile and results to be downloaded upon completion of
the benchmark. This is not an happy situation since those channels are not used
during server visits (and, therefore, dummies must be supplied by the activating
host platform). Our previous model for mobile processes, [4], allowed them to



implement many process types. That would let us activate our visitor with one
interface for initialisation, another for server visits and a third for debriefing. We
are considering ways to combine the two models robustly.

The host and butler processes are rather trivial, apart from the current awk-
wardness with the dummy channels:

PROC host (MOBILE VISITOR mole,

SHARED SERVE.2! my.server,

SHARED BUTLER.2! next.butler)

CHAN INT dummy.in, dummy.out:

SEQ

mole (my.server, dummy.in, dummy.out!) -- dummy chans not used

CLAIM next.butler

next.butler[c] ! mole

:

PROC butler (CHAN MOBILE VISITOR in?,

SHARED SERVE.2! my.server,

SHARED BUTLER.2! next.butler)

WHILE TRUE

MOBILE VISITOR mole:

SEQ

in ? mole

FORK host (mole, my.server, next.butler)

:

The main loop of the mole process is very similar to that for tarzan, except
that it suspends and lets its environment move it to the next server:

SEQ i = 0 FOR 1000000

SEQ

CLAIM current.server

... do business using ‘current.server’ channels

SUSPEND

Table 4 shows the results for a mole that does no business with servers
(other than claim their service channels) and one that does the same ‘question
and answer’ interaction described for tarzan.

Table 4. Results for the ‘mole’ benchmark

Time per visit (nanoseconds)
Benchmark P3 (0.8 GHz) P4 (3.4 GHz)

‘just visiting’ client 1340 470
‘question and answer’ client 1590 620

The results show that the time per visit for this ‘mole’ benchmark is more
than double the time per visit for the ‘tarzan’ benchmark. Some of the extra



overhead comes from the mobile process suspension and re-activation in between
visits — tarzan never stopped running! The rest comes from the forking of a
new host platform to activate the mobile process. Nevertheless, more than 1.5
interacting visits per second are achieved with this mechanism.

4.6 Mobile Channels and Mobile Processes — a Duality

The two benchmark programs show how similar functionality can be imple-
mented either using mobile channels or mobile processes. In both cases, a ‘client’
process moves down a line of ‘server’ processes, interacting with each in turn.

The main difference between the benchmarks involves the locality of pro-
cesses. In the ‘tarzan’ benchmark, the visitor remains ‘alive’ throughout: chan-
nels are moved, ‘stretching’ across the network to provide mobility to the visitor
(that sees itself serially connected to different servers). In the ‘mole’ benchmark,
the visitor suspends its execution and is moved to the locality of the server —
before being plugged in, re-activated and interacting over local channels. Putting
aside the mechanism-specific code (for communicating a mobile channel-end in
one and suspending in the other), the visitors and servers have identical logic.

On individual shared-memory systems (e.g. a typical workstation), the cost
of communicating a mobile channel-end and the cost of communicating a passive
mobile process are approximately the same — in the order of tens of nanoseconds.
As we have seen, however, the mobile process cost has to be supplemented with
the cost of suspension, forking and re-activation. Once connected, however, the
costs of doing business in the new environment are the same, regardless of the
mechanism used to achieve mobility.

server server

node A node B

server server server server

node A node B node A node B

(initial system)

(mobile channel communication)(mobile process communication)

Fig. 15. Communicating mobile channels and processes between nodes in a network

If the system is distributed over a network of processors operating in separate
memory spaces, the costs of doing business if a network link is involved differ



significantly. Communicating a mobile process between nodes in a network has a
relatively constant cost. Communicating mobile channel-ends between nodes in a
network has a similar constant cost, but the ‘stretching’ of that channel between
the nodes incurs a network overhead for each subsequent communication on the
channel. Figure 15 illustrates this difference.

For optimal performance on distributed systems, the two techniques can be
combined. Mobile processes are moved only when they need to connect to a new
environment across the network. Otherwise, only channel-ends are moved. This
reduces the level of transparency, however, since processes will need to be aware
of where they are currently placed in the physical distribution of the system.

5 Application Outlines

5.1 Grand Challenges

“in Vivo ⇔ in Silico” (iViS) is one of the UK ‘Grand Challenges in Computer

Science’ project areas [19–21]. Its aims are to move the application of computing
in the life sciences beyond cataloguing and pattern discovery and into modelling
and prediction. An exemplar challenge is to model the development of a Nema-
tode worm, one of the simplest multicellular forms of animal life, from fertilised
cell to adult — allowing virtual experiments to be performed on its reactions to
various stimuli, physical or chemical, and on interactions between organisms. It
is hoped that success will lead to better understanding of the basic science and
the processes involved, followed by improved treatment of disease and environ-
mental dangers. One particular dream is the conduction of drug trials within the
computer (in silico) that are trustable in real life (in vivo).

For the necessary modelling technologies, dynamic communicating process
networks are a good fit. The fundamental ideas of process, communication, con-

currency and mobility are uniformly applicable at any level of granularity and
those levels build on each other seamlessly. They enable the expression of con-
trolled, but not specifically planned, self-evolving topologies reflecting natural
growth and decay. This uniformity of concept could contribute to simplicity of
structure and understanding of multi-level simulation programs applied in bi-
ology. Furthermore, the semantics are independent of the actual distribution of
systems on to different computer architectures and network configurations, al-
lowing them to take quick advantage of all technological improvements to the
hardware.

The mechanisms and implementation of occam-π, described in this paper,
offer one way to make a start in these experiments. They are lightweight and ro-
bust and have good theoretical foundations — though we are aware that there is
a lot more work to be done. To investigate emergent properties of such networks,
self-constructed from low level processes with explicitly programmed behaviour,
will require very large numbers of mobiles. Fortunately, current low cost archi-
tectures (e.g. PC networks) let us build systems with millions of processes per
processor, yielding useful work in useful run-times.



5.2 Locality, Environment and the Matrix

Our models need to capture a sense of location, so that free-ranging processes
become aware of who else is in their neighbourhood and do business with them
(or, maybe, run away!). Processes may also be influenced by pervasive forces in
their environment — these may be widely dispersed (e.g. gravitational) or highly
localised (e.g. chemical).

Figure 16 illustrates some ideas for meeting these requirements. Space is
modelled by the ‘Matrix’ — a network of (usually passive and non-mobile)
server processes representing locations. The figure shows a portion of a regu-
lar 2-dimensional grid. Other spaces may have higher dimensions, or distortions
(e.g. wormholes), or the ability to change shape (reflecting dramatic changes in
the modelled world, such as physical damage).

Fig. 16. Process matrix with mobile agents

Each matrix node services a channel bundle, shown in the figure as a vertical
downward pointing arrow ending at the node. The ‘server-end’ of each bundle is
exclusive to the node. The ‘client-end’, however, is SHARED and MOBILE (i.e. freely
useable by, and communicable to, any number of clients).

Locality is realised by each node having access to the ‘client-ends’ of each of
its neighbours’ service channels, where we have free choice in deciding who those
neighbours are. (In figure 16, only two sets of these connections are shown, but
all nodes have them.) Once the connections are established, there are no run-
time costs associated with locating neighbourhoods — even in the most twisted
of topologies.

Organisms, or parts of organisms, living in this space are modelled by mobile
processes — ‘Agents’. (These are shown by the shaded circles and triangles
in figure 16.) An agent attaches to one matrix node (location) at a time, by
acquiring the ‘client-end’ of its service channel bundle. It interacts with the server
node, first to register its arrival and any connections to itself it cares to share
with the locality. Then, it enquires about the local environment (e.g. electrostatic
or chemical forces) and connections to other agents currently present. It may



pick up compatible connections and transact business directly with those other
agents. This may include combining with them to form larger agent structures
or to reproduce. It may also pick up connections to neighbouring locations and
decide to move.

Agent-matrix interactions must follow matrix-defined protocols (‘contracts’,
section 3.5) for the avoidance of deadlock. Agent-agent communication protocols
will be specific to the types of agent involved. The extent of these interactions
will vary, along with the computations provoked by them. Model simulation time
may need to be maintained by global (or, maybe, local) event barriers.

occam-π provides all the mechanisms needed to express such designs directly
and execute them. Its overheads are sufficiently low so that the very large num-
bers of processes required for modelling realism will not be a show stopper.
Formal verification of the systems, at least for the absence of deadlock and race
hazards, also becomes possible.

Serial implementations of these designs, that iterate through collections of
passive objects representing the locations and agents, may run (a little) faster.
Unfortunately, the logic expressing object behaviour has to be inverted from the
point of view of the thread executing them — there can be no direct expres-
sion. This introduces complexity, making formal and informal reasoning much
harder. It will be necessary to experiment with many rules of behaviour, chang-
ing them quickly. The direct reflection of behaviour in the programming of active
processes, together with the compositional semantics of the underlying algebra,
simplifies this.

Finally, we note that the ‘tarzan’ and ‘mole’ benchmarks (sections 4.4 and 4.5)
are stripped down versions of this scheme — where the matrix has one dimen-
sion, neighbourhoods are connected one-way only and there is just one agent.
The discussion of duality between the use of mobile channels and mobile pro-
cesses in these benchmarks (section 4.6) is directly relevant to this grander vision,
especially for large scale models that need to be distributed over many machines.

5.3 Agents in Distributed Systems — and Security

The most commonly understood meaning of the term “mobile agent” is that
of code and data mobility, as described by White in [22]. The main focus is
on mobility between nodes in a distributed system. Agents are stateful mobile
units of execution and agent platforms are the environments in which those
agents operate. Supporting infrastructure is provided by the applications and by
libraries, not by the programming model or language.

occam-π provides a simple model and language for agents: agents are mobile
processes and agent platforms are processes that activate a mobile. Mobile pro-
cesses may also activate other mobiles, becoming agent platforms themselves —
i.e. nested hierarchies of agent are naturally expressed.

Agent platforms exist for two purposes: to allow agents to interact with the
host system providing the platform; and to allow agents to interact with each
other. occam-π supports both types of interaction, as outlined in the previous
section.



Within the wider mobile-agent community, there is a good deal of concern for
the security of mobile agents and agent based systems, as discussed in [23–25].
Broadly, these security considerations fall into two categories: those affecting
the integrity of the overall system; and those affecting the integrity of individual
agents and agent-platforms.

Integrity of the overall system is outside the scope of this paper. Here, we
assume that arriving mobile agents are valid — because that agent was either
created locally or came from another part of the system that we trust over
secure links. Correspondingly, an agent may assume that whatever activates it
was meant to do so.

In an insecure networked environment (such as the Internet), the part of
the system that manages network connections would need to be responsible for
ensuring the integrity of data communicated over networked channels (where
that data may be ‘serialised’ mobile processes). This may involve proper (pub-
lic/private key) authentication and encryption.

Of course, we could create a system that freely admits mobile processes from
open network connections. Such a system would be open to many of the potential
abuses that afflict mobile-agent systems in general. The use of occam-π in the
construction of agents allows some of this threat to be eliminated. Instead of
communicating serialised agent object code, source (or byte) code could be sent,
along with the saved state of the agent, and used to re-create the agent locally.
The occam-π compiler makes certain guarantees about the systems it compiles.
For example, agents (processes) cannot access resources without being given
specific connections (channels) to those resources and that giving is entirely at
the discretion of the activating host — see section 3.5.

The mandated use of a synchronisation-only interface to mobile processes
further limits the threats associated with existing agent systems. It separates
the activation of an agent from its interaction with the local resources granted
to it, by safely modelling the concurrency between the agent and those resources
(which existed before the agent arrived and will continue to exist after it de-
parts). There can be no unsynchronised actions between the agent and its host
environment that can lead to race hazards.

Further, the concept of ‘contract’ (also described in section 3.5) would enforce
safe patterns of synchronisation, eliminating the dangers of the agent deadlocking
its host — or vice-versa. Such contracts are not yet defined for occam-π, although
some preliminary investigations have been completed (see the ‘TRACES’ extension
described in [16]).

6 Conclusions and Future Research

This paper has given an introduction to the occam-π language, concentrating on
mobile processes and channels. occam-π combines process and channel mobility
(from the π-calculus) with the disciplines of classical occam (whose semantics fol-
low CSP). Mobile processes complement mobile channels to provide the occam-π
programmer with powerful new tools for directly, safely and efficiently capturing



the dynamic aspects of complex large-scale systems. Applications for the multi-
layer modelling of micro-organisms and their environments (the ‘in Vivo ⇔ in

Silico’ Grand Challenge [20, 21]) and process migration (agents) in distributed
systems have been outlined. Performance benchmarks have been reported.

The occam-π language is implemented by recent releases of KRoC (the Kent
Retargetable occam Compiler) [3]. Current versions of the system support all as-
pects of mobility described here, with the exception of support for ‘serialisation’
(and de-serialisation) of mobile processes — needed for their movement between
distinct memory spaces.

At this time of writing, no distributed version of occam-π has been released
(although library processes providing non-blocking low-level support for socket
communication have long been included in the release). The distributed version,
KRoC.net, will provide for the stretching of channels across network fabric (with
no change in semantics), automatic multiplexing and de-multiplexing of chan-
nels over limited network resource (with no change in semantics), brokers for
the discovery and run-time connection of processes between network nodes and
full support for the networked communication of mobile data, channel-ends and
processes [15].

Also under investigation are ways of formally specifying behaviours for pro-
cess types (‘contracts’), in ways that allow the compiler to verify that a mobile
process conforms. In cases where this is too complex, the compiler may generate
information suitable for use with a separate model checker (e.g. FDR [26]).

We emphasise that this work is still an experiment in language design and
implementation. The abstractions and semantics captured are not settled and
may change — especially in the light of new theory and experience with (large)
applications. Certain elements of the language are incomplete. For example, we
need static channel-bundle types as well as the mobile ones implemented so far;
we need arrays of shared classical channels as well as the scalar ones currently
available. However, such developments are largely routine and are a matter of
(finding the) time.

occam-π is built upon classical occam and very little has been discarded.
Classical occam was very compact, powerful and elegant. A key principle un-
derlying the extensions is that the original semantics are not disturbed, so that
the ultra-low overheads for process management and all the safety guarantees
are preserved — despite the introduction of the new dynamics. For example,
although there is now plenty of dynamic memory allocation (for run-time sized
arrays, parallel process replication, recursion, forking, mobile channels and mo-
bile processes), there is no need for any garbage collection — the system deallo-
cates immediately when final references are lost (thanks to the strong policing
of aliases, carried over from classical occam). Such properties are crucial for its
continued relevance to real-time applications.

Nevertheless, perhaps Ockham’s razor needs to be wielded a little more ag-
gressively — the removal of the ‘OF’ keyword is not very radical! For example,
the syntax for declaring channel-bundle variables is not aligned with that for
classical channels — maybe one of these versions should go? Could the compiler



decide whether elements should be implemented as mobile or shared so that the
programmer does not have to make this explicit — or would that require extra
run-time cost and reduce system clarity? The duality noted between mobile pro-
cesses and (some ways of working with) mobile channels may indicate that there
is some simpler abstraction out there, from which these are special projections.

A formal denotational semantics, supporting refinement, needs completing.
This is necessary both as a sanity check on the new ideas and to enable formal
design and development. Such a semantics, based on Hoare and Jifeng’s Unified

Theories of Programming [27] has been built by Woodcock and Tang [28] for our
earlier proposal for mobile processes [4]. That model allowed multiple interfaces
for mobile processes but did not support suspension — they had to terminate

before they could be moved and that required extra syntax to define persistent
state (that moved with them). However, suspension should not be a major prob-
lem for that semantics to capture. In any case, it seems possible (and may be
necessary) to merge that proposal with the one reported in this paper — the
awkwardness of only having a single interface for mobile processes, discussed in
section 4.5, needs addressing. It is also important for the semantics to address
the issues raised by mobile channels, since the events bound to a process (mobile
or static) will change as channel-ends are moved — section 2.4.

We welcome all feedback on this work. We shall be working towards the
applications outlined in section 5, plus a few others — including RMoX [29],
which is experimenting with occam-π for the design and implementation of real-
time operating/embedded systems with low memory footprint, very fast reaction
times and high-level (occam-π) programmability. The latest occam-π release,
supported by the KRoC system, may be downloaded from [3].
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