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Refactoring Functional Programs

• 3 year EPSRC-funded project at the University of Kent: 
– explore the prospects for refactoring in functional languages
– catalogue useful refactorings and prototype tool support
– look into differences between OO and FP refactoring
– concrete focus: Haskell refactoring (would like to add Erlang)
– collect and document Haskell design patterns (each refactoring 

changes from one design option to an alternative, implicitly 
documenting the pros and cons for both)

– we’d like a real life refactoring tool for Haskell programming
• Now at end of year one; have focussed on:

1. refactoring case studies, initial catalogue
2. securing suitable infra-structure for building a refactorer for H98
3. first prototype exists (simple, local refactorings to stress-test 2)

http://www.cs.kent.ac.uk/projects/refactor-fp/
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btw, what is this “Refactoring”?

• Refactoring, the process:
– is about “improving the design of existing code” (Fowler)
– systematically changing program structure, 

without changing program functionality
– representation-level implementation of design changes

• Refactorings, individual steps:
– meaning-preserving program transformations ..

• Refactoring, context:
– software maintenance (separate functional and structural changes, 

simplify the former by supporting the latter)
– agile development processes: continuous design improvement and 

adaptation favoured over monolithic upfront design

δBug = δ Feature = 0



Transformations, transformations,..

• operational semantics, reduction to whnf
• program optimisation, source-to-source transformations to 

get more efficient code
• program derivation, calculating efficient code from 

obviously correct specifications
• refactoring, transforming code structure
• ..
related themes, with substantial overlap, and common theory, 

but with different intentions



Development by transformation
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Between development variants
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Refactoring vs modification

refactor
program program

common 
result

common
specificationspecification A specification B

modify modify
program Bprogram A

result A result A

The better the support for refactoring,
The less look-ahead guess-work needed to anticipate functional changes



A harmless little program

sum []    = 0
sum (h:t) = h + sum t

main = print $ sum [1..4]



But: shouldn’t you write it like this?

fold c n []    = n
fold c n (h:t) = h `c` fold c n t

sum = fold (+) 0

main = print $ sum [1..4]

sum []    = 0
sum (h:t) = h + sum t

main = print $ sum [1..4]



Or like this?
fold c n l ¦ null l    = n
fold c n l ¦ otherwise = head l `c` fold c n (tail l)

sum = fold (+) 0

main = print $ sum (cons 1 (cons 2 (cons 3 (cons 4 nil))))

fold c n []    = n
fold c n (h:t) = h `c` fold c n t

sum = fold (+) 0

main = print $ sum [1..4]

sum []    = 0
sum (h:t) = h + sum t

main = print $ sum [1..4]



Or like what?

… …

…



Or like what?

… …

…

Do not try to guess ahead: 
design minimally now, refactor if neccessary



Soft Ware
design for now, refactor later (if necessary)

• traditional assumptions: 
– code freezes into first form
– any change is expensive and error prone
– you have to get everything right first time
Îsubstantial investment in upfront analysis & design needed

• refactoring changes those assumptions:
– code remains malleable
– structural changes can be inexpensive and safe
– functional changes can be less expensive and safer
– what is “right” can emerge and evolve after coding has started
Îincremental analysis & continuous adaptive redesign

Sounds nice, but can that work?



mini demo



module Sum where

sum []    = 0

sum (h:t) = h + sum t

main = sum [1..4]



generalise definition

module Sum where

sum []    = 0

sum (h:t) = h + sum t

main = sum [1..4]



generalise definition

module Sum where

sum []    = 0

sum (h:t) = h + sum t

main = sum [1..4]

name for new parameter?
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generalise definition

module Sum where

sum n []    = n

sum n (h:t) = h + sum n t

main = sum 0 [1..4]
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main = sum 0 [1..4]
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generalise definition

module Sum where

sum n []    = n

sum n (h:t) = h + sum n t

main = sum 0 [1..4]

name for new parameter? c



generalise definition

module Sum where

sum c n []    = n

sum c n (h:t) = h `c` sum c n t

main = sum (+) 0 [1..4]



rename definition

module Sum where

sum c n []    = n

sum c n (h:t) = h `c` sum c n t

main = sum (+) 0 [1..4]



rename definition

module Sum where

sum c n []    = n

sum c n (h:t) = h `c` sum c n t

main = sum (+) 0 [1..4]

new name?



rename definition

module Sum where

sum c n []    = n

sum c n (h:t) = h `c` sum c n t

main = sum (+) 0 [1..4]

new name? fold



rename definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t

main = fold (+) 0 [1..4]



introduce definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t

main = fold (+) 0 [1..4]



introduce definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t
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name of new definition?



introduce definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t

main = fold (+) 0 [1..4]

name of new definition? sum



introduce definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t

main = sum [1..4]

where

sum = fold (+) 0



lift definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t

main = sum [1..4]

where

sum = fold (+) 0



lift definition

module Sum where

fold c n []    = n

fold c n (h:t) = h `c` fold c n t

main = sum [1..4]

sum = fold (+) 0



demo end



Tool support for refactoring

recap:
– source-level representation of design changes
– meaning-preserving program transformations
Îneed to manipulate source-code, but not as text (semantic editing)

1. Gathering semantic info
– lexical/syntactic/static/type analyses

2. Editing I: analyses/program transformations
– conditional rewrite rules + rewrite strategies

3. Editing II: interaction/integration
– retranslation/faithful presentation at source-level
– navigation/interaction/simple editing



Tool support for Haskell Tools (1)

gathering semantic information
• Ideal: standard interface to semantic info in your favourite 

Haskell implementation? // not there yet..
• Reuse code from one of the implementations/hack your 

own tool-specific frontend? / common practice
• Write or find reusable Haskell-in-Haskell frontend for 

meta-programming and Haskell tool development
– parser/pretty printer: hsparser ☺ (haskell 98)
– Type analysis: thih ☺ (haskell 98 + some variations)
– p/pp+ta: hatchet ☺☺ (haskell 98, somewhat in limbo)
– p/pp+ta+static analysis: programatica frontend☺☺☺

(haskell 98 + some first extensions, under active development; 
see Thomas’ demo this afternoon)



Tool support for Haskell Tools (2)

program analyses/transformation
• you’ve got your annotated AST (scopes,types,..)
• what about tool-specific analyses/transformations?

– idea from optimiser implementations: combine rewrite rules and 
rewrite strategies in strategic programming dsl; implement your 
own traversals on top ☺ Stratego, Strafunski (the latter provides a 
Haskell library)

– abstract Haskell grammar is complex and many-typed: if 
handwritten, the essence of traversals disappears in an 
unmaintainable deluge of boilerplate code /

– ☺ Strafunski already addresses this problem, providing a generic 
strategy library as well as pre-processor support to instantiate it 



Tool support for Haskell Tools (3)

user interaction/integration in development environment
• Refactoring is a form of semantic editing, and needs to be 

integrated with standard development tools and processes
• Write-your-own Haskell editor/browser:

– full control
– zero acceptance
– substantial extra work

• Interface to standard editor (Emacs/Vim):
– restricted control, divergent standards
– easier acceptance
– reduced extra work



Tool support for Haskell Refactorer

1. Gathering semantic info
– Programatica’s Haskell-in-Haskell frontend

2. Editing I: program transformations/analyses
– Strafunski: strategy library and generic programming 

support (currently pre-processor-based)
3. Editing II: interaction/integration

– Text interface to refactorer proper, used via shallow 
script bindings/GUI elements from Emacs and Vim

…
retranslation/faithful presentation at source-level



Theory vs practice, an example

retranslation/faithful presentation at source-level
• initial (bad) idea: no problem

– parse/analyseÆtransformÆpretty print
– most frontends throw away aspects of your code that 

you’d find quite essential (comments, layout)
• revised idea: that needs some thinking

– preserve layout in annotated AST?
– extract layout “style” and imitate that in pretty-printer?
Îuse abstract syntax for abstract tasks, concrete syntax 

for concrete tasks; AST auxiliary, not intermediate 
representation; concrete updates on token stream



Conclusions
• Refactoring Functional Programs:

– 3-year project at U of Kent; at the end of first year 
http://www.cs.kent.ac.uk/projects/refactor-fp/

– Prototype Haskell Refactorer, initial release after PLI (don’t use 
on production sources just yet, but try it out and give us feedback)

– Over the next 2 years, prototype should develop into real-life tool –
neither perfect, nor complete, but in daily use

– Think about refactoring: it’ll change your programming, and 
we’d welcome your suggestions (we have our own unbounded list 
of more complex refactoring candidates, though;-)

– Practice makes the difference (implementing ideas is important!)
• Connections to non-refactoring transformations

– Should we provide an API for extensions (so you can extend our 
tool for program derivation, optimisation, or ...)?

• Infrastructure for Haskell tool development is improving
– time to undust your good ideas and implement them?

http://www.cs.kent.ac.uk/projects/refactor-fp/
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