
RMoX – A Raw Metal occam Experiment 1/30

RMoX: A Raw Metal

occam Experiment

Fred Barnes† (frmb2@ukc.ac.uk)

Christian Jacobsen† (clj3@ukc.ac.uk)

Brian Vinter‡ (vinter@imada.sdu.dk)

† Computing Laboratory, University of Kent

‡ Department of Maths and Computer Science,

University of Southern Denmark



RMoX – A Raw Metal occam Experiment 2/30

Contents

• Introduction

• Dynamic occam

• Design:

– the ‘kernel’

– device drivers

– filesystems

– networking

– top-level and console

• Implementation:

– accessing hardware

– real and user-mode RMoX

• Conclusions



RMoX – A Raw Metal occam Experiment 3/30

Motivation

• Do we really need another OS ?

• Most existing operating systems suffer:

– from software error

– from high overheads

– a lack of scalability

• We want an operating system that:

– has a rigorous design

– is free from software error

– is fast!



RMoX – A Raw Metal occam Experiment 4/30

Introduction

• Raw Metal occam:

– runs on the “raw” hardware

– with some help from

the UTAH Flux OSKit

– and a modified KRoC

run-time system

• CSP design

• Dynamic occam implementation



RMoX – A Raw Metal occam Experiment 5/30

Dynamic occam

RMoX extensively uses two of the new dynamic

features of KRoC/occam:

• mobile channel-bundle ends

• dynamic process creation (fork)

These support:

• dynamic network expansion and

re-configuration

• scalable server farms



RMoX – A Raw Metal occam Experiment 6/30

Mobile Data

• Provides a movement semantics for assign-
ment and communication

• Implementation supports both static and
dynamic mobiles

• Unit-time assignment and communication

• Unit-time ‘garbage-collection’ (strict alias-
ing)

QP x

c ! x c ? y

c

c

P Q y

• ‘P’ can no longer access ‘x’ — compiler
enforced



RMoX – A Raw Metal occam Experiment 7/30

Mobile Channel-Ends

Ends of channel-types — structured bundles
of channels:

?! buf!
req?

ret?
buf?
req!

ret!
BUF.MGR

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT req?:
CHAN MOBILE []BYTE buf!:
CHAN MOBILE []BYTE ret?:

:

• Channel bundles have two ends:
“?” (or server) and “!” (or client)

• Direction of communication is specified
(from the ‘?’ view)



RMoX – A Raw Metal occam Experiment 8/30

Mobile Channel-Ends

server

BUF.MGR?
generator

client

BUF.MGR!
! ?BUF.MGR

Code to setup the network is trivial:

CHAN BUF.MGR! cli.chan:

CHAN BUF.MGR? svr.chan:

PAR

generator (cli.chan!, svr.chan!)

client (cli.chan?)

server (svr.chan?)



RMoX – A Raw Metal occam Experiment 9/30

Mobile Channel-Ends

The ‘generator’ process creates the channel

bundle then communicates the ends:

PROC generator (CHAN BUF.MGR! cli.chan!,

CHAN BUF.MGR? svr.chan!)

SEQ

... create channel bundle

cli.chan ! buf.cli

...

:

After the client end is communicated:

server

BUF.MGR?BUF.MGR!

BUF.
MGR

!

?

generator

client



RMoX – A Raw Metal occam Experiment 10/30

Mobile Channel-Ends

PROC generator (CHAN BUF.MGR! cli.chan!,

CHAN BUF.MGR? svr.chan!)

SEQ

... create channel bundle

cli.chan ! buf.cli

svr.chan ! buf.svr

:

After the server end is communicated:

BUF.MGR?BUF.MGR! generator

BUF.MGR! ?client server

The ‘client’ and ‘server’ processes now

communicate directly using the channel bundle



RMoX – A Raw Metal occam Experiment 11/30

Securely Shared Channel-Ends

Channel-ends may also be declared shared,

enabling the creation of multi-client multi-server

process networks

server

clients

SHARED BUF.MGR! buf.cli:

BUF.MGR? buf.svr:

SEQ

buf.cli, buf.svr := MOBILE BUF.MGR

PAR

server (buf.svr)

.. client processes using buf.cli



RMoX – A Raw Metal occam Experiment 12/30

Securely Shared Channel-Ends

• Processes using shared ends must claim

that end before using the channels within

• A channel-end may not be moved whilst

claimed

The process body of a simple client could be:

MOBILE []BYTE buffer:

CLAIM to.svr

SEQ

to.svr[req] ! ...

to.svr[buf] ? buffer

... use ‘buffer’

to.svr[ret] ! buffer

But this prevents other clients/servers from

interacting...



RMoX – A Raw Metal occam Experiment 13/30

Securely Shared Channel-Ends

clients servers



RMoX – A Raw Metal occam Experiment 14/30

Dynamic Process Creation

(using the FORK)

• Allows a process to dynamically create
another process that runs concurrently

• Implementation supports the FORK of an
arbitrary PROC, with parameter restrictions

WHILE test
SEQ

...
FORK P (n, in?, out!)

...

• Parameters to FORKed processes follow a
communication semantics, instead of re-
naming semantics

• An alternative syntax would be easy:

P ! (n, in?, out!)



RMoX – A Raw Metal occam Experiment 15/30

Design of RMoX

kernel

driver.
core

network.
core

console
filesystem drivers

device drivers

network drivers
and protocols

fs.core

• Logical structure — client-server

• Built using channel-types and FORK

• Built with ‘plug-in’ components

• Scalable (as many components as needed)

• Dynamically extensible/degradable

• Fast (< 100ns comms/cxt.sw.) [P3-800]



RMoX – A Raw Metal occam Experiment 16/30

The Kernel

kernel

client
processes

processes
system driver

• Acts as an ‘arbitrator’ for system services

• POSIX based interface

– but others are certainly possible

– DOS, VMS, ...

• Has special privileges for ‘process control’



RMoX – A Raw Metal occam Experiment 17/30

Device Drivers

driver.
core

ramdisk serial

keyboard VGA

keyboard
client process

hardware
access

hardware
access

hardware
access

requests

responses

• ‘driver.core’ manages individual drivers
– started by FORKing them

• Requests for a specific device are
passed to the right driver

• Driver returns a channel-type-end for
interacting with the device

• Recursive channel-type is used to snap
back the channel in on itself when done



RMoX – A Raw Metal occam Experiment 18/30

Device Drivers II

serial

serial.1

serial.0

hardware
access

hardware
access

(driver.core)

• A top-level driver may actually be a

network of sub-processes

• Device naming scheme routes requests

appropriately

• Useful for hierarchical device structures:

– USB, IEEE-1284 (parallel), ...



RMoX – A Raw Metal occam Experiment 19/30

Device Drivers III

serial

serial.1

serial.0

biosmem

hardware
access

hardware
access

bios data RAM

(driver.core)

• Drivers may request connections to other

device drivers

• Carefully controlled to avoid deadlock



RMoX – A Raw Metal occam Experiment 20/30

Filesystems

driver.
core

ramdisk serial

dev.fsramdisk.fs

fs.core
requests

responses

requests

responses

• Most filesystems will need a device
to operate on

• Currently implementing a fairly traditional
UNIX-style file-system

• The ramdisk is mounted on / when the
system starts up



RMoX – A Raw Metal occam Experiment 21/30

File handling

ramdisk

user/system
process

ramdisk.fs

file.handler

• When a file or directory is opened,
‘ramdisk.fs’ FORKs a handler process

• Handler processes (file or directory)
return a client channel-end

• Handler services all requests on the file
or directory by using that channel end.

• Channel-end snapped-back to finish



RMoX – A Raw Metal occam Experiment 22/30

Networking

serial.0

slip.
interface interface

loopback.

multiplex
IP checking

assembler
and fragment

proto.match proto.match proto.match

route

multiplex

server
icmp

server
udp

server
tcp

channel links to network controller
and application processes

checks
icmp

checks
udp

checks
tcp

• Network infrastructure is from “occamnet”
– a 3rd year project at UKC

• Clear and logical design



RMoX – A Raw Metal occam Experiment 23/30

Networking II

server
icmp

inbound
packets

outbound
packets

network.
core

application

ping.worker

• Internal server-process structure similar to
other RMoX server components

• Currently supported protocols are limited
to ICMP and UDP

– a simple DNS application exists

– NFS is a larger, but feasible, project



RMoX – A Raw Metal occam Experiment 24/30

fs.core

driver.
core

network.
core

console

kernel idle.task

uptime.tick

log channel

PROC main ()
CT.DRIVER? ct.driver.svr:
SHARED CT.DRIVER! ct.driver.cli:
... other declarations
SEQ

ct.driver.cli, ct.driver.svr := MOBILE CT.DRIVER
... other initialisations
SHARED CHAN BYTE debug.chan:
PAR

driver.core (ct.driver.svr, log.cli, debug.chan!)
kernel (ct.kernel.svr, ct.driver.cli, ct.fs.cli,

ct.network.cli, log.cli)
... other processes
SEQ

SETPRI (31)
CLAIM debug.chan?

idle.task (debug.chan?)
:



RMoX – A Raw Metal occam Experiment 25/30

The console

vt220

vt220

matrix

vt220

vtkeyswitch

vgaplex

vt.handler vt.handler vt.handler

console log in

to kernel

vga
driver

link to

keyboard
link to

driver

to driver.core

console
system.

• Starts everything else off

• Handles the kernel log

• ‘system.console’ process provides
prompt and basic commands



RMoX – A Raw Metal occam Experiment 26/30

Implementation

• Hardware is accessed in one of three ways:

– IO port reads/writes

– memory-mapped devices

– interrupts

• Some devices may require polling:

– not generally recommended

– possible, with minor efficiency loss,

through the use of timeouts

• RMoX requires a lower-level interface for

managing these



RMoX – A Raw Metal occam Experiment 27/30

Structure

occam applications

RMoX

RMoX
device
drivers

CCSP/libs

OSKit

hardware

applications
C

• OSKit manages memory, IO ports and
interrupts

• Once ‘allocated’, memory and IO ports can
be used directly from occam

• CCSP schedules occam processes
– and controls execution of C processes

• Interrupts are handled using a combination
of the OSKit and CCSP



RMoX – A Raw Metal occam Experiment 28/30

User-Mode RMoX

driver.
core

ramdisk

ramdisk.fs

fs.core

keyboard

VGA

host.fs

requests

responses

requests

responses

occam
file library

library
xtextwindow

• RMoX is simply a dynamic set of
communicating occam processes

– ... and can be run as a normal
KRoC/occam application

• User-mode RMoX (UM-RMoX) provides an
abstraction for hardware, using the existing
RMoX interfaces



RMoX – A Raw Metal occam Experiment 29/30

User-Mode RMoX II

• Allows the core components of RMoX to

be developed in a ‘regular’ environment:

– good test for language extensions

– significantly reduces test-debug time

• Cannot provide real hardware

– emulation is only an approximation

– IO port accesses are possible using iopl()

• Gives wider access for development and

experimentation

– student projects, ...



RMoX – A Raw Metal occam Experiment 30/30

On-going Research

• Still under development, but progressing
well (delayed by thesis)

• Reasonable number of basic devices now
supported:

– serial driver works well enough to launch
a ‘system.console’ process on it

– using FIFOs and interrupt-driven com-
munication

• Basic file-system driver support:

– ‘ram.fs’ and ‘dev.fs’ are implemented and
work correctly

– device filesystem mirrors the nested struc-
ture of devices

• Very fast! :-)


