Mobile Data Types for
Communicating
Processes

Peter Welch
Computing Laboratory
University of Kent at Canterbury
(P.H.Welch@ukc.ac.uk)

PDPTA 2001, Las Vegas, Nevada (28th. June, 2001)

Communicating Settt’nential
Processes (CSP)

CSP deals with processes, networks of processes and
various forms of synchronisation /| communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is pre-engineered
into the model. We benefit from this simply by using it.

Processes

A process is a component that encapsulates some data
structures and algorithms for manipulating that data.

Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [It is not an object.]

The algorithms are executed by the process in its own
thread (or threads) of control.

So, how does one process interact with another?

t
Processes < mrrocess |

The simplest form of interaction is synchronised message-
passing along channels.

The simplest forms of channel are zero-buffered and
point-to-point (i.e. wires).

But, we can have buffered channels (blocking/overwriting).
And any-1, 1-any and any-any channels.
And structured multi-way synchronisation (e.g. barriers) ...

And high-level (e.g. CREW) shared-memory locks ...

Synchronised Communication
<o o
A B

A may write on ¢ at any time, but has to wait for a read.

B may read from c at any time, but has to wait for a write.

(A @B @)\ {c}

Synchronised Communication
> | [®
A B
_clx J L c?y J

Only when both 4 and B are ready can the communication
proceed over the channel ¢ ...

A©]B @)\ {c}

Synchronised Communication
< | | ®
A B
L clx __c?y

Only when both 4 and B are ready can the communication
proceed over the channel ¢ ... and it’s happened!

(A @B @)\ {c}

Copy Semantics
< | | ®
A B
_clx J _c?y J

Classical occam: data are copied from the workspace of 4 into
the workspace of B. Subsequent work by A on its x variable
and B on its y variable causes no mutual interference.

Reference Semantics
g vy
A = B

L ctx _dl K_c?y J

Java/JCSP: references to data (objects) are copied from the
workspace of 4 into B. Subsequent work by A on its x variable

and B on its y variable causes mutual interference (race hazard).

Reference Semantics

before

Reference Semantics

after

x/ \z \y
A 2 B
___c?%y

Red and brown objects are parallel compromised!

Reference Semantics

after

X e \z \y
A < B
L c?y

Even if the source variable is nulled, brown is done for!!

Classical occam ()

Different in-scope variables implies different pieces of data
(zero aliasing).

Automatic guarantees against parallel race hazards on
data access ... and against serial aliasing accidents.
Overheads for large data communications:

- space (needed at both ends for both copies);

- time (for copying).

¢ JavalJCSP

Hey ... it's Java ... so aliasing is endemic.

No guarantees against parallel race hazards on data
access ... or against serial aliasing accidents. \We must
look after ourselves.
Overheads for large data communications:

- space (shared by both ends);

- time is O(1).

What to do?

Build tools to make Java secure against aliasing errors (and
maintain fast communications through reference sharing)?

@ Too hard ... probably impossible ...

Make occam more flexible. Let it communicate
references (and keep it secure against aliasing errors)?

This is what we have done ...

The Trick Is ...

Between processes is distinct memory spaces, communication
has to be done by copying the data.

Between processes in the same memory space, communication
may be done by copying references to the data.

compatible ... and the latter one semantically safe.

The trick is to make the above two scenarios semantically ‘

Mobile Semantics

Consider copy and move operations on files ...

copy duplicates the file, placing the copy in the target directory
under a (possibly) new name.

move moves the file to the target directory, possibly renaming it:

- the original file can no longer be found at the source address;
- it has moved.

Copy Assignment

As assignment changes the state of its environment, which we
can represent by a set of ordered pairs mapping variables into
data values.

In occam, because of its zero-tolerance of aliasing, assignment
semantics is what we expect:

{<x0,v0>,<x1,v1>,...} x0 := x1 {<xo,v1>,<x1,v1>,...}

[In all other languages with assignment, the semantics are much
more complex - since the variable x0 may be aliased to other
variables ... and the values associated with those aliases will
also have changed to v, .]

Mobile Assignment

Here again is the standard copy semantics for assignment:

{<x0,v0>, <x1,v1>,...} x0 := x1 {<x0,v1>, <x1,v1>,...}

Mobile semantics differs in one crucial respect:
< = > < ?2?>
{ Xor Vo™ <X, V, >, ..} x0 := x1 {<x0,v1 <X, 22> .}

The value of the variable at the source of the assignment has
become undefined - its value has moved to the target variable.

Note: mobile semantics is strictly weaker than copy semantics.
Indeed the latter is a perfectly legal implementation of the former
- a fact of which we shall take advantage presently.

Mobile Communication

The semantics for assignment and communication are directly
related. In occam, communication is just a distributed form of
assignment - a value computed in the sending process is
assigned to a variable in the receiving one (after the two
processes have synchronised).

For example, if x0 and x1 were of type FOO, we have the
semantic equivalence:

x0 := x1 CHAN OF FOO c:
PAR
equals/ c ! x1
— c ? x0

We preserve this equivalence for mobile communications -
hence, the value of the sent mobile variable becomes undefined.

Mobile Syntax (1/4)

We propose two extra keywords for occam - a MOBILE qualifier
for data types/variables and a CLONE prefix operator.

The MOBILE qualifier doesn’t change the semantics of types as
types. For example, MOBILE types are compatible with ordinary
types in expressions.

But it imposes the mobile semantics on assignment and
communication between MOBILE variables. So, if we had:

DATA TYPE FOO
MOBILE RECORD
<data fields>

... then assignment and
communication between
x0 and x1 has mobile

(not copy) semantics.

FOO x0, x1:

Mobile Syntax (2/4)

The MOBILE qualifier need not be burnt into the type declaration
- it can be associated just with particular variables.

For example, the following is an alternative to the declarations
on the previous slide:

DATA TYPE BAR

RECORD
<same fields as FOO>

MOBILE BAR x0, x1:

... then assignment and communication between %0
and x1 has mobile (not copy) semantics.

Mobile Syntax (3/4)

In some cases, we may need copy semantics from MOBILE
variables. For this purpose, a CLONE operator is provided.
This generates a copy of the mobile on which the required
assignment or communication can be performed.

For example:

SEQ
x0 := CLONE x1
c ! CLONE x1

%0 and x1 are
mobile variables

Both the above assignment and communication leave the value
of x1 alone - i.e. we are back to copy semantics.

Mobile Syntax (4/4)

We had earlier toyed with having new symbols to indicate
mobile assignment (< -) and mobile output (<!).

Then, we could use the ordinary symbols (: = and !) to mean
copy assignment and output and there would be no need
for the CLONE operator.

But that would prevent us having mixed mobile and non-mobile
components in messages. For example, if:

PROTOCOL MIXED IS FOO; BAR; FOO:
CHAN OF MIXED mixed:

BAR y: ... leaves x0 and x1

Then: undefined - but y is)

mixed ! x0; y; x0 unchanged

Undefined Usage Checks (1/3)

It is an error to look at a variable whose data value is currently
undefined.

This is exactly the same error as attempting to access the
value of an uninitialised variable (mobile or non-mobile).

We have modified the KRoC occam compiler to analyse the
state (defined or undefined) of all variables at all points of use.
We track across function/procedure boundaries, including
those from separately compiled libraries. Remember that
MOBILE variables, unlike ordinary ones, can transition both
ways between undefined and defined.

We take a conservative view: if there is a runtime-decided path
through some serial logic (SEQ/IF/CASE/WHILE/ALT) that can
leave a variable undefined, it is marked undefined.

Undefined Usage Checks (2/3)

Undefined usage checks take place following parallel usage
checks. So, if a variable is undefined before a PAR construct,
it remains undefined if no single parallel component defines it.

A more difficult problem is tracking the status of array elements,
whose indices are usually run-time values. There is a similar
problem for the existing parallel usage checker. We adopt the
same solution: treat the array as an atomic unit - either wholly
defined or undefined. This may get more sophisticated later.

Tracking the status of record fields is not a problem. Each
<variable, field-name> pair is treated as a separate variable.

Undefined Usage Checks (3/3)

Currently, our compiler only issues warnings about the use of
undefined (or possibly undefined) variables. Later, this will
change to rejection.

For well-designed code, the conservative nature of the analysis
should cause no problem. For bad code, compiler rejection will
encourage better style.

[An alternative to definedness checking would be to define
default values for all types and set them following variable
declaration or mobile operations. If the default values were
type-illegal, their use could be trapped at run-time. We are
not doing this. Legal default values (such as zero) causes
errors for lazy programmers. lllegal ones lead to needless
run-time overheads.]

Implementation of Mobiles

As said earlier, implementation of mobile operations by copying
is perfectly legal. For efficiency, this is precisely how small
mobiles (e.g. those whose data types require less than 8 bytes)
are managed - the compiler simply ignores the MOBILE
qualification.

The same can be done for mobile communications between
processes occupying different memory spaces.

The interesting case is mobile communications between
processes occupying the same memory space. And, of course,
for mobile assignments (which can only be within the same
memory space).

Mobiles in the Same Memory

The obvious scheme is used: MOBILE variables hold pointers to
their actual data. Those pointers are not apparent to the user
(the same as for Java). Mobile assignment/communication is
just the copying of those pointers.

However, unlike OO languages, we are not going to allow
these pointers to set up any aliases.

Space for all mobile data will be in a globally accessible heap
(mobilespace). Unlike conventional heaps, strict zero-aliasing
will be conserved. It will hold only tree structures and MOBILE
variables will only point to the root of such trees. Different
MOBILES will reference different trees.

There are No Null Mobiles!

Although MOBILE variables hold pointers, we have decided
against allowing the user to know about or see NULL values
(unlike Java). Correct code would never try to follow NULL

pointers - the undefined analysis will see to that.

In fact, we will arrange that mobile variables hold at all times
valid pointers - although the data at which they are pointed
may sometimes be undefined. The undefined analysis will
prevent following those pointers in the latter case.

Pre-Allocated Mobilespace

Classical occam has constraints designed to meet security
requirements for embedded systems operating within fixed
size (sometimes very small) memory limits:

Forbidden are recursion, runtime computed parallel
replication counts and runtime sized arrays.

Sticking to these constraints allows tremendous optimisation
in the management of mobilespace.

The total number of MOBILE variables (record fields, array
elements) that can ever become active in a system is known
to the compiler - plus the sizes of all types underlying those
mobiles. Therefore, the total size for mobilespace can be
exactly calculated and pre-initialised.

(Free-List Mobilespace)

The original plan was to maintain free-lists of mobile data nodes
- one for each underlying type. The maximum size of those
free-lists would be known in advance.

When a MOBILE loses data because it receives new data by
mobile assignment/communication - or because it exits scope -
the lost data node is appended to the relevant free-list.

When a MOBILE loses data because it is the source of a
mobile assignment/communication, pick up some undefined
material from the relevant free-list.

Both these operations are unit time.

Swapping Mobilespace
The free-lists are not needed! |

When a MOBILE loses its data because it receives new data
from a mobile assignment or communication, park the lost data
node with the mobile variable at the source of the operation.

That sorts out the MOBILE source and target at the same time -
they simply swap pointers! The fixed size of mobilespace is
conserved, along with zero-aliasing.

Formally, this implements the mobile semantics. Data
has moved from source to target and the source variable
has become undefined.

The fact that the source now holds the target’s old data (i.e. that
the transfer is bi-directional), we forget. No advantage must be
taken of this - to allow the copying implementations for small
mobiles and between memory spaces.

Mobile Storage Allocation (1/7)

The pointers to mobile data cannot safely reside in ordinary
process workspace. That gets reused by other processes
and we must not lose the referenced nodes.

Instead, pointers to mobile nodes must reside (permanently)
in mobilespace, along with the nodes themselves.

Each MOBILE variable must have a shadow in mobilespace
holding a pointer to a mobile node. When the MOBILE comes
into scope, it picks up the pointer held by its shadow. When it
leaves scope, it returns its pointer to its shadow.

The returned pointer will (probably) be different if mobile
operations have been performed.

Mobile Storage Allocation (2/7)

The compiler generates a static mapping of all mobile data
nodes and shadow pointers on to mobilespace. This is
similar to how process workspace and vectorspace is
allocated. The rules for mobilespace differ in that space
cannot be shared between sEQuential processes.

Processes using MOBILE variables are passed an extra
parameter, giving the offset into mobilespace to find its
shadows. This is the same mechanism used for workspace.

The compiler generates code to clear all shadow pointers to
null (zero). It also generates code so that the first time a
process with MOBILES executes, it checks to see if the first
shadow pointer is null. If so, it sets up correct pointers to the
mobile data blocks already allocated.

Mobile Storage Allocation (3/7)

For example, expanding an earlier definition:

DATA TYPE FOO
MOBILE RECORD
[4] INT dest:
MOBILE [32]BYTE payload:

Consider a process containing the following declaration:

FOO x0, x1:

The first time it comes into scope, it will find its part of
mobilespace in the following state:

Mobile Storage Allocation (5/7)

(x0) i
shadows) null)
- (x1) ® /// For example, expanding an earlier definition:
FOO [dest] [4] INT DATA TYPE FOO
_______________ MOBILE RECORD
FOO [payload] ° [4] INT dest:
MOBILE [32]BYTE payload:
[32]1 BYTE
FOO [dest] [4] INT Consider a process containing the following declaration:
——————————————— FOO x0, x1:
FOO [payload] °
[32] BYTE So, when it comes into scope, if its first MOBILE is null, it sets
up the pointers correctly to the pre-allocated nodes:
x0) . Mobile Storage Allocation (7/7)
(x1) o~ For example, expanding an earlier definition:
FOO [dest] [4] INT DATA TYPE FOO
MOBILE RECORD
FOO [payload] —— | [4] INT dest:
Lt > MOBILE [32]BYTE payload:
[32]1 BYTE
FOO [dest] [4] INT Consider a process containing the following declaration:
_______________ FOO x0, x1:
FOO load —
[payload] The second and subsequent times it comes into scope, it will
[32] BYTE find its shadows with valid pointers and simply copies them
into x0 and x1. When it leaves scope, it copies them back.

Dynamically Sized Mobiles (1/2)

So far, in keeping with classical occam, all mobiles have had
statically determined memory requirements.

On systems with no memory constraints, such as those with
virtual memory support, one other mobile structure becomes
possible - the runtime sized array:

MOBILE []BYTE buffer:
INT n:
SEQ
in ? n
buffer := [n]BYTE
. process using buffer

Dynamically Sized Mobiles (2/2)

Mobile operations on dynamic mobiles will not be implemented

by the pointer swapping technique described earlier - since
source and target arrays may not have the same size.

Instead, free-lists of nodes (with separate lists for half-power-
of-two sizes) are used, combined with Brinch Hansen’s
algorithm for workspace allocation to support efficient parallel
recursion. These form dynamic mobilespace.

Mobile dynamic array nodes are extracted from free-lists on
scope entry and returned on scope exit — no shadows are
therefore needed. The free-lists are also used when nodes
are lost and re-acquired during mobile operations. All these
are unit time operations.

Mobile Parameters (1/2)

Parameter passing is just renaming - at least that's the
formal position in occam. It is different from assignment
and communication. So, no mobile semantic issues arise.

For instance, using MOBILES in expressions (as function or
user-defined operator arguments) does not lose their values.
Recall that occam functions and operators are guaranteed
free from side-effect, so no mobile assignments can be
performed. Communications cause external state change
and are always banned — mobile or otherwise.

MOBILE variables passed by reference to procedures (occam
PROCS) may, of course, be moved to another MOBILE variable
or down a channel - no problem.

Mobile Parameters (2/2)

We do not allow functions or operators to declare formal VAL
MOBILE parameters. However, MOBILE arguments may be
passed to formal VAL parameters of the same underlying type.

For the same reason, in PROCs we do not allow formal VAL
MOBILE parameters. However, reference MOBILE parameters
are allowed. The following table shows the allowed matches:

(formal parameter)
(actual parameter)| THING VAL THING MOBILE THING
THING yes yes no
VAL THING no yes no
MOBILE THING yes yes yes

Mobile Performance

The following figure shows communication times for a simple
producer-consumer network (running on an 800 MHz. P3).

Two curves show the times (optimised/non-opt) for fixed-size
ordinary arrays - the array sizes range from 1 to 128 bytes.

Another curve shows the times for fixed-sized mobile arrays -
again with array sizes range from 1 to 128 bytes.

The final curve shows the times for dynamic-sized mobile
arrays - again with array sizes range from 1 to 128 bytes.

The times include all the overheads for communication -
including the two context switches from producer to consumer
and back again. All timings are in nanoseconds!

Communication overhead for fixed-size arrays

T T
copy (noinlining) —+—
copy (with mlmm?) %
mobile =

a
o0 |- dynamic mobile

400 |-

300 |-

time per communication (ns)

200 |-

1 2 4 8 16 g 64 128
array size (bytes)

Status of KRoC Mobiles

Fixed-sized non-nested MOBILE types and variables - done.

This includes the described mobilespace storage allocation,
mobile assignment, mobile communication and parameter
passing.

Dynamic-sized non-nested MOBILE arrays - done.

This includes Brinch-Hansen allocation using free-lists for the
dynamic mobilespace, plus the usual mobile assignment,
mobile communication and parameter passing.

Undefined usage checks - done.

Nested MOBILE types and variables - not yet done.

Conclusions (1/4)

We have introduced mobile communications that move
data from a source process (which, therefore, loses it) to a
target process.

Implementation is fast (mainly just pointer swapping), secure
(no aliasing is introduced) and consistent with communication
between different memory spaces.

To nail the aliasing problem, mobile assignment has also
been introduced - with complementary movement semantics
and fast and secure implementation (again just pointer
swapping - apart from dynamic mobiles).

The trick sought at the beginning has been achieved!

Conclusions (2/4)

Repeating this trick for OO languages (such as Java, C# or
C++) is not possible. We could get most of the semantics and
fast implementation, but we cannot enforce control of aliasing
and make it secure. This is the position for Java/JCSP, where
we rely on the user knowing the dangers.

0O language change has to happen - too many concepts are
missing resulting in serious insecurities. One thing is to
separate, by good language engineering, the different uses to
which pointers are put.

They should remain hidden, but we should distinguish their use
for sharing information between different parts of a system (as

for MOBILES) and for building interesting data-structures (such

as doubly-linked lists).

Conclusions (3/4)

No time here to describe applications - but they are prolific.

Whenever we have the pattern of accessing some data,
processing it and passing it on, these ideas of MOBILES are
relevant. That pattern is pretty normal.

We have applied this to occweb - an occam web server
offering highly concurrent performance (and built in one day!).

We are working on a full graphics/GUI library for occam, where
all GUI events and drawing commands map to channel
communications. There is very high traffic and almost all
commicated packets can be declared MOBILE. Currently, we
are secure - but we do an awful lot of copying!

Conclusions (4/4)

The MOBILE pattern is endemic throughout OO systems and
most industrial scale applications of occam (sadly from past
years).

But there is no automated secure management of that pattern
and we must take great care - especially when multithreading
comes into the equation. Very often, we fail with that care.

This paper contributes to the automation of that care and
a considerable reduction in the cost of its execution.

