RMoX — A Raw Metal occam Experiment 1/30

RMoX: A Raw Metal
occam Experiment

Fred Barnes' (frmb2@ukc.ac.uk)
Christian Jacobsen' (clj3@ukc.ac.uk)

Brian Vinter! (vinter@imada.sdu.dk)

I Computing Laboratory, University of Kent

! Department of Maths and Computer Science,
University of Southern Denmark

RMoX — A Raw Metal occam Experiment

2/30

Contents
e Introduction
e Dynamic occam

e Design:
— the ‘kernel’
— device drivers
— filesystems
— networking

— top-level and console

e Implementation:
— accessing hardware

— real and user-mode RMoX

e Conclusions

RMoX — A Raw Metal occam Experiment 3/30

Motivation

e Do we really need another OS 7

e Most existing operating systems suffer:
— from software error
— from high overheads

— a lack of scalability

e \We want an operating system that:
— has a rigorous design
— is free from software error

— s fast!

RMoX — A Raw Metal occam Experiment 4/30

Introduction

e Raw Metal occam:
— runs on the “raw’” hardware

— with some help from
the UTAH Flux OSKit

— and a modified KRoC
run-time system

e CSP design

e Dynamic occam implementation

RMoX — A Raw Metal occam Experiment 5/30

Dynamic occam

RMoX extensively uses two of the new dynamic
features of KRoC/occam:

e Mmobile channel-bundle ends

e dynamic process creation (fork)

T hese support:

e dynamic network expansion and
re-configuration

e Scalable server farms

RMoX — A Raw Metal occam Experiment 6/30

Mobile Data

e Provides a movement semantics for assign-
ment and communication

e Implementation supports both static and
dynamic mobiles

e Unit-time assignment and communication

e Unit-time ‘garbage-collection’ (strict alias-

ing)
P X CH Q
c ! X c?y
P —° w0y
e ‘P’ can no longer access ‘x’ — compiler

enforced

RMoX — A Raw Metal occam Experiment 7/30

Mobile Channel-Ends

Ends of channel-types — structured bundles
of channels:

req! — = req?
buf ? -—— | BUF. MGR ? buf !
ret! — — r et ?

CHAN TYPE BUF.MGR
MOBILE RECORD
CHAN INT req?:
CHAN MOBILE []1BYTE buf!:
CHAN MOBILE []1BYTE ret?:

e Channel bundles have two ends:
“?"" (or server) and “'" (or client)

e Direction of communication is specified
(from the ‘?' view)

RMoX — A Raw Metal occam Experiment 8/30

Mobile Channel-Ends

gener ator

BUF. MGR!I BUF. MER?
4/”* | BUF. MGR ? = ‘“\\;
client server

Code to setup the network is trivial:

CHAN BUF.MGR!
CHAN BUF.MGR? svr.chan:

PAR

cli.chan:

generator (cli.chan!, svr.chan!)
client (cli.chan?)
server (svr.chan?)

RMoX — A Raw Metal occam Experiment 9/30

Mobile Channel-Ends

The ‘generator’ process creates the channel
bundle then communicates the ends:

PROC generator (CHAN BUF.MGR! cli.chan!,
CHAN BUF.MGR? svr.chan!)
SEQ
create channel bundle
cli.chan ! buf.cli

After the client end is communicated:

BUF. MGR! gener ator BUF. MGR?

0

server

RMoX — A Raw Metal occam Experiment 10/30

Mobile Channel-Ends

PROC generator (CHAN BUF.MGR! cli.chan!,
CHAN BUF.MGR? svr.chan!)

SEQ

create channel bundle

cli.chan !
svr.chan !

buf.cli
buf.svr

After the server end is communicated:

|
BUF. MGR! gener ator BUF. MGR?
_ 1 [
client = ! BUF. MGR ? E= server
[[

The ‘client’ and ‘server’ processes now
communicate directly using the channel bundle

RMoX — A Raw Metal occam Experiment 11/30

Securely Shared Channel-Ends

Channel-ends may also be declared shared,
enabling the creation of multi-client multi-server
process networks

) ©
? 9
cIients

SHARED BUF.MGR! buf.cli:
BUF.MGR? buf.svr:
SEQ
buf.cli, buf.svr := MOBILE BUF.MGR
PAR
server (buf.svr)
client processes using buf.cli

RMoX — A Raw Metal occam Experiment 12/30

Securely Shared Channel-Ends

e Processes using shared ends must claim
that end before using the channels within

e A channel-end may not be moved whilst
claimed

The process body of a simple client could be:

MOBILE [IBYTE buffer:
CLAIM to.svr
SEQ
to.svr[req] !
to.svr[buf] ? buffer
use ‘buffer’
to.svr[ret] ! buffer

But this prevents other clients/servers from
interacting...

RMoX — A Raw Metal occam Experiment 13/30

Securely Shared Channel-Ends

?ﬁ? R
7o 9

RMoX — A Raw Metal occam Experiment 14/30

Dyvnamic Process Creation
(using the FORK)

e Allows a process to dynamically create
another process that runs concurrently

e Implementation supports the FORK of an
arbitrary PROC, with parameter restrictions

WHILE test
SEQ

FORK P (n, in?, out!)

e Parameters to FORKed processes follow a
communication semantics, instead of re-
naming semantics

e An alternative syntax would be easy:

P! (n, in?, out!)

RMoX — A Raw Metal occam Experiment 15/30

Design of RMoX

T =
console

|

kernel

'L

fs.core

core

Y ‘» driver.

network.
core

network drivers
and protocols

Logical structure — client-server

Built using channel-types and FORK

Built with ‘plug-in" components

Scalable (as many components as needed)

Dynamically extensible/degradable

Fast (< 100ns comms/cxt.sw.) [P3-800]

RMoX — A Raw Metal occam Experiment 16/30

T he Kernel

client
processes

l l ' Kkernel
system driver
processes

e Acts as an ‘arbitrator’ for system services

e POSIX based interface
— but others are certainly possible

— DOS, VMS, ...

e Has special privileges for ‘process control’

RMoX — A Raw Metal occam Experiment 17/30

Device Drivers

requests T oo ,——ljt l
responses core ﬁ T\v

hardware
access

: keyboard VGA
keyboard hardware hardware
client process access access

e ‘driver.core’ manages individual drivers
— started by FORKing them

e Requests for a specific device are
passed to the right driver

e Driver returns a channel-type-end for
interacting with the device

e Recursive channel-type is used to snap
back the channel in on itself when done

RMoX — A Raw Metal occam Experiment 18/30

Device Drivers 11

hardware

r_> serial.0 <—> ACCESS

i hardware

f__> serial.l <—> aCCesS

serial

(driver.core) g i

e A top-level driver may actually be a
network of sub-processes

e Device naming scheme routes requests
appropriately

e Useful for hierarchical device structures:
— USB, IEEE-1284 (parallel), ...

RMoX — A Raw Metal occam Experiment 19/30

Device Drivers III

: hardware

r_> serial.0 aCCEsS
hardware

e —

r_> serial.l access

serial

=)

(driver.core) —=

Ry

biosmem

:

biosdata RAM

e Drivers may request connections to other
device drivers

e Carefully controlled to avoid deadlock

RMoX — A Raw Metal occam Experiment 20/30

Filesystems

responses core

e Most filesystems will need a device
to operate on

e Currently implementing a fairly traditional
UNIX-style file-system

e The ramdisk is mounted on / when the
system starts up

RMoX — A Raw Metal occam Experiment 21/30

File handling

'
I - iorender)

user /system ramdisk.fs
process 0 S

ramdisk

'

e When a file or directory is opened,
‘ramdisk.fs’ FORKS a handler process

e Handler processes (file or directory)
return a client channel-end

e Handler services all requests on the file
or directory by using that channel end.

e Channel-end snapped-back to finish

RMoX — A Raw Metal occam Experiment 22/30

Networking

I P checking
multiplex » and fragment

/A A\ assembler
~ dip. loopback. proto.match |—s proto.match —| proto.match
interface || interface

N + ; +
icmp udp tcp
checks checks checks

i i i

T icmp udp tcp

server server server

multiplex E—J ! J I J
y

: channel linksto network controller
Y : and application processes

e Network infrastructure is from “occamnet”
— a 3rd year project at UKC

e Clear and logical design

RMoX — A Raw Metal occam Experiment 23/30

Networking 11

outbound inbound

packets packets
network. o < ..
core ™1 server ﬁ T

ping.wor ker

application

e Internal server-process structure similar to
other RMoX server components

e Currently supported protocols are limited
to ICMP and UDP

— a simple DNS application exists

— NFS is a larger, but feasible, project

RMoX — A Raw Metal occam Experiment 24/30

? \ F kernel idletask
uptime.tick *
P ™ fscore
Y »| driver.
core
\ network.
q > core 1
| Y Y
consoe log channel

PROC main ()
CT.DRIVER? ct.driver.svr:
SHARED CT.DRIVER! ct.driver.cli:
. other declarations
SEQ
ct.driver.cli, ct.driver.svr := MOBILE CT.DRIVER
. other initialisations
SHARED CHAN BYTE debug.chan:
PAR
driver.core (ct.driver.svr, log.cli, debug.chan!)
kernel (ct.kernel.svr, ct.driver.cli, ct.fs.cli,
ct.network.cli, log.cli)
. other processes
SEQ
SETPRI (31)
CLAIM debug.chan?
idle.task (debug.chan?)

RMoX — A Raw Metal occam Experiment 25/30

T he console

todriver.core

?

S console login

------------------- IR

‘vthandlery :ivthandler :ivthandler

vt220 matrix system. . tokernd

console

T

link to
vga
driver

vgaplex
L L L ¢ link to

vtkeyswitch [<¢—# keyboard
: driver

e Starts everything else off
e Handles the kernel log

e ‘system.console’ process provides
prompt and basic commands

RMoX — A Raw Metal occam Experiment 26/30

Implementation

e Hardware is accessed in one of three ways:
— IO port reads/writes
— memory-mapped devices

— interrupts

e Some devices may require polling:
— not generally recommended

— possible, with minor efficiency loss,
through the use of timeouts

e RMoX requires a lower-level interface for
managing these

RMoX — A Raw Metal occam Experiment

27/30

Structure

C

occam applications

lications
anp RM oX
CCSPllibs RM oX
device
OSKit drivers
hardware

e OSKit manages memory,

interrupts

IO ports and

e Once ‘allocated’, memory and IO ports can
be used directly from occam

e CCSP schedules occam processes

— and controls execution of C processes

e Interrupts are handled using a combination
of the OSKit and CCSP

RMoX — A Raw Metal occam Experiment 28/30

User-Mode RMo

requests
<—»| fscore [T\v :
responses \‘
ramdisk.fs host.fs <> ﬁrgﬁrgrary

|<--- - XtEXtwindow
: library

ramdisk VGA

\h

r esponses core

e RMoX is simply a dynamic set of
communicating occam processes

— ... and can be run as a normal
KRoC/occam application

e User-mode RMoX (UM-RMoX) provides an
abstraction for hardware, using the existing
RMoX interfaces

RMoX — A Raw Metal occam Experiment 29/30

User-Mode RMoX 11

e Allows the core components of RMoX to
be developed in a ‘regular’ environment:

— good test for language extensions

— significantly reduces test-debug time

e Cannot provide real hardware
— emulation is only an approximation

— IO port accesses are possible using iopl ()

e Gives wider access for development and
experimentation

— student projects, ...

RMoX — A Raw Metal occam Experiment 30/30

On-going Research

e Still under development, but progressing
well (delayed by thesis)

e Reasonable number of basic devices now
supported:

— serial driver works well enough to launch
a ‘system.console’ process on it

— using FIFOs and interrupt-driven com-
munication

e Basic file-system driver support:

— ‘ram.fs’ and ‘dev.fs’ are implemented and
work correctly

— device filesystem mirrors the nested struc-
ture of devices

e Very fast! :-)

