
TOOL SUPPORT FOR

REFACTORING HASKELL PROGRAMS

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of doctor of philosophy

By

Christopher Mark Brown

September 2008

Contents

List of Tables xi

List of Figures xiv

Publication xv

Abstract xvi

Acknowledgements xvii

1 Introduction 1

1.1 Refactoring . 1

1.2 Refactoring Functional Languages 6

1.2.1 The Haskell Programming Language 6

1.2.2 The Refactoring Functional Programs Project 11

1.3 Refactoring Outline . 13

1.4 Contributions of this Research . 13

1.5 Thesis Outline . 16

2 Tools for refactoring 19

ii

2.1 Introduction . 19

2.2 The Programatica Toolset . 22

2.2.1 The Lexer . 22

2.2.2 The Parser . 23

2.2.3 The Abstract Syntax Tree 25

2.2.4 The Module System . 27

2.2.5 The Pretty Printer . 28

2.2.6 The Advantages and Disadvantages of Using Programatica 28

2.3 Strafunski - Generic Tree Traversal 29

2.3.1 Strategy Types and Application 30

2.3.2 Integrating Strafunski with Programatica 31

2.3.3 Advantages and Disadvantages of Using Strafunski 34

2.4 The Glasgow Haskell Compiler . 35

2.5 HaRe: The Haskell Refactorer . 36

2.5.1 Gathering Information . 37

2.5.2 Transforming and Analysing 37

2.5.3 Preserving Appearance . 37

2.5.4 Interfacing HaRe to Text Editors 38

2.5.5 An Example of HaRe . 38

2.5.6 An API for Defining Refactorings 43

2.5.7 Refactoring Unit Testing 43

2.6 Preserving Correctness . 45

2.6.1 The Left and Right Inverse of Refactorings 48

iii

2.7 Implementing Refactorings . 49

2.8 Summary . 57

3 Program Slicing 60

3.1 Introduction . 60

3.2 Code Elimination . 63

3.2.1 Dead Code Elimination . 63

3.2.2 Irrelevant Code Elimination 67

3.2.3 Summary . 68

3.3 Slicing Based Refactorings . 69

3.3.1 Splitting . 69

3.3.2 Merging . 72

3.3.3 Design and Implementation Issues 74

3.4 Summary . 75

4 Structural Refactorings 76

4.1 Folding . 78

4.1.1 Example . 78

4.1.2 Comments . 79

4.1.3 Conditions . 79

4.1.4 Design Issues . 79

4.2 Generative Folding . 82

4.2.1 Example . 83

4.2.2 Comments . 83

iv

4.2.3 Conditions . 83

4.2.4 Design Issues . 84

4.3 Folding As-patterns . 85

4.3.1 Comments . 87

4.3.2 Example . 87

4.3.3 Conditions . 88

4.3.4 Design Issues . 91

4.4 Unfolding As-patterns . 91

4.4.1 Comments . 92

4.4.2 Example . 92

4.4.3 Conditions . 92

4.5 Converting from let to where . 95

4.5.1 Example . 95

4.5.2 Conditions . 96

4.6 Converting from where to let . 97

4.6.1 Example . 97

4.6.2 Conditions . 98

4.6.3 Design Issues . 99

4.7 Case Analysis Simplification . 100

4.7.1 Example . 100

4.7.2 Conditions . 102

4.7.3 Design Issues . 103

4.8 Bound Variables . 103

v

4.9 Symbolic Evaluation . 104

4.9.1 Case Expression Elimination 105

4.9.2 Symbolic Evaluation Infrastructure 106

4.9.3 Where and Let Clauses . 106

4.10 Summary . 108

5 Data Type Based Refactorings 109

5.1 Type Checking . 110

5.2 Adding a Constructor . 111

5.2.1 Example . 111

5.2.2 Conditions . 111

5.2.3 Design Rationale . 111

5.2.4 Design Issues . 114

5.3 Removing a Constructor . 115

5.3.1 Example . 115

5.3.2 Design Issues . 115

5.4 Adding a Field to a Constructor of a Data Type 118

5.4.1 Example . 118

5.4.2 Conditions . 118

5.4.3 Design Issues . 118

5.4.4 Comments . 119

5.5 Removing a Field . 119

5.5.1 Example . 119

vi

5.5.2 Design Issues . 120

5.6 Introducing Pattern Matches Over an Argument Position 122

5.6.1 Introduction of Pattern Matches 124

5.6.2 Introduction of Pattern Matches for Sub-patterns 126

5.6.3 Introduction of Case Analysis 127

5.7 Summary . 128

6 Clone Detection and Removal 129

6.1 Introduction . 129

6.2 Related Work . 131

6.2.1 Text-based Techniques . 132

6.2.2 Token-based Techniques 132

6.2.3 Tree-based Techniques . 133

6.3 The HaRe Clone Detector . 134

6.3.1 AST-Level Clone Analysis 135

6.3.2 Abstract Syntax Tree Comparison 139

6.4 Refactoring Support for Clone Removal 142

6.4.1 General Function Abstraction 143

6.4.2 Step-by-step Clone Detection 144

6.4.3 Choosing the Location of the Abstracted Function 146

6.4.4 Calculating the Abstraction 149

6.4.5 Abstracting Monadic Sequences 149

6.5 Summary . 151

vii

7 A Refactoring Case Study 153

7.1 Refactoring Sequence . 154

7.1.1 Stage 1 . 155

7.1.2 Stage 2 . 160

7.1.3 Stage 3 - Clone Removal 166

7.2 Future Refactorings . 169

7.2.1 Name a type . 169

7.2.2 Transforming Between Guards and if..then..else . . . 170

7.2.3 Nested Case Expression Elimination 173

7.3 Refactoring an Expression Processing Example 175

7.3.1 Step 1: Initial Implementation 178

7.3.2 Step 2: Introduce Binary Operators 179

7.3.3 Stage 3: House Keeping 180

7.3.4 Stage 4: Generalisation . 182

7.3.5 Stage 5: Introduce Variables 184

7.3.6 Stage 6: Merging . 185

7.3.7 Stage 7: Splitting . 187

7.4 Summary . 190

8 Related Work 191

8.1 Behaviour Preservation and Refactoring 191

8.2 Refactoring Tools . 192

8.2.1 The Smalltalk Refactoring Browser 193

viii

8.2.2 CRefactory . 194

8.2.3 Language-parameterised Refactoring 195

8.2.4 Eclipse . 196

8.2.5 NetBeans . 196

8.2.6 Eclipse vs. NetBeans . 197

8.3 Refactoring in Functional Languages 199

8.3.1 Refactoring Erlang . 199

8.3.2 The Haskell Equational Reasoning Assistant 202

8.3.3 Kansas University Rewrite Engine 203

8.3.4 Fold/Unfold . 203

8.3.5 The Munich CIP Project 204

8.3.6 The Bird-Meertens Formalism (BMF) 205

8.3.7 Other Program Transformation Systems 205

8.4 Refactoring Support . 206

8.4.1 JunGL . 206

8.4.2 Guru . 208

8.4.3 Star Diagram . 209

8.4.4 CatchUp! . 209

8.4.5 Static Composition of Refactorings 210

8.4.6 Munich CIP-S . 213

8.5 Summary . 215

9 Conclusions and Future Work 216

ix

9.1 Conclusions . 216

9.2 Future Work . 220

A Strafunski 229

A.1 Traversal Scheme Excerpts . 229

B The Definition of PNT, from Programatica 231

C Huffman Tree Encoding 233

D Clone Report for Huffman Coding 245

E Clone Report for MainNew within nhc 247

F Clone Class Extract 254

G Folding As Patterns Implementation 255

H Excerpts from the HaRe API 263

I The Stages of the Expression Processor 266

I.1 Stage 1 Parser . 266

I.2 Stage 6 Parser . 268

I.3 Final Parser . 269

References 272

x

List of Tables

1 Expressions grouped for clone analysis 138

2 Refactorings implemented in the Refactoring Browser 194

3 Refactorings implemented for the Eclipse platform 196

4 Refactorings implemented in NetBeans 198

5 The representation of the code in Figure 47 in a database 201

xi

List of Figures

1 The structure of the refactorings 14

2 The parameterised syntax for expressions 26

3 Collecting certain information about the abstract syntax tree . . . 32

4 Performing an abstract syntax tree modification 33

5 The top-level function of folding as patterns 51

6 The function that finds a pattern match using Strafunski 54

7 The function to change an expression instance to an as pattern . . 55

8 The function to change all expression instances to an as pattern . 56

9 The data type to distinguish different places a pattern match could

occur . 56

10 The function to transform equations for as pattern folding 58

11 Removing dead code from a function 66

12 Before and after simple fold . 78

13 Before and after generative fold 86

14 Folding an as-pattern: instance of a for one operation 89

15 Folding an as-pattern: instance of a for all operation 90

xii

16 Unfolding an as-pattern: instance of a for one operation 93

17 Unfolding an as-pattern: instance of a for all operation 94

18 Conversion of a let to a where and vice versa 98

19 A simple case expression . 105

20 A case expression demonstrating a simple let binding 107

21 A case expression demonstrating an infinite let binding 107

22 Adding a constructor . 112

23 Destructively removing a constructor 117

24 Adding and removing a field . 123

25 Introducing pattern matches for a sub pattern 126

26 Introducing a case analysis for a sub pattern 127

27 An overview of the clone detection process 136

28 Duplicated instances of the same expression 143

29 Duplicated instances replaced with a call to abs 1 145

30 Two code fragments showing code instances for step-by-step removal147

31 A multiple-module project demonstrating clone instances 147

32 A multiple-module project demonstrating circular inclusions . . . 147

33 A code fragment within Derive.hs that has potential for refactoring 160

34 The similarities between the two equations of startDeriving . . 161

35 The refactored definition of startDeriving 165

36 Two code fragments showing instances for name a type 171

37 Two code fragments showing the refactored code for name a type 171

38 Further code fragments showing instances for name a type 172

xiii

39 A code fragment showing an instance for if..then..else to guards173

40 A code fragment showing the conversion of if..then..else to

guards . 174

41 A code fragment showing an instance of a nested case expression 175

42 A code fragment showing an instance of a nested case expression

eliminated into a case expression with a tuple pattern match . . . 176

43 A parser for a simple language . 177

44 The parser implementation with the generality of binary operators

expressed . 181

45 The parser implementation with plus and multiplication 183

46 The parser implementation with the generality of binary operators

expressed . 188

47 Source code of the example function clause 201

xiv

Publication

I, Christopher Mark Brown, declare that the work in Chapter 3 has been previ-

ously published [13] in a conference proceedings and that I am the main author

of the work.

xv

Abstract

Refactoring is the process of changing the internal structure of a program, while

preserving its behaviour. The behaviour preservation is crucial so that refactor-

ings do not introduce any bugs. Refactoring is aimed at increasing code quality,

programmer productivity and code reuse. Refactoring has been practised man-

ually by programmers for as long as programs have been written; however, with

the advent of refactoring tools, refactoring can be performed semi-automatically,

which allows refactorings to be performed (and undone) easily.

This thesis reports research into a set of program refactorings for the func-

tional programming language Haskell, using the framework of the Haskell Refac-

torer, HaRe. The program refactorings generally fall into two categories. Struc-

tural refactorings, that affect programs at the expression level, and type-based

refactorings that affect programs at both the type level and the expression level.

Type-based refactorings use the type checker as part of the refactoring process.

Furthermore, the thesis looks into deriving a program slicing technique for

Haskell programs and defines a set of refactorings used to help eliminate dead

code from a program. Haskell clone detection, that is, detection of duplicate

code, and removal is also discussed.

A case study into refactoring Haskell programs is also given; the case study not

only looks into using the refactorings described in this thesis, but also at general

ways to refactor Haskell systems.

xvi

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Simon Thompson, for

his amazing intellect and guidance. I have never met anyone with such a high

level of knowledge, dedication and encouragement. His guidance has always been

invaluable and it has often been a useful reality check for getting me through the

tough times.

I would like to thank Dr. Dave Harrison, for being the un-hired help, and also

for being a great friend. Our meetings have always been useful, and without his

support I probably would never have finished.

I thank my family for their amazing support and patience throughout my

university life.

I thank the members of the Computing Lab at the University of Kent. In

particular, my colleague Dr. Huiqing Li for her ongoing help and patience.

A special thanks goes to my friends Daniel Grundy, Thomas Davie and Toby

Huitson for being there when the going got tough. I thank them for helping me

get through this, all of them have helped much more than they will probably ever

realise.

I would like to extend my thanks to George and Pauline Urwin for allowing me

stay at their house in the final stages. Their hospitality has been very generous,

it is not often we meet such generosity these days. A personal thanks to George,

for allowing me to appreciate that there is more to life other than functional

programming.

xvii

Chapter 1

Introduction

This thesis is concerned with the investigation and implementation of a number of

refactorings for Haskell. The refactorings are themselves written in Haskell [108],

and implemented using the framework of HaRe, the Haskell Refactorer [68]. This

chapter is aimed to give an overview of this thesis. In particular, Refactoring in

general is described in Section 1.1 (Page 1); Section 1.2 (Page 6) describes what

it means to refactor functional languages, including giving a brief overview of

Haskell in Section 1.2.1 (Page 6). We then given an overview of the refactorings

outlined in this thesis in Section 1.3 (Page 13); the contributions of the thesis are

given in Section 1.4 (Page 13); finally, a summary of the proceeding chapters is

given in Section 1.5 (Page 16).

1.1 Refactoring

Often programmers write a first version of a program without paying full at-

tention to programming style or design principles [54]. Often, having written a

program, the programmer will realise that a different approach would have been

much better, or that the context of the problem has changed. Refactoring tools

provide software support for modifying a program into a better written program

thus avoiding the expense of re-starting from scratch.

Refactoring is the process of changing the internal structure of a program, while

1

CHAPTER 1. INTRODUCTION 2

preserving its behaviour. The term refactoring was first introduced by Opdyke in

his PhD thesis in 1992 [86] and the concept goes back to the fold/unfold system

proposed by Darlington and Burstall in 1977 [14]. The key aspect of refactoring

—in contrast to general program transformations, such as genetic programming

[44] — is the focus on purely structural changes rather than changes in program

functionality. Specifically, the advantages of refactoring are as follows:

• Refactoring is aimed at improving the design of software. Without refactor-

ing, the design of a program will decay. As people change code —changes

to realize short-term goals or changes made without a full comprehension

of the design of the code—the code loses its structure. Regular refactoring

helps to tidy up the code and to retain its structure.

• Refactoring makes software easier to understand. Programmers often write

a program without thinking about future developers. They may understand

their code at the moment that they are writing it, but in a short time the

code may become completely incomprehensible. Refactoring helps the pro-

grammer to make their code more readable and therefore more amenable to

change. A small time spent refactoring can make the code better communi-

cate its purpose.

Refactoring can also be used for a related purpose. Refactoring can be used

to understand unfamiliar code, as programs are written in a very idiomatic

style, refactoring can be used to change a program that is written in the

style of one programmer so that it suits the style of another. Refactoring in

this way helps to understand the design of the code.

• Refactoring encourages code reuse. Poorly designed code often has lots of

repetition, i.e. identical code blocks that are the result of cut and paste

routines. An important aspect of improving the design of a program is to

eliminate duplicate code from the program. The importance of removing

duplicate code lies in the ability to improve and maintain the code at a later

stage. By removing the duplicate parts, the programmer is ensuring that

CHAPTER 1. INTRODUCTION 3

the code says everything once and only once, which is one of the principles

of good design.

• Refactoring helps the programmer to program faster. Refactoring encour-

ages good program design, which allows for a development team to better

understand their code. A good design is essential to maintaining speed in

software development. Refactoring helps the programmer develop software

more rapidly, because it stops the design of the system from decaying.

• Refactoring helps the programmer find bugs. As refactoring helps improve

the design and understanding of a program, it helps the programmer to

verify certain assumptions they’ve made about the program.

When a programmer learns a new technique that greatly improves their produc-

tivity, it is difficult to see when the technique does not apply. The following

describes some of the pitfalls of refactoring:

• Changing Interfaces. Renaming a function, for example, changes the inter-

face of a module. This can be potentially very dangerous if the renamed

function was part of an API or a large development project. It could be

that the other programmers of the system don’t expect the renaming to

have occurred.

• Refactoring and Design. Refactoring has a special role as a complement to

design. Many people consider design to be the key piece and programming

just the mechanics. One argument is that refactoring can be an alternative

to upfront design, and could be relied upon by the programmer to implement

the first approach that seems to work and then refactor it at a later stage.

Refactoring is therefore not an excuse for avoiding serious thinking about

program design.

The refactorings that we consider in this thesis are implemented in the Haskell

Refactorer, HaRe. HaRe is the result of the combined effort of the Refactor-

ing Functional Programs project at the University of Kent [71]. HaRe provides

CHAPTER 1. INTRODUCTION 4

refactorings for the full Haskell 98 standard [93], and is integrated with the two

most popular development environments for Haskell programs [95]: Vim [87] and

(X)Emacs [15]. HaRe refactorings can be applied to both single- and multi- mod-

ule programs; HaRe is itself implemented in Haskell, and is built upon the Pro-

gramatica [40] compiler front-end, and the Strafunski [65] library for generic tree

traversal. The HaRe programmers’ application programmer interface (API) pro-

vides the user with an abstract syntax tree (AST) for the program together with

utility functions (for example, tree traversal and tree transforming functions) to

assist with the implementation of refactorings.

Pure functional programs are referentially transparent [105], therefore the op-

portunities for refactoring are much greater than for imperative programs. The

classical example of this, of course, is that in a functional language it is always

possible to transform f x + g x into g x + f x (assuming, of course, that + is

a binary commutative operator). This is not possible for an imperative language

because either f or g may change the value of the parameter x and therefore the

result will depend on execution order, this could also happen if x or any global

variable name is used in the computation of f / g. In addition to this, in a func-

tional language duplicated occurrences of an expression (within the same scope)

will have identical values, and so could be replaced with a shared computation;

this is also not the case for imperative programs.

Refactoring can occur at any level within a program: some refactorings may

occur within the scope of a function, say, and some may occur within the entire

program scope. The renaming refactoring, for instance, renames all instances

of a particular name within the scope of the entity where the name is declared;

whereas, renaming a global name (such as a top-level function name, say) can

potentially affect the entire program (as long as the refactoring can be performed

at all).

A refactoring can either be atomic or composite. An atomic refactoring cannot

be decomposed into simpler refactorings, whereas a composite refactoring can

be decomposed into a series of smaller refactorings. For example, the introduce

CHAPTER 1. INTRODUCTION 5

pattern matches refactoring, described in Section 5.6.1 could have been described

in terms of the following atomic refactorings: introduce sub-pattern, unfolding and

case analysis simplification.

Refactoring is actually a very common process and is usually practised im-

plicitly, as programmers modify their existing code base. After writing a working

program, a programmer may refactor the program to improve the programs de-

sign; they also may refactor the program to make the program more amenable to

change, before changing the functionality of an existing system.

In the last decade a diverse range of refactoring tools have been developed

for various programming languages. Before then, refactoring was typically done

manually or with the help of text editor “search and replace” facilities. Manual

refactoring is tedious, error-prone and, in most cases, slow. Recently developed

refactoring tools help programmers refactor by offering a selection of automatic

refactorings for their code base (a selection of refactoring tools is listed below;

a more detailed review of refactoring tools is given in Chapter 3). Since the

first successful refactoring tool: the Refactoring Browser [97], which supports

Smalltalk refactoring, there has been a growing number of refactoring tools for

a variety of different languages such as: Java, C, C++, C#, Python and UML

[33]. The most recent release of the IntelliJ IDEA refactorer supports 35 Java

refactorings [11]. Manual refactoring requires many extensive tests to ensure that

the functionalities of the program are preserved [32]. While extensive tests can

show up many bugs and improve an overall confidence, they cannot prove the

correctness of a program.

When constructing a refactoring tool, there are two main activities to consider:

program analysis and program transformation. Program analysis checks whether

certain side-conditions (side-conditions are used in this thesis as an equivalent

notion to pre-conditions), which are necessary for the refactoring, are met. Pro-

gram analysis also collects information needed during the program transformation

phase. For example, the introducing as-pattern refactoring —as implemented as

part of this thesis— in a Haskell program requires the following:

CHAPTER 1. INTRODUCTION 6

• An Abstract Syntax Tree (the AST), which provides a complete structural

representation of the program in question.

• The token stream, which includes information regarding the program’s lay-

out and comments.

• The particular part of the AST where the as-pattern is to be introduced

(including the scopes that the as-pattern will effect).

• The pattern to which the as-pattern will be bound.

• The name which will be given to the newly declared as-pattern.

Program transformation is performing the actual structural code changes that

make up a given refactoring. Both these steps are amenable to automation, as

manifested by the rich collection of existing work in many areas of software engi-

neering including compiler construction [8] and program slicing [119].

1.2 Refactoring Functional Languages

This section comprises of two parts. Section 1.2.1 introduces the Haskell pro-

gramming language which is used as the language to refactor for this thesis. Sec-

tion 1.2.2 discusses refactoring functional programming languages, in particular

Haskell, and outlines any special issues that arise from refactoring Haskell pro-

grams.

1.2.1 The Haskell Programming Language

Haskell is a programming language that belongs to the functional paradigm. It

differs to imperative languages such as C++ and Java in many ways. In imperative

languages, programs are composed of statements which can change a global state

when executed (such as writing to a file, or changing a variable). In a functional

language, programs are composed by evaluating expressions and control the use

of state and mutable data such as global variables in a helpful way. The most

CHAPTER 1. INTRODUCTION 7

recent standard is Haskell 98, and is defined in Haskell 98 Language and Libraries:

the Revised Report [92]. Haskell is the result of many years of research into lazy

functional languages. The purpose of this section is to give a brief over-view

of Haskell, it is not intended to give a complete description of the language. A

complete specification can be found in the Haskell 98 report. This section is aimed

at giving a brief overview of some of the basic features of Haskell:

• Referential transparency is the idea that expressions have values, and

that value will always be the same, within the particular scope or context it is

evaluated in. Referential transparency is what makes a functional language

pure by making variables immutable. By declaring x = 6 we are really

declaring an equation to state that x is bound to the value 6. No matter

where x is evaluated it will always give the result 6 provided it is used in

the scope that it is bound.

• Lazy evaluation means that expressions and function arguments are only

evaluated when they are really needed and duplicate expressions in the same

scope can be replaced with a shared computation. To demonstrate this, we

first consider a function written in C, which is evaluated using the strict, call

by value semantics of C. Unlike Haskell which uses non-strict, call by need

(or lazy evaluation) semantics, C evaluates its function arguments before

the function body, regardless of whether they are needed or not. Consider:

int f (int x, int y)

{

return x+x;

}

This function always diverges if we pass (3+3) for x and (1/0) for y as the

arguments to f will be evaluated before the function call.

In Haskell however, arguments are only evaluated once and when they are

needed. The same function in Haskell would be as follows:

CHAPTER 1. INTRODUCTION 8

f x y = x + x

With lazy evaluation, we can evaluate f by introducing a shared computation

for the argument x as follows:

f x y = k + k where k = x

f (3+3) (1/0)

=> k + k where k = 3 + 3

=> k + k where k = 6

=> 6 + 6

=> 12

As the expression (3+3) is used twice on the right hand side of f it is

introduced as a shared definition within a where clause. The expression

(1/0) is never used, so Haskell never attempts to evaluate it.

• Recursion allows for iteration without mutable variables. To illustrate this,

consider the following function that calculates the length of a list:

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

The length of an empty list ([]) is 0, while the length of a non-empty list

(where x is the head and xs is the tail of the list) is 1 plus the length of the

tail of the list.

• Higher-order functions are functions that take other functions as their

arguments or return functions as their results. In most cases, it is the latter

that is more important, as a program can create functions dynamically. It is

possible to have functions as arguments in Pascal or C, say, but this doesn’t

make them higher-order. For example, in Haskell it is possible to write a

function to add 2 to every element of a list:

CHAPTER 1. INTRODUCTION 9

subtract2 [] = []

subtract2 (x:xs) = x - 2 : subtract2 xs

In the example we have two equations, defined with pattern matching. The

first equation states that if we pass the empty list ([]) to subtract2 we

get [] back. The second equation states that if we pass a non-empty list to

subtract2 where x is the head of the list and xs is the tail, we can subtract

2 from the first element, and then subtract 2 from the rest of the list using

recursion. It is possible to generalise this function further, by introducing

a new argument for subtract2 that allows us to apply any function to the

elements of the list:

subtract2 f [] = []

subtract2 f (x:xs) = f x : subtract2 f xs

We can then call subtract2 with (-2) as its first argument (the function

(-2) is given to us by the partial application of the operator (-)). The

definition of subtract2 is now polymorphic: it can take a function that

takes an argument of any type, and the implementation of subtract2 is

completely transparent to this.

• Monads provide one way of introducing side effects to a pure language.

While the language remains pure and referentially transparent, monads can

provide implicit state by threading it inside them. Allowing side effects only

through monads and keeping the language pure makes it possible to have

lazy evaluation that does not conflict with the effects of impure code. Even

though the expressions are evaluated lazily, some parts of them are forced

by monads to be evaluated in a specific order and the effects are properly

sequenced. The following shows the example of a monad in Haskell, using

the do notation (taken from Hutton’s parser combinator library [48]):

p :: Parser (Char,Char)

CHAPTER 1. INTRODUCTION 10

p = do

c <- item;

item;

d <- item;

return (c,d)

In the above example, we define a parser that consumes three characters,

throws away the second character, and returns the other two as a pair.

• Data types allow Haskell programs to be made up of meaningful and flex-

ible representations of the data we wish to manipulate. To illustrate this,

we show the Haskell built-in data type called Maybe. This data type can be

used in only two possible ways, either Nothing or Just a value of any type:

data Maybe a = Nothing | Just a

It is also possible to define functions over the data types we define by pat-

tern matching. Pattern matching allows the program to direct the flow of

evaluation. Consider the following function, which is also a Haskell built-in

function:

isJust :: Maybe a -> Bool

isJust Nothing = False

isJust (Just x) = True

Passing Nothing to inJust forces the first equation to be evaluated, re-

turning the value False; passing Just 42, say, instead forces the second

equation to be evaluated, returning the value True.

This research examines the application of a number of transformation and analy-

sis techniques for Haskell programs, and also uses Haskell as the implementation

language. Implementation is based upon the infrastructure of HaRe: the Haskell

Refactorer [71], developed at the University of Kent by Li, Reinke and Thompson.

CHAPTER 1. INTRODUCTION 11

Using Haskell as the implementation language allows us to explore the usability

of Haskell for implementing transformation and analysis tools and also allows us

to find out how these transformations and analyses can aid in the development

and maintenance of a large software system. To show an example of the renam-

ing refactoring that is already implemented for HaRe, we rename the function

subtract2 from the previous example to map to better reflect its generalisation:

map f [] = []

map f (x:xs) = f x : map f xs

It is important to note that this renaming will also rename all previous references

to subtract2 to map.

It is assumed that the reader is familiar with the Haskell 98 programming

language for the remainder of this thesis.

1.2.2 The Refactoring Functional Programs Project

The Refactoring Functional Programs was a project carried out at the Computing

Laboratory at the University of Kent. The aim of the project was to investigate

refactoring functional programming languages, namely Haskell and Erlang. Two

refactoring tools for quite different functional languages have emerged from the

project: the Haskell Refactorer, HaRe, and the Erlang Wrangler, which are both

results of the combined development work of Li, Reinke and Thompson [61, 71].

Functional programming languages differ from their imperative counterparts

in both theory and practice. Some functional refactorings, such as renaming

an identifier, removing an unused parameter, etc., are also valid for imperative

languages. There are many refactorings, however, that are unique to functional

programming. Adding a constructor to a data type, introduction/elimination of

as-patterns and monadifying a particular expression (i.e. wrapping an expression

of type a in m a), are all examples of functional programming specific refactorings.

Developing a refactoring tool for a functional language was therefore not simply

a re-implementation of an existing refactoring tool for an imperative language.

CHAPTER 1. INTRODUCTION 12

The layout of Haskell programs tends to be very individual and idiomatic —

despite the fact that the offside rule [66] limits this to some degree— especially if

a standard layout is not enforced by a particular programming editor. It is impor-

tant, therefore, that the refactoring tool preserves as much of the programmer’s

layout style as possible. These aesthetics are important so that the program-

mer can recognize the program after the refactoring process; HaRe supports this

reservation, and also retains the programmer’s comments. It is important to note,

however, that the programmer’s comments may not reflect the program after the

transformation has been made. A definition with explanatory comments, say, may

result in a definition that appears meaningless if the definition is removed and the

comments are still left.

The refactorings already supported by HaRe (and hence not a part of this

thesis) fall into three categories: structural refactorings affecting names, scopes

and the structure of the entities in question; module-aware refactorings affecting

the imports and exports of the program; and data-oriented refactorings of data

types.

Continuing the refactoring tool support for functional languages, the Univer-

sity of Kent also developed the Erlang Wrangler. Like HaRe, the Wrangler is

aimed at the working Erlang programmer and is integrated into the (X)Emacs

editor, and some preliminary work has been done on integrating Wrangler with

Eclipse [28]. Unlike Haskell, Erlang is a strict, dynamically typed functional-based

programming language with support for functions, concurrency, communication,

distribution and fault-tolerance [4]. In contrast to Haskell —which arose from

an academic initiative— Erlang was developed by the Ericsson Computer Science

Laboratory, and like Haskell, has been actively used in industry both within Er-

icsson and beyond. Hitherto, the Erlang Wrangler has support for a number of

refactorings, including: rename an identifier, generalize a function definition and

clone extraction; the project is still a work in progress.

The aim of the research reported in this thesis is to build upon the existing

work of Li [67], using HaRe as an infrastructure, to investigate the development

CHAPTER 1. INTRODUCTION 13

of further (and in some cases more complex) refactorings, transformations and

analyses for Haskell programs.

1.3 Refactoring Outline

The structure of the transformations that form a part of this thesis will proceed

as follows:

• Data type based. Refactorings in this area include: add a constructor to a

data type, remove a constructor from a data type, add a field to a data type,

remove a field from a data type and introduce pattern matching.

• Structural based. Refactorings in this area include: folding, generative fold-

ing, folding as patterns, unfolding as patterns, converting between let and

where, converting between where and let and case analysis simplification.

• Miscellaneous. These fall into two categories: program slicing and duplicate

code elimination.

– Program Slicing. Transformations within this category include: dead

code elimination, splitting tuple returning functions, merging tuple re-

turning functions and an argument instantiation algorithm.

– Duplicate Code elimination defined as abstraction.

Figure 1 shows a diagrammatical overview of the refactoring structure.

1.4 Contributions of this Research

The study of this thesis was carried out as part of the Refactoring Functional

Programs project. This study focuses on adding additional refactorings, transfor-

mations and analyses for the Haskell refactoring tool. The following describes a

brief summary of the contributions; a complete overview of the contributions, in

more detail, is discussed in Chapter 9, on Page 216.

CHAPTER 1. INTRODUCTION 14

Refactoring

Structural based Data-type
based Miscellaneous

Program
Slicing

Duplicate
Code

Elimination

Figure 1: The structure of the refactorings

• Extending the HaRe framework and API for the creation of more complex

refactorings. Previously, the implementation of HaRe had support for a

number of stuctural refactorings. The HaRe framework and API, however,

has been extended to be able to cope with the implementation of larger,

more complex refactorings as part of this thesis. In particular, the API and

framework has been extended to be able to introduce type-aware refactor-

ings. This required that HaRe had access to —and was able to transform

and traverse— type information for the Haskell program under refactoring.

• The design and implementation of a large set of structural refactorings. We

have extended and complemented the already existing set of refactorings by

adding additional structural refactorings. The refactorings are, in general,

more complex and require a more developed refactoring framework.

• The design and implementation of a set of type-aware refactorings, in partic-

ular refactorings that transform programs at the type level: directly affecting

CHAPTER 1. INTRODUCTION 15

the data types of the program; and refactorings that transform programs at a

structural level: directly affecting the terms under a specific type constraint.

The aim of the implementation of type-aware refactorings was to extend the

HaRe framework to firstly deal with Haskell type checking —particularly in

the context of Haskell program transformation and analysis, and secondly

to complement and extend HaRe’s catalogue of structural refactorings.

• Defining program slicing in a new way for functional programming and de-

riving a set of program slicing based refactorings. Currently, there has been

little work in researching program slicing techniques for Haskell. We there-

fore have defined a new program slicing technique for Haskell programs called

splitting; merging, the converse of splitting, is also defined. There are also

a number of other smaller refactorings that were implemented as a result of

splitting and merging.

• Clone detection (i.e. the discovery of duplicated code) and removal in Haskell.

We present a clone detection technique to find duplicated code within Haskell

programs and we also provide suitable transformations and refactorings to

eliminate the duplicated code found. We apply clone detection and removal

to a short example, and show how eliminating duplicate code can greatly

increase the maintainabilty and understanding of a Haskell program.

• A case study for refactoring Haskell programs. In particular we apply the

refactorings implemented in this thesis to a large-scale project. In perform-

ing the case study, we investigate the usefulness of the refactorings and

the scope to which they can be applied. The case study also demonstrates

the capacity of the HaRe tool in applying refactoring to large-scale Haskell

programs. The intention of the case study is to also give some ideas for

refactoring in the scope of future work. Finally an expression processing

example is used to demonstrate the capacity of the refactorings from this

thesis in a simple, but still useful, context.

CHAPTER 1. INTRODUCTION 16

• Reflecting on the suitability of Haskell as a language for building refactor-

ing, transformation and analysis tools for the programming languages. In

implementing a large set of these refactorings for Haskell programs, a lot of

experience is gained by building tools that transform and analyse Haskell

programs. In particular, experience is gained in using available technology,

including compiler front-ends and traversal libraries. By implementing such

a large number of complex refactorings we effectively evaluate the use of

Haskell as a large scale programming language and the current state of the

art language tools available for it.

1.5 Thesis Outline

The thesis will proceed as follows, where the conclusions are given in the final

chapter:

Chapter 2: Tools for refactoring

An overview of the infrastructure of HaRe is given in this chapter. In particular,

an overview of the Programatica [1] toolset and Strafunski [64] are presented to-

gether with the advantages and disadvantages of using them. The chapter briefly

discusses other tools that could have been used for HaRe, and explains the rea-

soning behind the current rationale.

A working example of the HaRe tool in practice to refactor a simple program

is given, together with an explanation of how the to-as-patterns refactoring is

implemented in complete detail, using real code from HaRe.

Chapter 3: Program Slicing

A new program slicing technique for a functional language is discussed in this

chapter. In particular, the chapter introduces a new program slicing technique for

Haskell called splitting. The converse of splitting, namely merging is also defined,

together with constituent smaller refactorings that make up the slicing implemen-

tation.

CHAPTER 1. INTRODUCTION 17

Chapter 4: Structural Refactorings

This chapter contains a set of new structural refactorings for HaRe; their descrip-

tion and conditions are given. Structural refactorings affect the expression level of

a program, including function definitions. The chapter concludes by describing a

technique known as symbolic evaluation, which is used to aid the transformation

process in the case analysis simplification process.

Chapter 5: Data Type based refactorings

A description of the implementation of a set of new type-based refactorings for

HaRe is given. Type-based refactorings are refactorings that affect the type defi-

nitions of a program, or affect the expressions of the program taking into account

a type constraint.

The refactorings described in this chapter are as follows: adding and removing

a constructor, adding a removing a data type field, introducing pattern matching

and introducing a case expression.

Chapter 6: Clone Detection and Removal

This chapter presents a case study of duplicate code elimination within Haskell.

A collection of new transformations and analyses for HaRe is presented that focus

on the detection and elimination of duplicate code within Haskell.

In particular, the clone elimination is described in two parts: the first part

is an automatic analysis system that searches for clones within a Haskell project

and displays them in a report; the second part is a transformation process which

allows the user to step through the clones identified by the analysis stage and re-

place them with a call to an abstraction. An example of how the clone detection

and elimination routine works on a small example is also shown.

Chapter 7: A Refactoring Case Study

This chapter presents a case study of refactoring within a large Haskell project.

Specifically, we look at refactoring a mainstream Haskell compiler, and use the

example to investigate possible future refactorings. Finally, the chapter concludes

with an extended example of refactoring a simple expression processing example.

CHAPTER 1. INTRODUCTION 18

Chapter 8: Related Work

This chapter presents the related work relevant to refactoring. Specifically, the

chapter discusses work related to refactoring tools (which includes refactorings

tools for languages that are not necessarily functional) and the generality of refac-

toring in functional languages. The chapter concludes with a section discussing

current support for refactoring tools; this may include refactoring meta-languages

and techniques to help the programmer in designing and applying refactorings.

Chapter 9: Conclusions and Future Work

This chapter gives a reflection on implementing refactorings for Haskell and the

broader application to language design and analysis. A refection on the thesis as a

whole, the approach taken, what was learned about refactoring and the successes

and failures of the attempted work are presented. The chapter discusses the con-

tributions of the thesis and any steps for future work.

Chapter 2

Tools for refactoring

This chapter describes the infrastructure on which HaRe is built, and also dis-

cusses the experience of the author and of the Kent group when designing and

implementing HaRe and its refactorings. Section 2.2 discusses the Programatica

toolset; Section 2.3 discusses the Strafunski library for generic tree traversal; in

Section 2.4 the GHC compiler system is discussed; the HaRe system is described

in Section 2.5; the chapter concludes with a description of a refactoring from HaRe

in Section 2.7.

2.1 Introduction

As previously mentioned in Chapter 1, the Haskell Refactorer (HaRe) was orig-

inally designed and implemented by the Refactoring Functional Programs team

(the Kent Group) at the University of Kent. The Kent group comprised of Simon

Thompson, Huiqing Li and Claus Reinke [68].

The goal of the Kent group was to implement tool support for refactoring

Haskell programs. Like text editors, refactoring tools support interactive program

manipulation; however, refactoring tools need to query and modify the program

syntax and semantics instead of the program as a character string. Rather than

writing a user interface from scratch, it was decided that the refactoring tool was

to be implemented with support from the most popular program development

19

CHAPTER 2. TOOLS FOR REFACTORING 20

environments for Haskell users. Such a design decision allows the refactoring tool

to be more accessible, and also means that programmers do not have to learn a

new development environment in order to be able to refactor their code. There

is an obvious disadvantage to reusing user interfaces however, namely that most

interfaces do not offer all the facilities that the refactoring tools require; this has

affected the design of the refactoring tool.

In order to manipulate a program syntactically, a refactoring tool must be able

to retrieve and modify information regarding program declarations, identifiers, ex-

pressions and types. This information is stored in an AST (Abstract Syntax Tree)

– typically generated by a parser. ASTs offer a reasonable solution for program

modification on a syntactical basis: they provide a structural representation of

the program using a collection of recursive data types, omitting unnecessary syn-

tactic constructs such as brackets and spaces. An example of the Haskell data

type representation for the AST used for HaRe is given in Figure 2 on Page 26.

In addition to syntactic information, a refactoring tool also requires the use of

some static semantic information. Static semantic information includes scope

information, type information and module information of the program under

scrutiny. Scope information consists of the name space of all the identifiers in a

program and binding information for where the identifiers are bound. Type infor-

mation consists of the type and kind information of identifiers within the program.

Module information records the interfaces of individual modules contained within

the program and the module’s inclusions. This information is obtained via static

analysis, type analysis and module analysis.

In order for HaRe to retain comments and layout of Haskell programs, this in-

formation could ideally be stored in the AST; the pretty-printer (which produces

program sources from ASTs) could make use of it during the pretty-printing pro-

cess. Unfortunately at the time of the development of HaRe, parser front ends

did not record this information in their ASTs. Therefore, effort from the Kent

Group was required to modify the front end in order to record comments and

layout information while still utilizing one of the existing Haskell front ends.

CHAPTER 2. TOOLS FOR REFACTORING 21

At the time of designing HaRe (2002) the Kent group compared and exam-

ined the following different Haskell compiler front-ends: GHC [77], Haddock [76],

Hatchet [75] and Programatica [1]. The Kent group decided to use Programatica:

it was the only compiler front-end available at the time that had support for full

Haskell 98, together with more complete AST information than any of the other

systems available.

Investigation was also made into generic programming libraries to support

transformations over large abstract syntax trees. Although, in theory, program

analysis and modification can be written for large mutually recursive data types

without support for generic programming, the result is always large and cumber-

some. While Haskell supports some general higher order functions such as map and

fold, it is still not convenient to program over large, complex, recursive nested

data type representations of Haskell. Instead, a generic programming technique

to allow high-level program analysis and modification was needed; this generic

programming technique was Strafunski [64, 65], although others were considered.

At the time the project was started, Strafunski had just stabilised. Strafunski is a

Haskell-based software bundle developed for supporting generic programming in

application areas that involve term traversals over large abstract syntax trees. If

HaRe were to be built now, it would probably use the GHC-API [77] and perhaps

Scrap Your Boilerplate [53], for generic tree traversal.

A survey [95] was conducted by the Kent group in July 2002 to find the two

most widely used development environments for Haskell. As a consequence, HaRe

is currently integrated into (X)Emacs [15] and Vim [87]. HaRe also covers the full

Haskell 98 standard language. The architecture of HaRe has been extended to

include an API [71], exposing HaRe’s infrastructure for implementing refactorings

or general purpose program transformations. The API is intended for program-

mers who wish to write their own refactorings, rather than people who simply

want to use HaRe.

CHAPTER 2. TOOLS FOR REFACTORING 22

2.2 The Programatica Toolset

Programatica [1] is a Haskell project developed at the OGI School of Science

& Engineering, Oregon Health & Science University and subsequently at PSU

(Portland State University). Programatica was implemented in Haskell as an

interactive environment for the development of high-assurance Haskell software.

The development environment that Programatica provides allows the program

and its properties to be simultaneously developed and improved. To this purpose,

the Programatica team have developed an expressive logic, called P-logic, and

they have extended Haskell to support property definitions and assertions in P-

logic. Source code that is written in Programatica’s extended Haskell can include

both definitions of executable code and assertions of properties; an assertion of

properties can be accompanied by a certificate which encapsulates the evidence

for this assertion.

The components of Programatica’s front-end include a lexer, parser, type

checker, module analysis system and also a pretty printer. Programatica sup-

ports the full Haskell 98 standard together with a number of Haskell extensions.

HaRe uses all the parts of the Programatica front end in turn, apart from the type

checker, which proved too slow for the development of the refactorings in this the-

sis. A brief description of each of these components is given in the following parts

of this section. We discuss these details because we’ll need to refer to aspects of

the Programatica system in describing how our refactorings are implemented.

2.2.1 The Lexer

The implementation of the Programatica Lexer was generated by a regular ex-

pression compiler. The regular expression compiler reads the Haskell 98 grammar

from the report and generates the main part of the Lexer, namely, the token

recognition system, automatically. The type of the Lexer is defined as follows:

type Lexer = String -> [(Token, (Pos, String))]

CHAPTER 2. TOOLS FOR REFACTORING 23

String represents the Haskell program source. Token represents a classifica-

tion of different types of tokens (defined as a data type) i.e. whether a token is

an identifier or a keyword, for example; Pos represents the token’s position (in

terms of row and column numbers); the final String represents the content of the

token.

Previous Haskell Lexers typically computed token positions and discarded

whitespace while Programatica preserves this information in the token stream.

2.2.2 The Parser

The parser within Programatica is based on HsParser. HsParser is found in the

haskell-src package of the Haskell hierarchical libraries. Programatica, however,

uses its own lexer and the parameterised abstract syntax tree (see section 2.2.3

for details) for HsParser rather than the supplied lexer and abstract syntax tree

that comes with HsParser.

The parser produces a variant of the abstract syntax tree in which every iden-

tifier is paired with its actual source location in the file. The source location is

represented by a combination of the file name, and the position of its first char-

acter by the row and column number. The type of the source location for an

identifier is SN HsName. SN and HsName are defined as follows:

data SN i = SN i SrcLoc

data SrcLoc = SrcLoc {srcPath :: FilePath,

srcChar, srcLine, srcColumn :: Int}

data HsName = Qual ModuleName String

| UnQual Id

data ModuleName = PlainModule String

| MainModule FilePath

A further analysis and modification of the AST adds additional static scope in-

formation to each identifier. The scoped AST is defined as follows:

type HsModuleP = HsModuleI ModuleName PNT [HsDeclI PNT]

CHAPTER 2. TOOLS FOR REFACTORING 24

The individual components are defined as follows:

• [HsDeclI PNT] is the list of identifiers occurring in the module; PNT is

defined below.

• ModuleName is the name of the module, and whether or not the module is a

main module or a plain module.

In the scoped AST, each identifier is associated with not only its actual source

location, but also the location of its defining occurence and name space infor-

mation. The type for these kind of identifiers is called PNT (Programatica Name

Type) and is defined as follows:

data PNT = PNT (PN HsName Orig) (IdTy Pid) OptSrcLoc

The individual components are defined thus:

• HsName is the name of the identifier in question;

• Orig is the identifier’s origin information (which usually contains the iden-

tifier’s defining module and position);

• IdTy Pid specifies the category (i.e. variable, field name, type construc-

tor, data constructor, class name, etc. of the identifier) with information

of relevant type if the identifier is a field name, type constructor or data

constructor.

• OptSrcLoc contains the identifier’s source location information.

The complete definition of PNT and its component data types are given in Ap-

pendix B. Compared with normal ASTs, the scoped AST makes work easier for

the tool writer in several respects:

• Source position information in the AST makes it easier to map fragments

of code within the source file to their corresponding representation in the

scoped AST.

CHAPTER 2. TOOLS FOR REFACTORING 25

• Identifiers can be distinguished looking at their PNT representations. Two

identifiers are semantically equivalent if and only if they have the same origin

therefore.

• Given an identifier, the scoped AST makes it easy to find the identifier’s

definition and use sites.

The program’s layout can be calculated to some degree by using the source location

within the scoped AST. In order to calculate the complete layout for a program,

comments, keywords and some special characters, together with their location

information, must also be represented in the scoped AST. This information is as

yet not recorded in the scoped Programatica AST. Therefore, HaRe retrieves this

information from the token stream supplied by the lexer.

2.2.3 The Abstract Syntax Tree

Programatica represents Haskell abstract syntax tree [93] by a parameterised syn-

tax. The definition of a parameterised syntax has two levels: a structure defining

level, and a recursive resolution level [103]. Figure 2 shows an example of the

parameterised syntax for an expression, where:

• i represents the data type of the identifiers;

• e represents the data type of expressions;

• p represents the data type of patterns;

• ds represents the data type of declarations;

• t represents the data type of types;

• c represents the data type of a type context.

The type representing a module is:

CHAPTER 2. TOOLS FOR REFACTORING 26

data EI i e p ds t c
= HsId (HsIdentI i)
| HsLit SrcLoc HsLiteral
| HsInfixApp e (HsIdentI i) e
| HsApp e e
| HsNegApp SrcLoc e
| HsLambda [p] e
| HsLet ds e
| HsIf e e e
| HsCase e [HsAlt e p ds]
| HsDo (HsStmt e p ds)
| HsTuple [e]
| HsList [e]
| HsParen e
| HsLeftSection e (HsIdentI i)
| HsRightSection (HsIdentI i) e
| HsRecConstr SrcLoc i (HsFieldsI i e)
| HsRecUpdate SrcLoc e (HsFieldsI i e)
| HsEnumFrom e
| HsEnumFromTo e e
| HsEnumFromThen e e
| HsEnumFromThenTo e e e
| HsListComp (HsStmt e p ds)
| HsExpTypeSig SrcLoc e c t
| HsAsPat i e
| HsWildCard
| HsIrrPat e
deriving (Read, Show, Data, Typeable)

Figure 2: The parameterised syntax for expressions

CHAPTER 2. TOOLS FOR REFACTORING 27

data HsModuleI m i ds

= HsModule { hsModSrcLoc :: SrcLoc,

hsModName :: m,

hsModExports :: Maybe [HsExportSpecI m i],

hsModImports :: [HsImportDeclI m i],

hsModDecls :: ds }

deriving (Eq, Show, Data, Typeable)

where:

• m represents the data type of the module name (whether or not the module

is the main module or not);

• i represents the data type of identifiers;

• ds represents the data type of the declaration list.

Instantiating these parameters differently will result in different abstract syntax

trees, which is useful as it allows one data type to be reused when representing

different Haskell programs. The disadvantage to this two-level approach, however,

is that it introduces an extra layer of tagging in the data structures.

The Haskell 98 syntax defined in Programatica contains 20 data types and

110 constructors in total. The data type defining expressions (as shown in Figure

2) contains 26 constructors. Writing AST traversals on this non-trivial mutually

recursive abstract syntax tree without support for generic programming would

produce large amounts of unwanted, and unreliable, boilerplate code. This would

also negatively impact the maintenance and reusability of the produced code as

boilerplate code is difficult to modify and understand.

2.2.4 The Module System

A formal specification of the Haskell 98 module system has been developed as

part of the Programatica project by Diatchki, et. al. [25]. The specification is

entirely written in Haskell. The semantics of a Haskell program with respect to the

CHAPTER 2. TOOLS FOR REFACTORING 28

module system is a mapping from a collection of modules to their corresponding

in-scope relation (the entities that are in-scope within the current module) and

export relation (the entities that are exported by the current module). Given a

list of modules, the analysis program reports either a list of errors found in each

module, or returns the in-scope and export relations of the modules in question.

2.2.5 The Pretty Printer

The pretty printer within Programatica is based on the Pretty Printer Combina-

tors of Hughes and Peyton Jones [46, 91] . Additional instances have been defined

for the Printable class for each data type within the scoped AST for Programat-

ica. The pretty printer does not use the source location stored within the AST

as it does not need the location information to print a default layout for Haskell

entities.

2.2.6 The Advantages and Disadvantages of Using Progra-

matica

Programatica has allowed us to write large-scale refactorings over the full Haskell

98 standard. Programatica has a relatively straight forward front end which allows

us to access the token stream and AST directly. Programatica also preserves com-

ments and whitespace within the token stream. Furthermore, the entity relations

between different Haskell modules are easily accessed from within Programatica,

this allowed for the HaRe refactoring to be easily extended to work over multiple-

module projects.

Unfortunately, after using Programatica as the front end for the HaRe system,

a number of limitations were found:

• Programatica only supports Haskell 98. Most non-trivial Haskell programs

now use the various extensions to the Haskell 98 standard provided with

GHC. These extensions are not supported by Programatica. This has re-

duced the usefulness of HaRe for practising programmers.

CHAPTER 2. TOOLS FOR REFACTORING 29

• The type checking facilities in Programatica are very slow. Some of the refac-

torings implemented as part of this thesis require use of the type checking

facilities. Obtaining such type information from Programatica has become

a performance bottleneck. Therefore the type-checking facilities from GHC

[77] were employed instead.

• Programatica is not distributed with any other compiler. HaRe must include

the whole of the Programatica package as part of the general release. This,

however, is a relatively minor issue.

• Some programming constructs are represented in the AST without location

information, due to the fact that the Programatica project did not require

this information. Examples of these constructs are parentheses and the

empty list. This affects the layout of the refactored program as HaRe cannot

correctly infer where in the program the constructs must be placed on pretty

printing.

2.3 Strafunski - Generic Tree Traversal

Strafunski [64, 65] is a Haskell-based software bundle for implementing language

processing components — most notably program analyses and transformations

over large abstract syntax trees. The main idea behind Strafunski is to view

traversals as generic functions that can traverse into terms while mixing uniform

and type-specific behavior. Strafunski is composed of a number of functional

strategies. A functional strategy is a function that can be applied to arguments

of any type (as long as that type derives from Typeable and Data), can exhibit

type-specific behavior, and can perform generic traversal into subterms.

Functional strategies are composed and updated in combinator style, that is,

functional strategies are generic functions. The advantage of using Strafunski to

write tree traversals and analyses as opposed to using standard techniques such as

boilerplate programming is that it allows one to write concise, type-safe, generic

CHAPTER 2. TOOLS FOR REFACTORING 30

functions for AST traversals, in which only the strictly relevant constructors need

to be mentioned. Using Strafunski usually results in significantly shorter programs

than the boilerplate written in plain Haskell. An earlier prototype implementation

of the renaming refactoring “by hand” resulted in around 90% of code identified

as boilerplate; this meant that the code was difficult and time consuming to write

in the first place, and also meant that the code was very difficult to maintain.

In order to use Strafunski over an arbitrary nested data type, the data type

must have class instances defined for Typeable and Data. Typeable and Data

are Haskell type classes that contain members for type-safe cast and processing

constructor applications [62]. The instances of these types can either be derived by

a tool called DriFT [26], or they can be derived automatically by GHC. The latter

requires a clause to derive Typeable and Data to be added to every relevant data

type. The original approach in HaRe was to use DrIFT to derive the instances

automatically; the instances are now derived automatically using GHC.

2.3.1 Strategy Types and Application

There are two kinds of strategies in Strafunski. The first kind, TP, models type-

preserving strategies where the result of the strategy application for a term of type

t is of type m t (t in a monadic form). The second kind, TU, models type-unifying

strategies where the result of the strategy application is always a monadic type

m a regardless of the type of the input term. For both cases, the result type

is monadic in order to deal with effects in strategies such as state passing or

non-determinism.

A type-preserving strategy is usually used for program transformation over a

given layered data type, and type-unifying strategies are used for program analysis.

TP and TU are represented as abstract data types and their exact definitions rely

on the underlying models (for reasons of space the underlying models are not given

in this thesis, but more details can be found in [64]).

Strafunski supplies a number of generic programming themes. The Fixpoint-

Theme deals with iterative term transformation, stopping when a fixpoint is

CHAPTER 2. TOOLS FOR REFACTORING 31

found. The TraversalTheme is used to define numerous traversal strategies. The

NameTheme provides an abstract strategy for different kinds of name analysis.

The most common strategy theme provided by Strafunski is the recursive

traversal theme. The recursive traversal theme provides the most heavily used

strategies in the HaRe tool. There are four kinds of traversal strategy:

• Full Traversals. Apply a strategy to all nodes in a subtree.

• Single Hit Traversal. Process one subtree, terminating when the strategy

succeeds.

• Stop Traversal. Descend into subtrees of failing nodes, proceeding into sib-

ling nodes upon success.

• Traversals with Environment Passing. Start a traversal with a given envi-

ronment, and modify the environment during the traversal process.

An overview of some of the combinators from the traversal theme that were

used for the implementation of the refactorings for this thesis are given in Ap-

pendix A.1.

2.3.2 Integrating Strafunski with Programatica

The Strafunski generic tree traversal library is used by the refactorings imple-

mented in HaRe to write generic program analysis/transformation functions over

Programatica’s abstract syntax tree. In this section two examples are given. The

first example, taken from the to-as-patterns refactoring, shows a type-unifying

strategy that collects some particular information about the abstract syntax tree,

and the second example shows a type-preservation strategy that performs an ab-

stract syntax tree modification.

The first example, shown in Figure 3, traverses a given term and returns the

first occurrence of a pattern binding within that term, if that pattern is equiv-

alent to a given expression. In the example, the functions applyTU, once tdTU

and failTU are all querying functions (type-unifying strategy combinators) from

CHAPTER 2. TOOLS FOR REFACTORING 32

getPat :: Term t => HsExpP -> t -> HsPatP
getPat exp t
= fromMaybe (error "No Pattern is associated with expression!")

(applyTU (once_tdTU (failTU ‘adhocTU ‘ worker)) t)
where
worker (p :: HsPatP)
| rewritePats p == exp = Just p
| otherwise = Nothing

rewritePats :: HsPatP -> HsExpP

Figure 3: Collecting certain information about the abstract syntax tree

the strategyLib Haskell module that comes with the Strafunski package-bundle.

applyTU applies a type-unifying strategy to a term, t. In the example, we have an

abstract syntax tree, t, that we traverse to find all possible pattern bindings. We

do this by applying a function, worker to every node of the tree. We stop travers-

ing the tree as soon as worker can be applied to a node that is a pattern. This

traversal behaviour is determined by once tdTU. The following describes these

functions in turn:

• once tdTU traverses the tree in a top-down manner, terminating when the

pattern match to worker succeeds.

• failTU is a polymorphic strategy that always fails (by using mzero from the

MonadPlus class) regardless of the given term.

• adhocTU allows the function worker to be applied to all nodes in a layered

data type: it updates a strategy to add type-specific behavior so that the

function on the left can be applied unless the function on the right succeeds.

A single-hit traversal is used here rather than a full traversal as only the top most

pattern binding in a given term is required. The function worker is applied to

every pattern node in t suceeding when the pattern in question —after conversion

to an expression (captured by rewritePats)— is equal to an expression passed

in as a parameter.

CHAPTER 2. TOOLS FOR REFACTORING 33

rewriteExp :: (MonadPlus m) => String -> HsExpP -> HsExpP -> m HsExpP
rewriteExp name e1 e2
= applyTP (full_tdTP (idTP ‘adhocTP ‘ (inExp e1))) e2

where
inExp (Exp (HsParen e1)::HsExpP)

(e2@(Exp (HsId (HsVar pnt@(PNT pname ty loc))))::HsExpP)
= do

if (rmLocs pnt) == (rmLocs name)
then do
return e1
else do
return e2

inExp (e1::HsExpP)
(e2@(Exp (HsId (HsVar pnt@(PNT pname ty loc))))::HsExpP)

| findPNT pnt pname = return e1
| otherwise = return e2

inExp e1 e2 = return e2

Figure 4: Performing an abstract syntax tree modification

The second example, shown in Figure 4, checks to see whether a given expres-

sion occurs within another expression. If it does, the expression is replaced with

the name of an ‘as’ pattern. Using the combinators applyTP, full tdTP, idTP

and adhocTP from StrategyLib, the traversal performs a full top-down traversal

over the abstract syntax tree for a given expression as defined by full tdTP. Each

node of the given abstract syntax tree is traversed, and the function inExp e1

is applied whenever a node of type HsExpP is encountered. When the strategy

traverses into nodes that are not of this type the polymorphic identity combina-

tor, idTP, is applied. inExp looks for a name within an expression and checks

to see if it is the same as name which is a parameter passed in referring to an

as-pattern name. If it is the same then the first expression is returned, otherwise

the expression node that is currently under scrutiny is returned instead.

CHAPTER 2. TOOLS FOR REFACTORING 34

2.3.3 Advantages and Disadvantages of Using Strafunski

Strafunski has many advantages in that it allows one to write robust and concise

AST traversals which prevent lots of boilerplate code from being implemented.

However, the learning curve for Strafunski is particularly steep, especially for

those who are not accustomed to functional programming and AST traversals in

general. There are several aspects of Strafunski that may lead to confusion; what

follows is a summary of the experience of the Kent Group when designing HaRe

and its refactorings:

• Choosing the correct default strategy is crucial for different traversals. For

instance, idTP, which returns the identity of the term under scrutiny, can be

used as the default strategy for full tdTP and full buTP, whereas failTP

cannot. For traversals that are type-preserving with stop conditions, such as

stop tdTP, once tdTP and once buTP, failTP (the always failing strategy)

is the correct default strategy and idTP is not. This issue is discussed by

Thompson and Lämmel in [63].

For the type-unifying strategy full tdTU, constTU [] (the constant strat-

egy that always returns the empty list) can be used. For type-unifying

strategies with stop conditions, failTU is always the correct default strat-

egy.

• It is not always clear when to use bottom-up or top-down traversals, and for

most traversals, there is no difference. There is one special case, however:

when a full traversal (such as full tdTP or full buTP) tries to extend a

particular node of an AST with a larger node of the same type, full tdTP

tends to cause stack overflow errors, whereas full buTP does not. This is

because a full tdTP will in general apply the argument strategy prior to

descent. This may be problematic in case the argument strategy increases

the depth of a given term [63].

CHAPTER 2. TOOLS FOR REFACTORING 35

• Two-layer nested monads appear when using type-unifying strategies. Mon-

ads are use to manage the backtracking behavior. The returned result should

have two layers of monads:

1. The first layer is for control flow, e.g. Maybe is the monad used by

Strafunski for backtracking.

2. The second layer is used for monadic data e.g. List monad is used for

collecting data.

Omitting one of these monads always gives unexpected results.

2.4 The Glasgow Haskell Compiler

The most commonly used Haskell compiler is the Glasgow Haskell Haskell Com-

piler, GHC [77]. GHC has become the de facto standard for Haskell. Initially

GHC was designed as a compiler to allow researchers try out implementation

ideas, but has since also become a production quality compiler that supports a

large number of extensions to the Haskell 98 standard. Some of these exten-

sions include: multi-parameter type classes, overlapping instances, arbitrary-rank

polymorphism, un-boxed types, and syntactic extensions include: hierarchical

modules, pattern guards, recursive do-notation and parallel list comprehensions.

There has been a long-standing demand for the GHC team to release an API

for the GHC front-end, enabling practising programmers to build on the GHC

infrastructure and produce their own tools (refactoring tools, editors, debuggers,

etc.). Recognizing this, the GHC development team have provided an API that

Haskell programmers can use to gain access to the internals of the compiler [77].

The GHC API exposes the entire internal infrastructure of GHC to Haskell

programmers. The GHC API is mainly a large and sophisticated selection of

functions and data types. The GHC team is currently in the process of developing

a simplified version of the API intended for the use by utility writers. The main

advantages to using the GHC API over the Programatica API are as follows:

CHAPTER 2. TOOLS FOR REFACTORING 36

• The GHC API provides access to all the GHC extensions, allowing tools to

be integrated with the de facto Haskell standard.

• GHC is a well maintained Haskell compiler, and should therefore always

support the latest language extensions.

• In the future the GHC API will provide a layer of insulation against the

changes made to the internal organization of GHC.

An attempt was made by Ryder [102] to fully port HaRe across from Programat-

ica to GHC. The work was done just as the API was first being defined; more

recent work has simplified and modified the API. Most of the time during the port

was spent integrating the existing HaRe architecture to work with GHC’s token

stream and AST. In particular, this required writing the instances of Typeable

and Term by hand, which is now done automatically by GHC. Integrating GHC

with Strafunski was unfortunately a very time consuming task and —due to the

unforeseen technical challenges— it was estimated that half the renaming refac-

toring had been ported to the GHC API, and no major technical challenges were

expected in the remainder of the port. If time is available in the future, the HaRe

team wishes to continue the work in porting HaRe over to GHC.

2.5 HaRe: The Haskell Refactorer

This section describes some of the most important parts of the Haskell Refactorer,

HaRe that are used in this thesis. Like most program transformation tools, HaRe

transforms an AST representation of the program, but HaRe also uses a combi-

nation of the AST and the token stream to preserve the layout of the refactored

program as much as possible. HaRe also includes an API that allows refactorings

to be designed on top of the existing infrastructure libraries.

CHAPTER 2. TOOLS FOR REFACTORING 37

2.5.1 Gathering Information

A Haskell refactoring tool needs the following information to be able to carry out

a refactoring:

• The AST representation of programs.

• Scope information and binding information.

• Type information.

• Module information.

• Layout and comment information.

HaRe derives this information from the Programatica front end. The scope and

type information is extracted from the Programatica AST. The comments and

layout information are taken from the Programatica token stream; in particular,

the comments are taken from the token stream generated by the lexer, and the

layout information is extracted from the token stream generated using the location

information in the AST.

2.5.2 Transforming and Analysing

Most refactorings involve names and their manipulation, and it is crucial that

these manipulations do not disrupt the binding structure of the program. Scope

information gives a view of the structure of the program; it also makes program

analysis and transformation possible.

2.5.3 Preserving Appearance

The Kent group made an important decision to preserve the appearance of pro-

grams wherever possible. For example, if someone refactors their Haskell code

using HaRe, they would expect the refactored program to look as much like the

original as possible. The Kent group’s approach was to preserve program appear-

ance by making use of both the AST and the token stream. The program analysis

CHAPTER 2. TOOLS FOR REFACTORING 38

is carried out using only the AST, but it is the AST and the token stream that

are used to carry out the program transformation. After a refactoring, instead

of pretty printing the transformed AST, HaRe extracts the program source from

the token stream. However in some cases new code is introduced into the refac-

tored program. In these cases the new code must be pretty printed as there is no

previous record of it in the Token Stream. HaRe’s solution carries out program

analysis with the AST, but it performs program transformation with both the

AST and the token stream; whenever the AST is modified, the token stream will

be modified to reflect the same change in the program source.

2.5.4 Interfacing HaRe to Text Editors

HaRe can be invoked from either of two program editors: VIm and (X)Emacs,

or from the command line. The integration was mainly developed by Reinke.

HaRe can also be executed from the command line by running the pfe command.

It supports a host of commands ranging from basic project management to type

checking, simple program transformations, etc. The Kent group extended the Pro-

gramatica command set with their own refactoring commands. These refactoring

commands can be run from the command line just like those from Programatica

itself.

2.5.5 An Example of HaRe

This section shows a brief insight of the HaRe tool in practice. In what follows, we

present a sequence of screen shots showing some of the rudimentary refactorings

already defined in HaRe. The screen shots are taken from the VIm implementation

of the HaRe editor interface, however the same process also applies directly to the

(X)Emacs implementation in the same way. The following shows an example of a

Haskell program embedded in VIm:

CHAPTER 2. TOOLS FOR REFACTORING 39

The first step is to generalise over the 0 step of the [] case of sum. 0 is highlighted,

and generaliseDef is chosen from the refactorer drop down menu. A prompt is

presented asking the user for a new name, and the parameter n is entered.

The same process is now applied to (+) in the second equation of sum. This time

CHAPTER 2. TOOLS FOR REFACTORING 40

c is entered as the parameter.

The function sum is now renamed to better reflect its more general definition. The

user positions the cursor over the start of sum and chooses rename from the HaRe

drop down menu.

CHAPTER 2. TOOLS FOR REFACTORING 41

fold is entered as the new name for the definition:

The next step is to introduce a new definition for the expression fold (+) 0 as it

is the exact definition of the original sum function. The expression is highlighted,

CHAPTER 2. TOOLS FOR REFACTORING 42

and introNewDef is chosen from the HaRe menu with sum entered as the new

name for the definition:

Since this definition might be reusable, it makes sense to lift it to the top level

CHAPTER 2. TOOLS FOR REFACTORING 43

of the program. The cursor is positioned a the start of sum and liftToTopLevel is

chosen from HaRe:

2.5.6 An API for Defining Refactorings

An API has been defined to expose HaRe’s infrastructure for implementing refac-

torings. It contains a collection of functions for program analysis and transforma-

tion, covering a wide range of syntactic entities of Haskell 98. Moreover, the token

stream manipulations, used to ensure that layout and comments are preserved,

are hidden in the program transformation functions provided by this API. The

refactorings presented in this thesis both extend and make use of the HaRe API.

2.5.7 Refactoring Unit Testing

In order to test the correctness of the refactorings, it was the decision of the

Kent group to use the Haskell Unit tester, HUnit [43]; HUnit is a unit testing

framework for Haskell, inspired by the JUnit [27] tool for Java. With HUnit,

CHAPTER 2. TOOLS FOR REFACTORING 44

as with JUnit, you can easily create tests, name them, group them into suites,

and execute them, with the framework checking the results automatically. Test

specification in HUnit is even more concise and flexible than in JUnit, thanks to

the nature of the Haskell language. HUnit currently includes only a text-based

test controller, but the framework is designed for easy extension.

Tests in HUnit are specified in terms of test cases, which are themselves com-

posed of assertions. In the testing of HaRe, the Kent group have modified the

basic HUnit testing platform so that refactorings can be tested by comparing an

expected version of the refactored file with the actual refactored file from HaRe.

Each refactoring is given a testing directory, with a set of test modules, and a

HUnit test case file. The test case file comprises of a list informing HUnit which

files to refactor, the refactoring to perform, and any parameters for each file. The

list of refactoring tests is made up of positive and negative tests, and require the

expected outcome of the refactoring to be stored in a file suffixed with TokOut.hs.

Say the file to be tested is Foo.hs, the positive tests succeed if the outcome of the

refactoring on Foo.hs exactly matches the contents of Foo TokOut.hs; similarly,

the negative tests fail if the outcome of the refactoring does not match the contents

of Foo TokOut.hs. HaRe also performs other kinds of testing, such as testing the

identity of the AST representation of the refactored file to the expected AST; this

has the advantage of ignoring the layout of Haskell programs.

Testing in this manner has the advantage of being able to keep track of the

behaviour of the refactorings during the development process. If a new feature is

added, running the test suite on that refactoring will still check to make sure the

old behaviour is preserved. Using this testing framework also allows the entire

suite of refactorings in HaRe to be tested after a change is made to the API or

the Programatica framework.

The drawback, however, is that regression testing does not uncover all possible

bugs, and it may be possible that the refactorings miss some specific corner cases.

This has been overcome, to a minor extent, by releasing beta versions of HaRe to

the public for testing. The Erlang refactorer, Wrangler currently uses Quickcheck

CHAPTER 2. TOOLS FOR REFACTORING 45

to test the correctness of refactorings [47]; it is possible to extend the HaRe testing

framework to use QuickCheck [20] instead of HUnit for the testing of refactorings.

2.6 Preserving Correctness

The meaning of preserving correctness for refactorings is as follows: given the

same input value(s), the program should produce the same output value(s) before

and after a refactoring. It is possible this basic constraint may not be sufficient

in some applications, in which case execution time or memory consumption may

be added to the criteria.

It is difficult, however, to speculate that a refactoring may make a program

more or less efficient as this also depends on the Haskell implementation being

used. Haskell is a general purpose programming language, with no constraints

on execution time or memory consumption. It is therefore sufficient to use only

the basic criterion of correctness when implementing refactorings: given a main

function in a Main module of a program, the function main should produce the

same output for the same input before and after the refactoring. The semantics

of other programs could be changed after a refactoring, as long as these changes

do not affect the value of main.

A refactoring should have three different aspects: a set of side conditions that

need to be met for the refactoring to preserve correctness; a set of transformation

rules that dictate how the refactoring should transform the source code; and a

proof showing that the transformation preserves the program’s correctness by

ensuring that the side conditions are met. However, since Haskell has no formally

defined set of semantics, writing a proof of correctness is not straightforward; an

attempt has been made, however, to prove the correctness of refactorings for a

subset of the Lambda Calculus by Li [67]. It could be possible to extend this

calculus to apply to the full Haskell 98 standard, and then attempt to write a

proof of correctness for each refactoring described in this thesis; this, however,

is left as an area of future research. The refactorings presented in this thesis are

CHAPTER 2. TOOLS FOR REFACTORING 46

implemented with Haskell 98 properties that are described in the remainder of this

section and the implemented refactorings are designed so that these conditions are

always met.

• Unique binding. At each use of an identifier within a Haskell program,

it must be possible to resolve where in the program the identifier is bound.

The binding must take place within the namespace of the program, whether

in the body or export list of a module. An undefined identifier error will be

incurred if no definition is bound to an identifier. An ambiguous reference

error is given if more than one binding for a top level identifier exists (this

can sometimes be resolved with qualified names).

• No name clashes in the export list. The unqualified names of the

entities exported by the module must all be distinct to avoid name clashes.

• No unexported entities in import declarations. The entities explicitly

stated in an import declaration that imports a module, say M, must also be

exported explicitly by M.

• Distinct entity names. The entity names declared in the same scope and

namespace must be distinct from each other, otherwise a name conflict error

will be incurred. However, the same name can be declared in inner or outer

scopes, provided that the entity name does not conflict with other bound

names within that scope.

• Compatible type signature. After the refactoring, the type signature

should be compatible with the type inferred by the compilers for the related

entity.

• No name capture. Name capture must not happen during the refactor-

ing process. Name capture occurs when an identifier that should be free

in a scope becomes bound because of the declaration of the same name

across nested scopes. Suppose we select foo at a top-level scope, if the sub-

expression instance under refactoring also has a local definition called foo,

CHAPTER 2. TOOLS FOR REFACTORING 47

the result of the refactoring will result in a call to the wrong foo (and will

result in unexpected behaviour). Consider, for example, the following:

showAll = (concat . format) foo

where

foo = map show

foo = (concat . format)

Shadowing is a term used to denote when a variable in an inner-scope is no

longer referenced due to a variable of the same-name defined in an outer-

scope.

Replacing (concat . format) in the definition of showAll with a call

to foo will give an incorrect definition of showAll, as foo = (concat .

format) shadows the local definition of foo within the where clause of

showAll. The fold is possible, however, if foo is defined in a let expression

within a where clause, so long as the scope of this did not include the sub-

expression that is selected for folding. For example, it may be possible to

define:

showAll = (concat . format) myMap

where

myMap = let foo = map show in foo

foo = (concat . format)

It is then possible to replace (concat . format) with a call to the correct

foo.

CHAPTER 2. TOOLS FOR REFACTORING 48

2.6.1 The Left and Right Inverse of Refactorings

Some of the refactorings presented in this thesis are implemented as a pair, where

both refactorings are described as the inverse of each other. Notably, these refac-

torings are: add and remove a constructor (described in Section 5.2 on Page 111)

and add and remove a field to a data type (described in Section 5.4 on Page 118).

In this section we describe what it means for a refactoring to be an inverse of an-

other refactoring, and how the refactorings in this thesis are not true inversions.

One way of thinking about this is to disentangle the notions of inverse and left

and right inverses.

We say that f:X -> X and g:X -> X are inverse if f . g and g . f are

both the identity on X. In other words f(g(x))=x and g(f(x))=x for all x in X.

There is also a weaker notion: we say that f is a left inverse of g (or equivalently

that g is a right inverse of f) if for all x

f(g(x))=x

Suppose that X = Integer and that

g(x) = 2*x

f(x) = x div 2

Then for all x

f(g(x)) = (2*x) div 2 = x

but it is not true that f and g are inverse, since

g(f(3)) = 2*(3 div 2) = 2*1 = 2

If adding takes a Haskell 98 program and transforms it into another Haskell 98

program, it is possible to define its type as follows:

adding :: Program -> Program

CHAPTER 2. TOOLS FOR REFACTORING 49

Adding a constructor adds an entity (either a constructor or a field of a construc-

tor) to a selected data type and adds default error code throughout the program

where it is possible that a call to the new entity may occur. We can say that adding

is total : we can apply it to any program where the new name of the constructor

(or field) will not conflict with an identifier in the same scope of the program.

The true inverse, therefore, must be a partial function: only being applied to the

cases where an entity has been added (removing the default behaviour) and in

cases where the identified entity is not being used by the program.

In this thesis however, it was decided that the true inverse was not pragmatic

to the programmer, and instead, a destructive approach was implemented. This

destructive approach removes any selected entity (a constructor or data type field),

including those entities being used by the program; this is done by introducing

default error behaviour for identified occurrences of the entity throughout the

program. The destructive approach is not a true inverse as the domain it can

be applied to is larger than the domain for adding. Therefore, we can say that

removing is a left inverse, since

removing . adding = id

but not the reverse.

2.7 Implementing Refactorings

Whilst refactorings differ from each other in their side-conditions and transfor-

mation rules, their implementation normally follows a similar pattern. In this

section, we describe how the fold as patterns refactoring was implemented, in

complete detail, using real code from HaRe. Folding as patterns is one of the

more basic, but useful, refactorings supported by HaRe and described in Section

4.3 on Page 85. To show a simple example of the refactoring in practice, consider

the following:

g [] = []

CHAPTER 2. TOOLS FOR REFACTORING 50

g ((f,r,c,Module):rest) = (f,r,c,Module) : g rest

It makes sense to convert (f,r,c,Module) on the left-hand-side of g into an

as-pattern:

g [] = []

g (a@(f,r,c,Module):rest) = a : g rest

The fundamental requirement for this refactoring is not to violate the binding

structure of the program. Basic as it is, the implementation is by no means a

trivial task due to the complex binding nature of Haskell programs.

A refactoring normally involves the following steps:

• Transform the program source into an internal representation; this is cur-

rently done automatically by Programatica, where it transforms the source

code into an AST and a token stream.

• Locate the focus of the refactoring. Usually the user is required to highlight

a particular function or expression in the program. For example in folding

as patterns, the user is required to highlight a specific pattern match of

interest. The pattern match in question is located within the AST using

location information supplied by the text editor.

• Validate the side conditions of the refactoring.

• Perform the refactoring transformation. Currently the AST and token

stream are modified directly by HaRe. Although refactorings modify the

AST directly, the token stream is modified indirectly by the HaRe API.

• Present the refactored program to the user. This requires the token stream

to be pretty printed and written to the original file, the editor automatically

refreshes the buffer, and the refactored program is presented.

These steps are typically implemented in the top-level function of the refactoring.

The top-level function for folding as patterns is shown in Figure 5 on Page 51.

CHAPTER 2. TOOLS FOR REFACTORING 51

refacAsPatterns args
= do let

fileName = args!!0
name = args!!1
beginRow = read (args!!2)::Int
beginCol = read (args!!3)::Int
endRow = read (args!!4)::Int
endCol = read (args!!5)::Int

AbstractIO.putStrLn "refacAsPatterns"
unless (isVarId name)

$ error "The new name is invalid!"

-- Parse the input file.
modInfo@(inscps, exps, mod, tokList) <- parseSourceFile fileName
let exp = locToExp (beginRow, beginCol) (endRow, endCol) tokList mod

case exp of
Exp (HsId (HsVar (PNT (PN (UnQual "unknown") (G (PlainModule "unknown")
"--" (N Nothing))) Value (N Nothing))))
-> do

let (pnt, pat, match)
= findPattern tokList (beginRow, beginCol) (endRow, endCol) mod

((_,m), (newToks, newMod)) <- applyRefac
(changePattern name pat match) (Just (inscps, exps, mod, tokList))
fileName

unless (newMod /= mod)
$ AbstractIO.putStrLn "Pattern does not occur on the rhs!"

writeRefactoredFiles False [((fileName, m), (newToks, newMod))]
AbstractIO.putStrLn "Completed."

_
-> do

let pat = getPat exp mod
((_,m), (newToks, newMod)) <- applyRefac (changePatternSimple name pat exp)
(Just (inscps, exps, mod, tokList)) fileName

writeRefactoredFiles False [((fileName, m), (newToks, newMod))]
AbstractIO.putStrLn "Completed."

Figure 5: The top-level function of folding as patterns

CHAPTER 2. TOOLS FOR REFACTORING 52

The formal argument to refacAsPatterns, namely args, is a parameter passed

into the refactoring by the editor, and it is a String containing the filename, the

name for the as pattern to be introduced and the source position information.

The first step of the refactoring, therefore, is to retrieve this information from

args. After this, the new name is checked to make sure that it is a valid name for

a Haskell identifier. Specifically, a call to the HaRe API function isVarId is used;

a call to error is performed if this side condition fails. The next step is to parse

the source file; in order to do this, a call to Programatica’s parser is performed

and returned is a list of in-scope names (inscps), a list of export names (exps),

the AST representation of the program (mod) and the token stream (tokList).

In this refactoring, a user can select either a pattern match occurring on the

left hand side of an equation, or an expression occurring on the right hand side of

an equation. If the user selects the pattern match, all instances of it on the right

hand are transformed into an as pattern call; if an expression is instead selected,

only that instance is converted into as pattern. Therefore, this refactoring needs

to be able to distinguish between the for one mode and the for all mode. To do

this, the refactoring first checks to see if an expression is selected; this is done

with a call to the API function locToExp.

A case analysis is then performed over the expression returned by locToExp.

If the program source at the position passed into locToExp is not an expression,

then a default expression is returned. The case expression checks to see whether

or not this default expression was indeed returned by locToExp, and if it was, the

refactoring instead attempts to retrieve the selected pattern match, with a call to

findPattern within the first branch of the case statement.

The function findPattern as shown in Figure 6 on Page 54 traverses the AST

for the instance of the pattern match selected by the user. The function uses

a type-unifying strategy to retrieve the pattern match instance. If the instance

cannot be found, the function performs a call to error terminating the refactor-

ing. Upon success, the construct that the pattern match is bound to is returned

CHAPTER 2. TOOLS FOR REFACTORING 53

wrapped in a Patt type (shown in Figure 9). The purpose of Patt is to distin-

guish between different Haskell constructs that a pattern match can occur in. For

example, in Haskell, pattern matching can occur on the left hand side of an equa-

tion (specified by Match); within a case expression (specified by MyAlt); within a

pattern matching occurring within a do expression (specified by MyDo); and within

a pattern matching a list comprehension (specified by MyListComp). The actual

refactoring is performed within a applyRefac context; due to the modification

of the AST and token stream, HaRe is currently configured to refactor within

a state monad, and this makes IO particularly difficult in some refactorings. If

the program entity is a pattern match, changePattern is the refactoring that is

called, otherwise changePatternSimple is called instead. There is an additional

side condition if a pattern match is selected: the pattern match must occur on

the right hand side of the equation, if it does not, then an error is returned and

the refactoring is terminated. This check is performed by comparing the modified

AST against the original: if the pattern match does not occur on the right hand of

the equation, then the AST will be returned unmodified. Finally, the refactored

AST and token stream are pretty printed to a file, via writeRefactoredFiles.

Next, we describe the functions changePatternSimple and changePattern.

changePatternSimple is called when the user selects a valid expression and has

the intention that only that expression must be converted into a call to an as pat-

tern. Figure 7 on Page 55 shows the implementation for changePatternSimple.

The implementation of the function is typical of the implementation of a refactor-

ing in HaRe; in particular, changePatternSimple takes a number of arguments:

the name of the as pattern to be introduced, the identified pattern match (pat)

and the highlighted expression (exp). The last parameter is a tuple containing

the in-scopes, the export relations of the module and, most importantly, the AST

itself (t). The token stream is passed into the function implicitly and is updated

by the monadic properties of the HaRe state monad. One of the side conditions

of the refactoring, is that the introduced as pattern name cannot already exist

in the scope of the selected equation, if it does, a call to error is performed and

CHAPTER 2. TOOLS FOR REFACTORING 54

findPattern toks beginPos endPos t
= fromMaybe (defaultPNT, defaultPat, error "Invalid pattern selected!")

(applyTU (once_tdTU (failTU ‘adhocTU‘ inMatch
‘adhocTU‘ inCase
‘adhocTU‘ inDo
‘adhocTU‘ inList)) t)

where
--The selected sub-expression is in the rhs of a match
inMatch (match@(HsMatch loc1 pnt pats rhs ds)::HsMatchP)
-- is the highlighted region selecting a pattern?
| inPat pats == Nothing = Nothing
| otherwise = do

let pat = fromJust (inPat pats)
Just (pnt, pat, Match match)

inCase (alt@(HsAlt s p rhs ds)::HsAltP)
| inPat [p] == Nothing = Nothing
| otherwise = do

let pat = fromJust (inPat [p])
Just (defaultPNT, pat, MyAlt alt)

inDo (inDo@(HsGenerator s p e rest)::HsStmtP)
| inPat [p] == Nothing = Nothing
| otherwise = do

let pat = fromJust (inPat [p])
Just (defaultPNT, pat, MyDo inDo)

inDo x = Nothing

inList (inlist@(Exp (HsListComp (HsGenerator s p e rest)))::HsExpP)
| inPat [p] == Nothing = Nothing
| otherwise = do

let pat = fromJust (inPat [p])
Just (defaultPNT, pat, MyListComp inlist)

inList x = Nothing

inPat :: [HsPatP] -> Maybe HsPatP
inPat [] = Nothing
inPat (p:ps)
= if p1 /= defaultPat

then Just p1
else inPat ps

where
p1 = locToLocalPat beginPos endPos toks p

Figure 6: The function that finds a pattern match using Strafunski

CHAPTER 2. TOOLS FOR REFACTORING 55

changePatternSimple name pat exp (_, _, t)
= do

inscopeNames <- hsVisibleNames exp t
unless (not (name ‘elem‘ inscopeNames))
$ error ("the use of the name: " ++ name ++ " is already in scope!")

let convertedPat = convertPat name pat
newExp <- checkExpr convertedPat exp

newT <- update exp newExp t
newT2 <- update pat convertedPat newT
return newT2

Figure 7: The function to change an expression instance to an as pattern

the refactoring is terminated. hsVisibleNames —a HaRe API function— is used

to return a list of all names in the scope of the highlighted expression; it is im-

portant to note that location information is removed from inScopeNames so that

name capture can be calculated up to alpha equivalence. The implementation of

hsVisibleNames is given in Appendix H.

pat is converted to an expression, and if the highlighted expression matches

the pattern, the highlighted expression is transformed into a name. This is done

with a call to update (a HaRe API call, defined in Appendix H) ; an additional

update is then called to convert the pattern match into a pattern match with an

as-pattern.

The function changePattern is used if the user performs the refactoring by

selecting a pattern match rather than an expression. This places the refactor-

ing in a for all mode: every instance of the pattern match on the right hand

side of the equation is replaced with a call to an as pattern. Figure 8 on Page

56 shows the implementation for changePattern. Following the template of

changePatternSimple, changePattern also takes the as pattern name and AST

(t) as a parameter. In addition to these, changePattern also takes one of the

following constructs as defined by Patt in Figure 9 on Page 56.

CHAPTER 2. TOOLS FOR REFACTORING 56

changePattern name pat (Match match) (_, _,t)
= do

newDecl <- lookInMatches t name pat [match]
newT <- update match (newDecl !! 0) t
return newT

changePattern name pat (MyAlt alt) (_, _, t)
= do

newAlt <- lookInAlt t name pat alt
newT <- update alt newAlt t
return newT

changePattern name pat (MyDo inDo) (_,_, t)
= do

newDo <- lookInDo t name pat inDo
newT <- update inDo newDo t
return newT

changePattern name pat (MyListComp inList) (_,_,t)
= do

newList <- lookInList t name pat inList
newT <- update inList newList t
return newT

Figure 8: The function to change all expression instances to an as pattern

data Patt = Match HsMatchP | MyAlt HsAltP | MyDo HsStmtP | MyListComp HsExpP
deriving (Show)

Figure 9: The data type to distinguish different places a pattern match could
occur

CHAPTER 2. TOOLS FOR REFACTORING 57

The principle for changePattern is the same for transforming all constructs

in Haskell where a pattern match may occur, the only difference is how the AST

is transformed. A description of how changePattern works for pattern matching

occurring on the left hand side of an equation (specified by Match in the figure) is

given here for reasons of brevity. A complete listing of the implementation of fold-

ing as patterns is given in Appendix G. In Figure 8 on Page 56 the implementation

for changePattern working over Match constructs is shown. The implementation

is simple: a new equation is generated with a call to lookInMatches and the orig-

inal equation (match) is transformed into the new equation by a call to update.

The function lookInMatches (defined in Figure 10, on Page 58) has to take

into account equations with guards and without guards. If there are guards,

lookInMatches must also traverse into the guards to check for instances of the pat-

tern match and convert those instances into the as pattern name. Much of the im-

plementation of lookInMatches has similar functionality to changePatternSimple

as described above. The new name for the as pattern is checked to see whether

or not it occurs in the scope of the equation. If it does not then the right hand

side of the equation is traversed for instances of the pattern match (by a call to

checkExpr). The equation is transformed into a new equation with the trans-

formed expression (and guards, if applicable) and returned by the function; this

return value is then updated into the AST and token stream.

2.8 Summary

This chapter has given an overview of the framework on which HaRe is built.

The technology used, namely Programatica, Strafunski and GHC, form the core

framework for implementing the refactorings in this thesis. An overview of Pro-

gramatica was given in Section 2.2; the Strafunski generic tree traversal library

was discussed in Section 2.3; GHC was discussed in Section 2.4. An overview of

HaRe was given in Section 2.5; finally, the chapter concludes with giving a worked

CHAPTER 2. TOOLS FOR REFACTORING 58

lookInMatches _ _ _ [] = return []
lookInMatches t name pat (match@(HsMatch s pnt (p:ps) (HsGuard g@((_,_,e):gs)) ds):ms)

= do
inscopeNames <- hsVisibleNames e t
unless (not (name ‘elem‘ inscopeNames))
$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat (p:ps)
let convertedPat = convertPat name pat
newGuard <- checkGuards convertedPat g
newDS <- mapM (convertPatterns t name pat) ds
rest <- lookInMatches t name pat ms
if newGuard == g && newDS == ds
then do
return (HsMatch s pnt (p:ps) (HsGuard g) ds : rest)

else do
return (HsMatch s pnt newPats (HsGuard newGuard) newDS : rest)

lookInMatches t name pat (match@(HsMatch s pnt (p:ps) (HsBody e) ds):ms)
= do

inscopeNames <- hsVisibleNames e t
unless (not (name ‘elem‘ inscopeNames))
$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat (p:ps)
let convertedPat = convertPat name pat
newExp <- checkExpr convertedPat e
newDS <- mapM (convertPatterns t name pat) ds
rest <- lookInMatches t name pat ms
if newExp == e && newDS == ds
then do
return (HsMatch s pnt (p:ps) (HsBody e) ds : rest)

else do
return (HsMatch s pnt newPats (HsBody newExp) newDS : rest)

Figure 10: The function to transform equations for as pattern folding

CHAPTER 2. TOOLS FOR REFACTORING 59

example of an actual refactoring that was implement in HaRe in Section 2.7.

Chapter 3

Program Slicing

This chapter presents a series of refactoring related to program slicing, and in par-

ticular a new definition of program slicing is given for Haskell programs. Section

3.2 introduces dead code elimination; Section 3.3 defines what program slicing

means for Haskell programs in the form of Splitting (defined in Section 3.3.1) and

Merging (defined in Section 3.3.2).

3.1 Introduction

Weiser, in [120], introduces a program slice S as a reduced executable program

obtained from a program P by removing statements, such that S replicates part

of the behavior of P. This process is driven from a slicing criterion, usually (a

variable representing) the line number and expression of interest, which is used to

represent the point in the code whose impact is to be observed with respect to the

entire program. Weiser introduced the concept that is now known as backwards,

static slicing. A backwards slice consists of all parts of a program that have an

effect on the criterion in question. Another form of program slicing is a forwards

slice [109]. Starting with the slicing criterion, or the program point of interest,

a forwards slice is made up of all parts of the program that the criterion will

potentially affect.

60

CHAPTER 3. PROGRAM SLICING 61

Orthogonal to the choice between forwards and backwards slicing is the dis-

tinction between static and dynamic slicing:

• Static slicing creates a program slice given no more information than which

variables we are interested in.

• Dynamic slicing relies on additional available information in order to give

a much smaller slice than static slicing. Specifically, dynamic slicing typi-

cally requires knowledge of one particular program execution. One of the

program’s inputs must be given in order for the dynamic slice to continue.

Static, backwards program slicing in an imperative language, is concerned with

extracting the computation required to compute a particular variable or program

statement. A natural analogue to this within the functional paradigm is a subset

of the components of a structured result, for example, the fields of a tuple in

Haskell. Selecting the components of a result and looking at the computation

corresponds to backwards slicing, whereas selecting the subset of the arguments

of a function, and seeing what can be computed on the basis of them alone,

corresponds to a forwards slice. This chapter presents a number of this style of

slicing-based refactorings for Haskell.

The chapter starts with dead code elimination and based upon that the process

is extended to introduce a notion of function splitting and merging. As an example

of merging and splitting, consider the following Haskell library functions, take and

drop:

take :: Int -> [a] -> [a]

take 0 _ = []

take _ []= []

take n (x:xs)

| n > 0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

CHAPTER 3. PROGRAM SLICING 62

drop :: Int -> [a] -> [a]

drop 0 xs = xs

drop _ [] = []

drop n (x:xs)

| n>0 = drop (n-1) xs

drop _ _ = error "PreludeList.drop: negative argument"

As a concrete example of the usage of take and drop, consider:

> (take 10 "hello world", drop 10 "hello world")

> ("hello worl","d")

A merge refactoring allows the creation of a function which provides both results

using only one list traversal rather than one traversal for each of take and drop.

In the following example, splitAt is the result of merging take and drop:

splitAt 0 xs = ([],xs)

splitAt _ [] = ([],[])

splitAt n (x:xs)

| n > 0 = (x:ys,zs)

where

(ys,zs) = splitAt (n-1) xs

splitAt _ _ = (error "PreludeList.take: negative argument",

error "PreludeList.drop: negative argument")

The following is an example of the usage of splitAt:

> splitAt 10 "hello world"

> ("hello worl","d")

Merging is actually known as tupling in the field of program transformation, and

was originally proposed by Pettorossi [90], as a strategy for composing efficient

computations by avoiding repeated evaluations of recursive functions. It is defined

and implemented for Haskell here for completeness and for historical purposes.

CHAPTER 3. PROGRAM SLICING 63

Splitting is the converse of merging, for example, the extraction of the defini-

tions of take and drop from splitAt. Although splitAt is a predefined Haskell

function, it serves as a useful example to illustrate splitting and merging. The

process of these refactorings is described in section 3.3.

The following sections first introduce the idea of eliminating code within a

function that is not needed; this has two flavours: unused code elimination and

irrelevant code elimination. A notion of program slicing in Haskell is then outlined.

A backwards, static program slicing technique that takes apart tuple-returning

functions is defined. Following this the converse of the splitting operation, namely

merging is also defined. The chapter concludes by looking at possible future

developments in program slicing for Haskell.

3.2 Code Elimination

Dead code elimination [41] is a compiler optimization used to reduce a program’s

size by removing the parts of the program which are not needed. Dead code is

code that is unreachable by running the program.

This section introduces two flavours of code elimination: dead code elimination

and irrelevant code elimination. Dead code elimination is concerned with taking

a particular top-level function of interest, and removing any nested declarations

within that function that are not needed. Irrelevant code elimination is a gener-

alization of the former and focuses upon removing nested declarations that are

not needed to compute a particular sub-expression of interest within the top-level

declaration. Irrelevant code elimination can be used to aid the programmer in

debugging code.

3.2.1 Dead Code Elimination

Programming “rapidly and badly” and subsequent modifications can cause lots of

unnecessary declarations in the program; declarations that are never called and

are hence “dead”. For example, the code below takes a list of type variables and

CHAPTER 3. PROGRAM SLICING 64

produces a data structure containing the list of type variables:

createApp [var]

= (Typ (HsTyVar (nameToTypePNT var)))

createApp (v:vars)

= Typ (HsTyVar (nameToTypePNT (v ++

(concatMap (" -> "++) vars))))

where

myConcat :: [String] -> String

myConcat [] = []

myConcat (x:xs) = (x ++ " -> ") ++ (myConcat xs)

The function createApp contains one declaration that is not needed: myConcat

can be removed, as it is not needed to evaluate the result. Dead code can make a

function look particularly messy and depending on the particular compiler used

may actually consume memory and slow down execution. Dead Code Elimination

is a refactoring implemented in HaRe that searches the AST for the definition of

a particular function, removing any declarations contained within that particular

function that are not needed. The examples provided in this section present only

a where clause; a similar approach is used to deal with lambda definitions and

let clauses in the implemented refactoring.

There are two stages to the refactoring, an analysis stage that collects all

the information required to do the modification, and a modification stage that

actually performs the modification on the AST with the information provided by

the analysis stage. Currently the refactoring only removes dead code from within

one function. However, it could easily be expanded to take a whole module of

functions (or, indeed, a set of modules) into consideration. A refactoring that

checks for dead code in all definitions of a Haskell project could also be easily

implemented. This would be a composite refactoring built on top of the atomic

refactoring for one definition.

CHAPTER 3. PROGRAM SLICING 65

In order to use this tool, firstly the user selects a function from the editor

window. The user then selects dead code elimination from the HaRe drop-down

menu. To capture the entire namespace, the whole program is parsed into an

AST and token stream. The AST is then traversed using Strafunski to find the

particular function in question. This traversal is performed using the location

information in the AST; it is possible to traverse into any function corresponding

to the selected region in the editor. Once the function is found the function’s

where clause and right-hand-side are retrieved. The function’s right-hand-side is

then traversed until the result expression is reached. For example the result of

createApp is:

Typ (HsTyVar (nameToTypePNT (v ++ (concatMap (" -> "++) vars))))

Declarations declared in the scope of createApp must be analysed to check

whether they are dead; these declarations can appear within let clauses and

lamdba expressions within the right-hand-side of the function. Within a lambda

expression, patterns that are declared but are not used in the expression are re-

moved. The refactoring takes into consideration nested declarations; for example:

where/let clauses. Once the result is reached, the free and bound names within

the subexpression are calculated. The list of free names is then used to remove

those declarations residing on the right-hand-side that do not appear within the

list of free names. For example:

f x = z + res

where

res = f (x-1)

res2 = f (x+1)

y = x + 1

z = 46

f x = z + res

where

res = f (x-1)

z = 46

The result expression is z + res and the only free variables are z and res;

therefore, y can be removed from the right-hand-side of f as it is not used within

CHAPTER 3. PROGRAM SLICING 66

f x = z + res

where

res = f (x-1)

res2 = f (x+1)

y = x + 1

z = 46 + y

f x = z + res

where

res = f (x-1)

y = x + 1

z = 46 + y

Figure 11: Removing dead code from a function

z + res or in the definitions of z and res (or their dependents).

Any mutually recursive declarations must be taken care of by ensuring that all

free variables in those declarations are retained. For example in the code in Figure

11 it can clearly be observed that the declaration z depends on the declaration y.

Once the right-hand-side of f within Figure 11 has been modified to remove the

declarations that are not used, the where clause of the function in question is then

analysed. This time the free variables are calculated for each sub-expression within

the modified right-hand-side; each member of the where clause that appears in

the list of free variables is then analysed for its free variables. All the declarations

in the where clause that are not needed by the right-hand-side of the function in

question, and do not appear in the dependancy graph of any needed declaration,

are removed. After the AST has been modified, the source code is also modified

to mirror the changes of the refactoring.

A popular technique in abstract interpretation [22] is strictness analysis [84].

Dead code elimination is related to strictness analysis in that strictness analysis

searches for parts of a program that will always be used. Dead code elimination

searches for parts of the program that will never be used. Strictness analysis works

by abstracting away from the program so that some dynamic information can be

inferred in a static way: inferring that the boolean conditional in an if expression

is False, say, and therefore calculating that the consequence of the if is never

evaluated. This chapter takes a purely static approach to determining dead code.

CHAPTER 3. PROGRAM SLICING 67

3.2.2 Irrelevant Code Elimination

Irrelevant code elimination is useful for debugging purposes and to some extent

is used in algorithmic debugging [104]. In algorithmic debugging the debugging

tool asks the user a series of questions about whether a particular sub-expression

in the code is generating the correct result or not. As the questions proceed, the

particular parts of the program that the debugging tool is asking questions about

becomes more clearly focused. It is often the case, however, that the programmer

will have some intuition where the bug will lie within the code. Extracting a

particular sub-expression that is suspected to cause a bug increases the speed

of fixing the error. Parts of a function that are known (or at least assumed) to

be correct are temporarily removed so the programmer can concentrate effort on

fixing the incorrect sub-expression.

As described above, the Dead Code Elimination technique may be generalized

to facilitate debugging. It is possible to select a particular sub-expression of

interest and to have the function pruned of declarations that are not needed by

that particular sub-expression. The expression on the right-hand-side is replaced

with the selected sub-expression. This particular generalization of dead code

elimination is not a refactoring, it is in fact a transformation since it changes the

semantics. For example, consider:

count :: [[a]] -> Int

count (l:list) = maximum (map length list)

pad :: [[a]] -> [[a]]

pad lists = map (pad’ (count lists)) lists

where

pad’ count entry = entry ++ (replicate count (head entry))

Suppose the programmer suspects there is a bug in pad, specifically, the program-

mer believes that the bug is in the call count lists. Isolating out only the call

to count lists into a new function would allow the programmer to test that

CHAPTER 3. PROGRAM SLICING 68

call explicitly, eliminating the parts of pad that the programmer believes to be

correct:

count :: [[a]] -> Int

count (l:list) = maximum (map length list)

pad2 :: [[a]] -> Int

pad2 lists = count lists

The programmer can then place a call to pad2 in the code, test the program,

discover that the formal parameter to count is in fact incorrect and undo the

previous transformation and correct the error:

count :: [[a]] -> Int

count list = maximum (map length list)

The definition of pad remains unchanged throughout, and the introduction of pad

can be undone (using remove a definition) once debugging is completed.

3.2.3 Summary

This section has described two flavours of code elimination for Haskell. The first:

dead code elimination was concerned with looking at the entire result of a function

and removing the parts of the function that were not needed to compute the

result. The second: irrelevant code elimination was concerned with allowing the

user to highlight a particular sub-expression in the result and then remove the

parts of the function that are not needed to compute the sub-expression. Dead

code elimination and irrelevant code elimination, in particular, form the basis of

a backwards static program slicing tool.

The next section expands on the work presented here to introduce the notion

of splitting and merging.

CHAPTER 3. PROGRAM SLICING 69

3.3 Slicing Based Refactorings

Hitherto, there has been little work on program slicing for functional languages.

Ochoa et al.[85] introduced a dynamic slicing technique for a lazy logic language.

Rodrigues and Barbosa in their paper [99] describe a program slicing approach

for Haskell; the approach described is, unfortunately, just a pruning of a function

call graph, and unlike the approach described in this section is not a true program

slice for Haskell programs. The Haskell debugger, Hat [17], also includes a form

of program slicer, but it is also just pruning a call graph. At this time there is no

standalone program slicing tool available for Haskell and therefore a backwards

static slicer for Haskell was defined. This section introduces the notion of pro-

gram splitting and merging. A number of issues with performing splitting and

merging are also discussed. This section defines what program slicing means for

a functional language. In this section program slicing is introduced and is then

implemented as a splitting refactoring in section 3.3.1. The converse of this is

then described in section 3.3.2.

3.3.1 Splitting

A function may return a structured value, for example, a tuple. The particular

examples presented in this section use only pairs, however the technique can easily

work over tuples of any order.

Splitting works by selecting an element of the tuple and then working out

everything needed to calculate that element. The calculated dependencies are

then simply extracted and isolated from the rest of the function.

Splitting is mostly used for debugging purposes. However splitting may also

be used to extract functionality from the function so that it can be extended or

re-used. The user passes, as a parameter to the splitter, the number of elements

of the result of the selected function that are to be extracted.

Consider the function parseMessage below. parseMessage takes a String of

messages each separated by the & character. parseMessage removes the initial

CHAPTER 3. PROGRAM SLICING 70

message and returns the next message as the first element of the result and the

remainder of the message as the second element:

type MessageList = String

type Message = String

parseMessage :: MessageList -> (Message, MessageList)

parseMessage [] = ([], [])

parseMessage xs = (takeWhile (/= ’&’) (tail ys),

dropWhile (/= ’&’) (tail ys))

where

ys = dropWhile (/= ’&’) xs

As an example of the usage of parseMessage consider:

> parseMessage "goodbye&hello&world"

> ("hello","&world")

The splitter works through each function clause in turn, extracting the ele-

ments of the function clauses’ result into separate definitions. It is worth noting

that the results of these refactorings are themselves ready for a further refactoring,

namely replacing ys with its definition (removing the where clause altogether).

It is often the case that further refactorings such as this are performed. The first

pattern clause of parseMessage is essentially trivial. Therefore the value [] is

extracted for both elements of the result and two new functions are then created:

parseMessage1 :: MessageList -> Message

parseMessage1 [] = []

parseMessage2 :: MessageList -> MessageList

parseMessage2 [] = []

It is noted that the two introduced functions, parseMessage1 and parseMessage2

can both undergo a renaming refactoring to make their names more meaningful

CHAPTER 3. PROGRAM SLICING 71

to the programmer. The splitter appends an index to the end of the names of the

new functions, if the new names conflict with any other identifier in scope then

the splitter chooses a new distinct name. This is simply done by incrementing the

index until the name no longer conflicts with another identifier in scope.

The next function clause’s result is then analysed. Irrelevant code elimina-

tion is then performed for each element in the resulting tuple and the result of

the code elimination is placed into new function clauses for parseMessage1 and

parseMessage2. ys is required by both elements of the result of parseMessage

so it is retained; the new function clauses are then added to the definitions of

parseMessage1 and parseMessage2 within the AST.

parseMessage1 xs = takeWhile (/= ’&’) (tail ys)

where

ys = dropWhile (/= ’&’) xs

parseMessage2 xs = dropWhile (/= ’&’) (tail ys)

where

ys = dropWhile (/= ’&’) xs

This gives the new definitions of parseMessage1 and parseMessage2. The source

code is then modified to reflect the changes within the AST. The process described

here behaves in the same way for any subset of a tuple.

If the function is recursive, splitting acts generatively, creating new, recursive,

definitions of the split functions. This is analogous to the generative folding work

describe in Chapter 4 on Page 82. As an example, consider, again, the definition

of splitAt:

splitAt 0 xs = ([],xs)

splitAt _ [] = ([],[])

splitAt n (x:xs)

| n > 0 = (x:ys,zs)

where

CHAPTER 3. PROGRAM SLICING 72

(ys,zs) = splitAt (n-1) xs

splitAt _ _ = (error "PreludeList.take: negative argument",

error "PreludeList.drop: negative argument")

Extracting just the first element of its result, gives the following definition:

take :: Int -> [a] -> [a]

take 0 _ = []

take _ []= []

take n (x:xs)

| n > 0 = x : take (n-1) xs

take _ _ = error "PreludeList.take: negative argument"

take is now a new, recursive, definition separate to that of splitAt.

3.3.2 Merging

Merging is the process of taking a number of functions and unifying them together

into one tuple-returning function. The process described here only merges two

functions; obviously the functionality can be easily extended however, to merge

together any number of functions.

Merging works by bringing together the code from the selected functions into

a new tuple-returning function. Duplicate parts of the function are also removed.

Unlike when doing splitting, where names are generated automatically, the user

must specify a name for the merged function.

Merging is mostly used to reuse code and improve code efficiency. For example,

merging take and drop into splitAt results in only one recursive call instead of

two. Merging functions together has the possibility to introduce further code

sharing.

The remainder of this section will focus on merging parseMessage1

and parseMessage2.

parseMessage1 :: MessageList -> Message

CHAPTER 3. PROGRAM SLICING 73

parseMessage1 [] = []

parseMessage1 xs = takeWhile (/= ’&’) (tail ys)

where

ys = dropWhile (/= ’&’) xs

parseMessage2 :: MessageList -> MessageList

parseMessage2 [] = []

parseMessage2 xs = dropWhile (/= ’&’) (tail ys)

where

ys = dropWhile (/= ’&’) xs

Firstly, the merge refactoring also checks to see whether the types of the arguments

to parseMessage1 and parseMessage2 are the same. If the pattern sets are not

the same then the merge refactoring cannot correctly unify the patterns; if they

cannot be unified the merge refactoring terminates with an error message to the

user.

Secondly, the merge refactoring checks to see whether the pattern sets of

parseMessage1 and parseMessage2 are the same. If they are not then the merge

refactoring terminates with an error to the user. Before merging, it is necessary

that both functions have the same sets of patterns. If the first function has

more pattern clauses than the second for example, then the merge refactoring

cannot determine what to place on the right-hand-side when patterns from the first

function are not matched by patterns in the second. An error message is presented

to the user if the pattern sets are not the same. An additional refactoring was

introduced to allow the user to build particular pattern clauses by instantiating

general patterns with values of the same type. Consider, for example:

f1 0 l = take 42 l

f1 n l = take n l

f2 n l = drop n l

CHAPTER 3. PROGRAM SLICING 74

Both f1 and f2 have general cases defined, however, f1 has an additional base

case defined. For reasons of simplicity, the merge refactoring does not attempt to

specialise pattern matching between definitions. Consider, for example:

merged 0 l = (take 42 l, undefined)

merged n l = (take n l, drop n l)

Each function clause in question is merged together. The first clause of

parseMessage1 and parseMessage2 both have the same result value. Merging

those clauses together is trivial:

parseMessage :: MessageList -> (Message, MessageList)

parseMessage [] = ([], [])

The second clauses of parseMessage1 and parseMessage2 are now considered.

The results are unified together and placed into a new function clause:

parseMessage xs = (takeWhile (/= ’&’) (tail ys),

dropWhile (/= ’&’) (tail ys))

where

ys = dropWhile (/= ’&’) xs

The duplicate declaration of ys within the where clause is then removed. Re-

cursion is also dealt with correctly, consider the example on Page 61 where the

functions take and drop are merged. The recursive calls to take and drop are

replaced with a call to splitAt (the merged function name).

3.3.3 Design and Implementation Issues

This section discusses the issues that occurred when designing and implementing

the splitting and merging refactorings.

• Sometimes when splitting is used patterns that are the result of recursive

calls become redundant. All variables within patterns that are not needed in

the result are replaced with wildcards so that no duplications are introduced

in the namespace.

CHAPTER 3. PROGRAM SLICING 75

• One element of a tuple may depend upon another element. For instance, it

is possible for one element to come from the first part of a recursive call,

but for it to be returned in the second element in the main body. If one

element depends on another, both of these elements must be extracted from

the function, otherwise an error occurs.

• Merging and splitting monadic functions is a difficult area, especially if the

monad in question is a state monad, for example, the IO monad. Merging

two IO monadic values is problematic because the merge refactoring cannot

infer the correct order of sequencing. Side effects also affect splitting in a

similar way, for example, an element of the tuple return value may depend

upon some data written to a file. It is very difficult for the splitter to deter-

mine which parts of the monad can have a potential effect as all expressions

have the potential to alter the state. Merging and splitting refactorings on

monads will be the subject of future work.

3.4 Summary

This chapter presented a number of refactorings for HaRe. Firstly, a technique

was defined to eliminate dead code from Haskell functions and then generalized to

remove irrelevant code. A backwards, static program slicer for Haskell was then

described as splitting tuple-returning functions; its converse, namely merging, was

also described.

Chapter 4

Structural Refactorings

This chapter describes the new structural refactorings that have been defined and

implemented in HaRe for this thesis. Following on from the refactoring work by Li

[67], and using the refactoring catalogue [96] maintained by Thompson as a basis,

a new set of refactorings that complement and extend the existing refactorings in

HaRe have been provided. For each refactoring, the following is introduced where

appropriate:

• A general description of the refactoring, giving an overview of how the

refactoring would change the structure of a program. The general description

is also intended to give some motivation for the refactoring in question.

• An example showing the effects of the refactoring and its inverse operation

(performing the refactoring is shown from above to below ; its undo is shown

in the example from below to above). The examples presented in this chapter

are merely intended to give an example of how the refactoring performs in

its basic sense.

• A set of comments detailing the transformation properties of the refac-

toring. These comments could discuss any general issues that arise from

implementing this refactoring, or could discuss potential problems when the

refactoring is performed in specific situations.

76

CHAPTER 4. STRUCTURAL REFACTORINGS 77

• A set of conditions from above to below. A refactoring is made up of a

set of side-conditions and a set of transformation rules. The side-conditions

must be met in order for the transformation to take place, otherwise HaRe

terminates with an error message.

• Any Design Issues regarding the design of the refactoring. One problem

with designing refactorings is the question of compensation or failure. In

most cases, the refactorings designed in this thesis take on the philosophy of

giving the user what they expect. In some cases this means the refactoring

has to compensate by performing smaller implicit sub refactorings. Any of

these sub refactorings are detailed in this section. In a similar manner, any

issues which cause the refactoring to fail in addition to the conditions are

also given in this section.

The following refactorings are described in this chapter:

• Folding (Section 4.1);

• Generative folding (i.e. folding in the style of Burstall and Darlington [14])

(Section 4.2);

• Folding as patterns (Section 4.3);

• Unfolding as patterns (Section 4.4);

• Converting from let to where (Section 4.5);

• Converting from where to let (Section 4.6 — the distinction between the

two refactorings is also given in the section)

• Case analysis simplification (Section 4.7).

• The issues surrounding the binding of variables in Haskell are given in Sec-

tion 4.8.

• The chapter concludes in Section 4.9 by discussing the implementation of a

symbolic evaluation mechanism.

CHAPTER 4. STRUCTURAL REFACTORINGS 78

Before:

showAll = (concat . format) (map show)

table = concat . format

After:

showAll = table . map show

table = concat . format

Figure 12: Before and after simple fold

4.1 Folding

Folding replaces all sub expressions in the program which are substitution in-

stances of the right hand side of an identified equation with a call to that equation,

passing in the instantiations as actual parameters. This refactoring is designed to

be the complement of unfolding which is described in Li’s thesis [67] and can be

used to eliminate some duplicate expressions within a program. In addition, fold-

ing can also be used to create a name for a common abstraction occurring within

the program by abstracting away from a common sub-expression; as long as there

is a definition to fold against this can also be seen as naming an abstraction for a

common sub-expression (which is indeed what the user has to do before the fold

is performed).

4.1.1 Example

An example of folding an instance of the right hand side of a definition, table, is

shown in Figure 12. In the figure, two definitions are given: showAll and table.

The right-hand-side of table, as can be seen, also appears as a sub-expression

on the right-hand-side of showAll. Folding allows the definition table to be

selected and all occurrences of its right-hand-side (occurrences within different

entities in the same scope as table) are replaced with a call to table. The right

CHAPTER 4. STRUCTURAL REFACTORINGS 79

column of the example shows that the sub-expression, (concat . format) has

been replaced with a call to table, passing in (map show) as a parameter; this

therefore eliminates some duplicated code within the program.

4.1.2 Comments

The fold is not performed within the definition of table itself, nor in the body

of any function called within the definition of table. Performing the fold in the

definition of table will introduce termination problems, as the fold will create

the equation table = table. This issue is discussed in more detail on Page 85.

4.1.3 Conditions

If we are folding against a definition foo then the side-conditions for folding are:

• Name capture must not happen during the refactoring process. See Section

2.6 on Page 46 for more details regarding name capture.

4.1.4 Design Issues

• If the definition of foo contains any pattern matching on its right-hand-

side in the form of a case expression, lambda abstraction or do notation,

then the structure of the clause must match the structure of any potential

substitution instances within the program. The variables in the pattern are

renamed so that the two compared pattern clauses contain the same binding

information. This issue is discussed in more detail in Section 4.8 on Page

103.

• If the selected definition contains guards, then they are converted into an

if..then..else before the analysis is carried out; this allows the guards to

be matched against expressions that would be defined with an if statement.

For example, consider foo is defined:

CHAPTER 4. STRUCTURAL REFACTORINGS 80

foo x

| x == 1 = e1

| x == 2 = e2

| otherwise = e3

this is converted into the following:

foo x = if x == 1 then e1 else if x == 2 then e2 else e3

which can then be compared against sub-expression instances such as:

if y == 1 then e1 else if y == 2 then e2 else e3

The problem with transforming guards into an if..then..else is that

they are evaluated in a different way. Guards belong to the equation level

and if..then..else expressions belong to the expression level. If there

is no otherwise clause specified the evaluator proceeds to pattern match

against the next equation for the definition being evaluated. However, as

an if..then..else is an expression, the evaluator has to return a result

once the expression has started to be evaluated. Therefore, if there is no

otherwise defined for the guards, then an else clause must be added to the

if..then..else that returns an error, specifying that the pattern match

failed this is therefore not a refactoring in some cases. To illustrate this,

consider how the following is converted to an if..then..else.

foo x

| x == 1 = e1

| x == 2 = e2

As there is no otherwise, foo is converted into the following:

foo x = if x == 1 then e1

else if x == 2 then e2

else error "Pattern Match Failure"

CHAPTER 4. STRUCTURAL REFACTORINGS 81

Converting guards to an if..then..else prevents certain cases from being

compared; this is a limitation with comparing equations against expressions.

• If foo has any parameters then the call must pass in any relevant instan-

tiations as parameters. If foo has any parameters that are not used in its

right-hand-side, then undefined is passed to those parameters. The redun-

dant parameters are not removed as another refactoring designed to remove

parameters from functions has already been defined. If foo contains any

pattern matching in its parameters, a pattern is created in the call to foo,

passing in the instantiations —or undefined, if applicable— as parameters

for the pattern match. To illustrate this problem, consider the following:

sumSquares x y = (case (x, y) of

(m, n) -> m ^ 2)

sq (n,m) = m ^ 2

Suppose we wish to select sq and fold any sub-expression instance against

its definition, this would replace the expression m ^ 2 with a call to sq:

sumSquares x y = (case (x, y) of

(m, n) -> sq (undefined, m)

sq (n,m) = m ^ 2

• If foo contains local definitions —defined either in a where clause or a let

expression, or both— the refactoring only compares simple cases of the form:

foo = y where y = e1

against ...x... where x = e1. This also applies to e1 being defined by

a let expression. It would be possible to unfold the definitions in the where

clause of the definitions first, and then perform a fold over those definitions.

CHAPTER 4. STRUCTURAL REFACTORINGS 82

4.2 Generative Folding

Generative Folding replaces an instance of the right hand side of a definition by

the corresponding left hand side, creating a new recursive definition. When it was

first described by Burstall and Darlington [14], Generative Folding was pioneering

work in the field of functional program transformation. We use “generative” to

denote this special kind of folding that contrasts the folding described in Section

4.1.

To give an example of generative folding, consider the following equation:

mapLength xs = map length xs

Where map is defined as follows:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

Unfolding the right hand side of mapLength produces:

mapLength xs = case (length, xs) of

(f, []) -> []

(f, (y:ys)) -> f y : map f ys

As it can be seen, unfolding the call to map on the right-hand-side of mapLength

introduces a case expression to overcome the fact that map is defined with multiple

pattern matching equations. New variables are introduced in the case binding

corresponding to variables bound in the pattern matching equations of map. Using

the original definition of mapLength xs = map length xs it is possible to select

map f ys on the right-hand-side of the unfolded definition, and create a new

recursive definition of mapLength:

mapLength xs = case (length, xs) of

(f, []) -> []

(f, (y:ys)) -> f y : mapLength ys

CHAPTER 4. STRUCTURAL REFACTORINGS 83

In the example symbolic evaluation as described in Section 4.9 is used to deter-

mine that ‘f’ is identical to ‘length’ through the binding structure of the case

expression.

4.2.1 Example

An example of this refactoring is shown in Figure 13 on Page 86. The transfor-

mation in Figure 13 uses the original definition of fmt, namely: fmt = format

"\n" from above to below to create a new recursive definition of fmt. The fold

takes place in the unfolded version of the definition. The two versions of the def-

inition of fmt cannot coexist in the same Haskell module. The original definition

is therefore retained in a comment above the unfolded definition of fmt.

4.2.2 Comments

The refactoring here is different in nature to other structural refactorings. The

transformation needs to retain the original version of the unfolded definition,

which is used to create the new recursive definition. The original definition,

mapLength xs = map length xs, cannot coexist in the same Haskell module as

the unfolded definition of mapLength and is therefore removed by the unfolding;

in order to perform the generative fold, we chose to preserve the definition in a

comment, exactly above the unfolded definition:

{- mapLength xs = map length xs -}

mapLength xs = case (length, xs) of

(f, []) -> []

(f, (y:ys)) -> f y : map f ys

4.2.3 Conditions

The conditions for a generative fold are as follows:

CHAPTER 4. STRUCTURAL REFACTORINGS 84

• The highlighted expression must be symbolically identical (see Section 4.9)

the right-hand-side of the equation in the comments. Say the expression to

be selected is f g and the equation to fold the expression against is defined

in a comment, namely: f = double (1+1). double g is transformed into

f if and only if g is symbolically identical to (1+1).

• If the equation to be folded against contains an expression with a pattern

—such as a lambda or a case expression— then the structure must match

the structure of the pattern in the highlighted expression. This issue is

discussed in detail in Section 4.8.

4.2.4 Design Issues

• Say the equation to be folded against is mapLength xs = map length xs

and the highlighted expression is map length ys. The refactoring allows

one to transform map length ys into mapLength ys by renaming xs to ys

in the original equation, as xs is a bound variable defined as a parameter to

mapLength.

• The generative fold uses the symbolic evaluation mechanism used for Case

Analysis Simplification (described in Section 4.9). It is possible to symbol-

ically link f with length allowing the expression map f ys to be selected;

and using the equation retained in the comments, it is possible to transform

map f ys into mapLength ys:

{- mapLength xs = map length xs -}

mapLength xs = case (length, xs) of

(f, []) -> []

(f, (y:ys)) -> f y : mapLength ys

The result of the refactoring generates a new definition mapLength which is

recursive and not dependent on map.

CHAPTER 4. STRUCTURAL REFACTORINGS 85

There is an interesting observation to be made where symbolic evaluation

may not be needed. When the same variable occurs in every case of one

variable in a tuple case, we can remove it to give that variable. Consider

the case expression above, removing f could result in the following:

case xs of

[] -> []

(y:ys) -> length y : mapLength ys

• This transformation, as is well known from Burstall and Darlington’s original

work, can lead to a change in the termination properties of the generative

definition. In the extreme case, consider folding the equation, fmt = format

"\n" against itself. This produces the tautological equation: fmt = fmt,

which whilst itself is a true property of fmt fails to give the same definition

of the fmt function; instead it makes it everywhere undefined.

Although there has been research into formalising termination checking

(Tullsen [112] and Abel [2]), this has not been implemented as part of the

refactoring described in this thesis and has been left as an area of future

work.

4.3 Folding As-patterns

Folding as-patterns replaces particular sub-expressions on the right-hand-side of

an identified equation with calls to an as-pattern, provided that the sub-expression

refers to a pattern binding that is defined in scope. For example, consider the

following definition:

g [] = []

g ((f,r,c,Module):rest) = (f,r,c,Module) : g rest

it makes sense to convert ‘(f,r,c,Module)’ on the left-hand-side of g into an

as-pattern:

CHAPTER 4. STRUCTURAL REFACTORINGS 86

Before:

format :: [a] -> [[a]] -> [[a]]

format sep xs

= if len xs < 2

then xs

else (head xs ++ sep) : format sep (tail xs)

{- fmt = format "\n", after unfolding -}

fmt xs

= if len xs < 2

then xs

else (head xs ++ "\n") : format "\n" (tail xs)

After:

format :: [a] -> [[a]] -> [[a]]

format sep xs

= if len xs < 2

then xs

else (head xs ++ sep) : format sep (tail xs)

{- fmt = format "\n", after unfolding and

generative fold against the original definition. -}

fmt xs

= if len xs < 2

then xs

else (head xs ++ "\n") : fmt (tail xs)

Figure 13: Before and after generative fold

CHAPTER 4. STRUCTURAL REFACTORINGS 87

g [] = []

g (lp@(f,r,c,Module):rest) = (f,r,c,Module) : g rest

and then transform the expression ‘(f,r,c,Module)’ on the right-hand-side into

a use of that as-pattern:

g [] = []

g (lp@(f,r,c,Module):rest) = lp : g rest

The defining location of the pattern is updated with an as-pattern. This refac-

toring aims to improve the program’s efficiency so that complex expressions do

not have to be reconstructed from their component parts by introducing sharing.

Modern Haskell compilers (such as GHC) may do this optimization automatically,

but it is certainly a worthwhile refactoring to limit duplicated code and encourage

code reuse.

4.3.1 Comments

The folding “as-patterns” refactoring has two modes of operation: a for all mode

which allows all references to a highlighted pattern binding to be replaced with

a call to an as-pattern; and a for one mode which allows an identified pattern

occurring within an expression to be replaced with a call to an as-pattern as

defined by the user. It is interesting to note that this is a general phenomenon in

refactorings.

The for all mode allows the user to highlight the pattern of interest so that

all occurrences of the pattern in scope are replaced with a call to an as-pattern

The for one mode converts a particular highlighted pattern on the right-hand-

side of a function and replaces it with a call to an as-pattern.

4.3.2 Example

To show the distinction between a for all mode and a for one mode of as-pattern

folding, consider the examples in Figures 14 and 15 (on pages 89–90). In Figure 14

CHAPTER 4. STRUCTURAL REFACTORINGS 88

we select an instance of the constructor application T tval Empty Empty on the

right hand side of result. The refactoring matches this constructor application

with the pattern binding in the second argument of insert and introduces an as-

pattern (the name of the pattern is determined by the user at the runtime of the

refactoring); the selected instance of T tval Empty Empty is then replaced with a

call to the as-pattern (in this case, t). In Figure 15 we select the pattern binding

T tval Empty Empty on the left hand side of insert and run the refactoring.

The result (shown in the right column) shows that all instances of the constructor

application in scope on the right hand side of that particular equation for insert

have been transformed into calls to the as-pattern. The as-pattern, t has also

been introduced for the pattern binding in insert.

4.3.3 Conditions

Selecting a pattern Pat x and introducing foo as an as-pattern has the following

side-conditions:

• The instance of the pattern must have all of its variables bound to the outer

part of the pattern, and not at a local declaration. For example, consider:

insert val t@(T tval Empty Empty)

= T val Empty result where result = (T tval Empty Empty)

tval = 42

In the above case, it is not possible to transform the pattern instance (T

tval Empty Empty) with a call to t as a tval is already defined in the same

where clause.

• The name for the new as-pattern, say foo, is introduced by the user when

he/she runs the refactoring. The new name must not, therefore, conflict

with any other name within the scope of the introduced as-pattern. If the

name does conflict the refactoring will not be performed and will instead

CHAPTER 4. STRUCTURAL REFACTORINGS 89

Before:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (T tval Empty Empty)

= T val result2 result where result = (T tval Empty Empty)

result2 = (T tval Empty Empty)

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

After:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (t@(T tval Empty Empty))

= T val result2 result where result = t

result2 = (T tval Empty Empty)

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

Figure 14: Folding an as-pattern: instance of a for one operation

CHAPTER 4. STRUCTURAL REFACTORINGS 90

Before:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (T tval Empty Empty)

= T val result2 result where result = (T tval Empty Empty)

result2 = (T tval Empty Empty)

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

After:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (t@(T tval Empty Empty))

= T val result2 result where result = t

result2 = t

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

Figure 15: Folding an as-pattern: instance of a for all operation

CHAPTER 4. STRUCTURAL REFACTORINGS 91

terminate with an error. foo must not already be defined in the scope of

Pat x either as an as-pattern or as a bound variable.

• The refactoring will not let the user perform the refactoring twice. Unless,

of course, an undo operation is performed between refactorings.

4.3.4 Design Issues

• The binding location of Pat x is converted into foo@(Pat x) and the se-

lected occurrence (or all occurrences) of the pattern is replaced with a call

to foo.

• If the user wants to replace precisely two occurrences of an expression with

an as-pattern it is not possible. The user can do the first, but the second will

be disallowed on the basis that there is already a pattern variable there. This

is an example of where a “for all” is not the same as a “for one” performed

repeatedly.

4.4 Unfolding As-patterns

Unfolding as-patterns is the inverse of folding an as-pattern (described in Sec-

tion 4.3). Unfolding replaces a particular variable in a sub-expression that refers

to an as-pattern variable, with the actual pattern that the variable is bound to.

For example, consider that we have the following definition:

g [] = []

g (lp@(f,r,c,Module):rest) = lp : g rest

Selecting ‘lp’ on the right-hand-side of g allows us to unfold the as-pattern, to

create:

g [] = []

g (lp@(f,r,c,Module):rest) = (f,r,c,Module) : g rest

CHAPTER 4. STRUCTURAL REFACTORINGS 92

This then allows the unfolded pattern binding to be modified (this will potentially

change space behaviour if the variable is repeated).

4.4.1 Comments

Unfolding an as-pattern has two modes of operation: a for all mode which unfolds

all references to a particular as-pattern in scope; and a for one operation which

only unfolds a particular pattern occurrence of interest.

The for one mode converts an occurrence of an as-pattern reference within

an expression into the pattern that is defined by the as-pattern. New names

are introduced in the pattern if they are defined as wild cards in the defining

location. The “for some” operation is therefore defined by performing the “for

one” operation repeatedly.

The for all mode allows the user to select the as-pattern binding so that

all occurrences of the as-pattern in scope are replaced with calls to the pattern

binding.

4.4.2 Example

To show the distinction between a for all mode and a for one mode, consider the

examples in Figures 16 and 17. In Figure 16 we select t on the right hand side

of result and choose to unfold its as-pattern reference. The result, shown in the

right column of the Figure, shows that t has been replaced with the as-pattern

that it refers to, namely: T tval Empty Empty. This demonstrates the for one

operation: as only one instance of t has been unfolded. In Figure 17 we select t

where it occurs as an as-pattern binding in the left hand side of insert. The right

column, again, shows the result of the refactoring; all references to the as-pattern

t are replaced with the constructor application of T tval Empty Empty.

4.4.3 Conditions

The side-conditions of unfolding foo are as follows:

CHAPTER 4. STRUCTURAL REFACTORINGS 93

Before:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (t@(T val Empty Empty))

= T val result2 result where result = t

result2 = t

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

After:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (t@(T val Empty Empty))

= T val result2 result

where result = (T val Empty Empty)

result2 = t

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

Figure 16: Unfolding an as-pattern: instance of a for one operation

CHAPTER 4. STRUCTURAL REFACTORINGS 94

Before:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (t@(T val Empty Empty))

= T val result2 result where result = t

result2 = t

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

After:

data BTree a = Empty | T a (BTree a) (BTree a)

deriving Show

insert :: Ord a => a -> BTree a -> BTree a

insert val (t@(T val Empty Empty))

= T val result2 result where result = (T val Empty Empty)

result2 = (T val Empty Empty)

insert val (T tval left right)

| val > tval = T tval left (insert val right)

| otherwise = T tval (insert val left) right

Figure 17: Unfolding an as-pattern: instance of a for all operation

CHAPTER 4. STRUCTURAL REFACTORINGS 95

• foo must be defined as an as-pattern in the immediate scope and its defining

location must not shadow any other intermediate declarations of the same

name.

• If foo is bound to a pattern of the form Pat x then there must not be

another binding of Pat x in the scope of foo. The refactoring therefore

avoids pattern capture.

4.5 Converting from let to where

Converting a definition from a let to a where lifts a definition defined at the

expression level (a definition in a let expression) to a definition at the equation

level (a definition in a where clause). The refactoring widens the scope of the

definition and therefore allows it to be used by a wider range of entities defined

in the scope of the where clause. There is great potential for this refactoring to

affect the semantic properties of a program, which is discussed in detail in this

section.

4.5.1 Example

In Figure 18 (on Page 98) we select the definition table defined in a let expression

on the right-hand-side of showAll for extraction into a where clause. The result,

shown in the second column of the figure, shows that table has been lifted to

a where clause; a new parameter has also been added to table: this is used for

passing in the definition of format since now the definition of format is not visible

within the where clause. The scope of table has now been widened: by allowing

the definition foo to access it, and indeed, other definitions potentially defined

in the where clause or the body of showAll (including any guards defined in this

equation for showAll).

CHAPTER 4. STRUCTURAL REFACTORINGS 96

4.5.2 Conditions

Supposing the name bound by the definition to be converted is foo, the conditions

for promoting foo from a let scope to a where scope are as follows:

• Promoting the definition must not intervene between any bindings of foo

and its uses within the where clause.

• No binding for foo must exist in the binding group within the where clause.

• Free variables that are used by the definition but are not in scope in the

where clause are passed into the lifted definition through parameters. This

requires:

1. The free variables must not be used polymorphically if the variable is

defined by a pattern binding. To show an example of this, consider the

following:

g r p = let compute = len r + len p;

len = genericLength

in compute

Promoting compute to a where clause causes the function to raise a

type error if the types of r and p are different. For example, suppose

compute is indeed lifted to a where clause:

f r p = let len = genericLength

in compute len

where

compute l = l r + l p

We now get a type error when we try to evaluate f with the following

arguments: [1,2,3,4] and "hello". When we lift definitions like this

to a where clause, we really need to introduce an existentially qualified

type, which is not a part of the Haskell 98 standard language. To give

an example, suppose that:

CHAPTER 4. STRUCTURAL REFACTORINGS 97

compute :: Integral b => ([a] -> b) -> b

Implicitly the type checker infers that a and b are qualified as existential

types:

compute:: forall a . forall b . Integral b =>

([a] -> b) -> b

The problem is because the forall a . forall b is on the left most

side, we need to introduce rank-2 polymorphism in all cases, so that a

can be unified with both the types [Int] and [Char]:

compute:: forall b . Integral b =>

([forall a . a] -> b) -> b

This is a problem in lambda lifting [52] where we introduce functions

(or lambdas) to abstract over a polymorphic entity.

2. The definition of foo must be a function binding or a simple pattern

binding (i.e. a pattern binding of only a single variable) so that param-

eters can be passed to the definition if necessary.

4.6 Converting from where to let

Converting from a where to a let narrows the scope of the definition by

converting a definition defined at the equation level (a definition defined in a

where clause) to a definition defined at the expression level (a definition defined

in a let expression).

4.6.1 Example

Figure 18 (on Page 98) shows an example of moving a definition in a where to

a definition in a let. table is selected within the where clause of showAll for

demotion to a let expression. The result (shown in the left column) shows that

table is added to the let expression of showAll, and the parameter, format has

CHAPTER 4. STRUCTURAL REFACTORINGS 98

Before:

showAll :: Show a => [a] -> String

showAll = let table = concat . format

format [] = []

format [x] = [x]

format (x:xs) = (x ++ "\n")

: format xs

in table . map show

where

foo = concat . map

After:

showAll :: Show a => [a] -> String

showAll = let format [] = []

format [x] = [x]

format (x:xs) = (x ++ "\n")

: format xs

in (table format) . (map show)

where

foo = concat . map

table format = concat . format

Figure 18: Conversion of a let to a where and vice versa

been removed (format is now in scope) — detecting this relies on the binding

information of variables in the AST.

4.6.2 Conditions

Supposing the name bound by the definition to be converted is called foo, the

condition for demoting foo from a where to a let is as follows:

• If there is another definition in the scope of the where clause that depends

on foo: demoting foo to a let expression will result in that foo being

passed as a formal parameter (and to all uses of the definition as an actual

parameter). Of course this would fail if there are other uses within the where

CHAPTER 4. STRUCTURAL REFACTORINGS 99

clause bound variables rather than in the body of the expression itself.

4.6.3 Design Issues

Supposing the name bound by the definition to be converted is called foo, the

design issues for demoting foo from a where to a let are as follows:

• Since foo will always be added to the outermost scope in the let expression,

any definitions with the same name in a let expression will still have the

same behaviour as before as a let always binds more tightly than a where

clause. For example, suppose we select foo for demotion to a let expression:

g x = let foo = 45 in foo where foo = 26

As there are two foo definitions, the foo defined immediately in the let

expression always binds more tightly, and is therefore always called by the

evaluator when evaluating the right-hand-side of g. Demoting the foo in

the where clause, therefore, moves foo to a let expression outside of the

scope of the immediate let expression already in place:

g x = let foo = 26 in (let foo = 45 in foo)

The meaning of g therefore remains unchanged.

• foo will always be added at the top-most level of the list of bindings in

the let clause of the function body immediately attached to the (defining)

where clause. If no let expression exists, one is created.

• If the body of the function defining the where clause of foo contains guards,

the guards must be converted to an if..then...else before the demotion

can continue. This condition is explained in further detail on Page 79.

CHAPTER 4. STRUCTURAL REFACTORINGS 100

4.7 Case Analysis Simplification

Case Analysis Simplification transforms the case expression into the always

succeeding branch, replacing variables that are bound in the case analysis with

variables bound outside the case analysis via symbolic evaluation. This is partic-

ularly useful if one introduces new pattern matches and then inlines calls on the

right hand side.

4.7.1 Example

As an example, consider the following equation:

f xs@[] = (case xs of

[] -> error "Error: empty list"

(n:ns) -> n) + head (tail xs)

Choosing the Simplify Case Expression refactoring, we get the following:

f xs@[] = error "Error: empty list"

where the second branch of the case expression has been eliminated.

For an example where case analysis simplification might be useful, consider

the following definition:

f :: [Int] -> Int

f xs = head xs + head (tail xs)

By using Introduction of pattern matches as described in Section 5.6, we may

firstly introduce new equations for f:

f :: [Int] -> Int

f xs@[] = head xs + head (tail xs)

f xs@(y:ys) = head xs + head (tail xs)

In the above, the original equation for f has been retained. The main reason

for this is so the refactoring does not have to perform any analysis to determine

CHAPTER 4. STRUCTURAL REFACTORINGS 101

whether or not there is an exhaustive set of patterns defined. Removing the

equation automatically may produce a program that the user did not expect.

Now, we unfold the calls to head to introduce a case analysis:

f :: [Int] -> Int

f xs@[] = (case xs of

[] -> error "Error: empty list"

(n:ns) -> n) + head (tail xs)

f xs@(y:ys) = (case xs of

[] -> error "Error: empty list"

(n:ns) -> n) + head (tail xs)

It is obvious that in the first equation, the second branch of the case analysis

will never be reached, as xs is defined as [] in the pattern binding. In the second

equation, it is also obvious that the first branch of the case analysis will never be

reached, as the shape of xs is not [] in its pattern binding; the variable n in the

second branch is also symbolically identical to y defined in the pattern binding of

f. Simplifying these case expressions in turn produces the following code:

f :: [Int] -> Int

f xs@[] = (error "Error: empty list") + head (tail xs)

f xs@(y:ys) = y + head (tail xs)

From here onwards, the equations can be simplified further using the refactorings

implemented in HaRe —eliminating the call to head and tail— if we introduce

new sub-patterns (defined in Section 5.6.2) for ys and inline and simplify the right

hand side further. To demonstrate this, consider the equation f xs@(y:ys) = y

+ head (tail xs) as an example:

f xs@(y:ys) = y + head (tail xs)

; (Introduce new pattern matching for ys)

f xs@(y:ys@(z:zs)) = y + head (tail xs)

CHAPTER 4. STRUCTURAL REFACTORINGS 102

; (unfold tail xs)

f xs@(y:ys@(z:zs)) = y + head (case xs of

[] -> error "Error: empty list!"

(a:as) -> as)

; (simplify case statement)

f xs@(y:ys@(z:zs)) = y + head ys

; (unfold head ys)

f xs@(y:ys@(z:zs)) = y + (case zs of

[] -> error "Error: empty list!"

(a:as) -> a)

; (simplify case statement)

f xs@(y:ys@(z:zs)) = y + z

The expression head (tail xs) has therefore been reduced to z on the right hand

side of f, eliminating the calls to head and tail altogether.

4.7.2 Conditions

Suppose the expression to be simplified is foo, the conditions for simplifying foo

are as follows:

• The right hand side of the definition of foo must be a case analysis, otherwise

an error occurs. Simplifying an if...then...else expression of a guard is

not possible as the simplifier may diverge during the process. See Section

4.9 for more details.

• Suppose we have the following equation, where the case analysis on the right

hand side is selected for simplification:

CHAPTER 4. STRUCTURAL REFACTORINGS 103

f = let x@(y,z) = e in case x of

(1,2) - > 1

(a,b) -> a

A binding analysis is performed on the expression e so that, if the second

branch of the case analysis succeeds, a can be symbolically resolved to either

a normal form, or the variable y. For example, suppose that e = (1,2), then

it is trivial to equate a with the value 1. However, if e = diverge (where

diverge is the diverging term) then evaluating e will obviously make the

simplifier diverge also. Therefore if e is a function call of any kind then it

is not evaluated. This issue is explained in more detail in Section 4.9.

4.7.3 Design Issues

Suppose the expression to be simplified is foo, the design issue for simplifying foo

is as follows:

• If any guards occur on the right hand side of the equation then no attempt

is made to evaluate them; they are converted to an if..then..else.

4.8 Bound Variables

This section discusses an issue that arises due to folding (both simple folding,

as described in Section 4.1, and generative folding, as described in Section 4.2).

Any matching of expressions with bound variables is up to alpha equivalence

of those bound variables. For example, if we are folding against a definition of

foo that contains any pattern matching on its right-hand-side in the form of a

case expression, lambda abstraction or do notation, then the structure of the

clause must match the structure of any potential substitution instances within

the program. The variables in the pattern are renamed so that the two compared

pattern clauses contain the same binding information. For example, let us consider

CHAPTER 4. STRUCTURAL REFACTORINGS 104

that we are folding the following definition of foo (if the fold is a generative fold,

then the following equation of foo would be preserved in a comment):

foo xs = map (\y -> case y of

0 -> 1

x -> x + 1) xs

against the following sub-expression:

map (\x -> case x of

0 -> 1

a -> a + 1) xs

The variables bound in the instance above are renamed to their corresponding

binding names in foo. The two ASTs can then be compared. In the example

above, the variable bound in the lambda abstraction can be renamed to y, and

the a bound in the case analysis can be be renamed to x. This is obviously

identical to the right-hand-side of the selected equation, foo. If any free variables

occur in either of the expressions that are being compared, then they are identical

if and only if they are the same identifier.

4.9 Symbolic Evaluation

Generative folding (described in Section 4.2) and case analysis simplification (de-

scribed in Section 4.7) both use the symbolic evaluation techniques implemented

and outlined in this section. The symbolic evaluation implemented for the refac-

torings in this thesis is not supposed to be an attempt at a complete symbolic

evaluator, instead it provides the necessary functionality required for the refac-

torings.

As described by the report [93], Haskell 98 allows pattern bindings to be em-

bedded within expressions; pattern bindings at the expression level occur within

case expressions, lambda abstractions and do notation (including list compre-

hensions). It is possible, therefore, to bind new patterns to pattern variables that

CHAPTER 4. STRUCTURAL REFACTORINGS 105

f x@(z:zs) = case x of

[] -> error "Error: empty list!"

(y:ys) -> ys

Figure 19: A simple case expression

have already been defined; in Figure 19, we have a pattern binding on the left-

hand-side of f defined as an as-pattern x. The case expression simply takes x and

performs further pattern matching on it: the first branch of the case compares x

with [] and the second simply repeats the pattern matching on the left-hand-side

of the equation for f. This repetition can be removed by the simplifier refactoring

as described in Section 4.7, and its underlying implementation as described next.

4.9.1 Case Expression Elimination

Considering Figure 19, it is possible to remove the first branch of the case ex-

pression entirely; indeed, it is even better to replace the whole case expression

with the second branch (replacing variables bound in the case to variables bound

outside).

Although it may be obvious to the reader that the branch

[] -> error "Error: empty list!"

will never be reached, this is determined by evaluating a form of the case expression

using the GHC API. First, a closure is created that captures the environment of

the case expression, and replaces each branch with an integer value:

closure1 x@(z:zs) = case x of

[] -> 1

(y:ys) -> 2

The Haskell project under scrutiny is then loaded into the API, and the above

closure is evaluated, passing in calls to error:error as formal parameters to

CHAPTER 4. STRUCTURAL REFACTORINGS 106

closure1. The evaluation then returns either 1 or 2 depending on which branch

succeeds (in the above case, 2 will always be returned). If an error occurs, or the

evaluation fails, a negative integer value is returned which is then processed by

the refactorer accordingly.

The refactoring can then determine the AST for the branch by a simple count

and then perform symbolic evaluation where necessary.

4.9.2 Symbolic Evaluation Infrastructure

The symbolic evaluator takes a case alternative, a list of patterns (the environment

for the case expression) and the expression under the case scrutiny. With this

information, the symbolic evaluator performs an analysis over the case expression,

and tries to match it with any patterns bound in the environment. If they are

matched, they are paired with the patterns bound in the case alternative and

the variables in the expression in the alternative are transformed into variables

bound in the environment. This new expression is then returned by the symbolic

evaluator.

To put this into context, consider, again, the example in Figure 19. After

the simplifier (Section 4.9.1) has been applied to the case expression, we are

left with the second alternative: (y:ys) -> ys. This is passed to the symbolic

evaluator together with the environment x@(z:zs) and the case expression under

scrutiny, x. The evaluator associates the x in the expression with the as-pattern

in the environment. The patterns in the as-pattern are then paired with the

patterns in the alternative: [(z,y),(:,:), (zs, ys)]; and the expression xs in

the alternative is re-written to produce ys, which is then returned by the symbolic

evaluator.

4.9.3 Where and Let Clauses

The environment as described in the section above may also contain patterns

defined at the equation level with where or let clauses. For example, consider

CHAPTER 4. STRUCTURAL REFACTORINGS 107

f = let x@[a,b,c] = [1,2,3] in

case x of

[] -> error "Error: empty list!"

[n,m,o] -> [n,m]

Figure 20: A case expression demonstrating a simple let binding

f = let x@[a,b,c] = make_list a in

case x of

[] -> error "Error: empty list!"

[n,m,o] -> [n,m]

make_list n = n : make_list (n+1)

Figure 21: A case expression demonstrating an infinite let binding

Figure 20, where instead of a pattern binding on the left-hand-side of f, we now

have a let clause instead. In this case, the symbolic evaluator infers that the

expression [n,m] in the case alternative is actually [1,2] as defined by the let

expression.

Currently, however, HaRe only looks at let or where clauses that are one-level

deep and do not contain function calls; in this case only the pattern binding on the

left-hand-side of the let or where declaration will be used for the environment,

and the right-hand-side will be completely discarded. This is to avoid a complex

analysis that may end up in trying to evaluate diverging functions. Consider the

example in Figure 21; here, the let expression is a call to a diverging term and

therefore the pattern binding for x in the let expression cannot be resolved. In

this example, the case alternative [n,m] can only be symbolically linked to [a,b].

CHAPTER 4. STRUCTURAL REFACTORINGS 108

4.10 Summary

This chapter presented a number of structural refactorings that have been imple-

mented in the Haskell refactorer, HaRe. With an established refactoring frame-

work [67] it was possible to choose those refactorings that were more challenging

and allowed the HaRe framework to be extended further. The refactorings in this

chapter also demonstrated a case study into language design and implementation.

To show how these refactorings can be used on a real world example, Chapter 7

shows a case study using these refactorings (and the other refactorings that form

this thesis) on a real-world program.

Chapter 5

Data Type Based Refactorings

This chapter describes the new data type based refactorings that have been defined

and implemented in HaRe. Following on from the refactoring work by Li [67], and

using the refactoring catalogue [96] maintained by Thompson as a basis, a new

set of refactorings which aim to complement and extend the existing refactorings

in HaRe have been provided. This chapter follows the guide outlined on Page 76

in Chapter 4. The following refactorings are described in this chapter:

• Adding a constructor (Section 5.2);

• Removing a constructor (Section 5.3);

• Adding and removing a data type field (Section 5.4);

• Introducing pattern matching (Section 5.6);

• Introducing pattern matching for a sub-field (Section 5.6.2);

• Introducing a case expression (Section 5.6.3).

The chapter begins with a section regarding the type checking issues that were

addressed with implementing the refactorings in this chapter, and concludes with

a summary, on Page 128 in Section 5.7.

109

CHAPTER 5. DATA TYPE BASED REFACTORINGS 110

5.1 Type Checking

Various refactorings in this chapter use the type-checker from GHC to infer the

types of sub-patterns.

• The type of the sub-pattern is inferred using GHC as follows: the parameter

position of the equation in which the sub-pattern occurs is calculated. For

example, if ys is selected within:

f :: a -> [Int] -> Int

f x (y:ys) = e

ys occurs within f’s second parameter, therefore the type of the second pa-

rameter is then extracted (in this case [Int]) from the type signature and a

new closure is passed to the GHC type checker: closure ((y:ys)::[Int])

= ys. GHC then infers that the type of closure is [Int] -> [Int], and

it is relatively straight forward to extract the return type from that result.

It is important to note that there must be a type signature defined for the

function that we want to infer. As of yet, there is no means, via the GHC

API, to give it a function and have an inferred type returned. To get round

this, by adding a type signature and then passing in a type annotation, in

this fashion, it is possible to use the GHC API to get a type of a given

expression.

• As a new equation is built with a type annotation to the GHC type checker,

any polymorphic types within the type annotation must be removed. Type

variables are not allowed to occur within a type annotation due to the scop-

ing of the variables. Consider: closure ((y:ys)::[a]) = ys; the type [a]

is only in scope within the pattern binding (y:ys) and not on the right-

hand-side of the equation. This will actually give an error within GHC. The

refactoring gets around this by replacing all type variables in the annotation

with Int; it is reasonable to do this, as the refactoring errors if the type of

CHAPTER 5. DATA TYPE BASED REFACTORINGS 111

the pattern is of type Int anyway (we cannot produce pattern matching

over a built in type such as Int, as firstly the number of elements is poten-

tially infinite, and secondly, the elements are not explicitly defined in the

implementation). The error message is generalised to include pattern match

introduction over polymorphic types.

5.2 Adding a Constructor

Adding a constructor to a defined data type. The introduced constructor is

added immediately after a selected constructor definition in a data type.

5.2.1 Example

An example of adding a constructor Var to a data type Expr is shown in Figure

22. In the example, we select the constructor ‘Minus’ and choose to add a new

constructor immediately after (the result is shown in the right column). We add

the new constructor ‘Var’ with a parameter ‘Int’. The function ‘eval’ is updated

automatically to include pattern matching for the newly added constructor.

5.2.2 Conditions

• A condition is that Foo is not already a constructor of a type already in

scope, if it is, the refactoring terminates with an error.

5.2.3 Design Rationale

Suppose the Constructor to be added is called Foo and the data type for Foo is

called T, then the effects of adding a constructor are as follows:

• Foo together with the types of the fields or arguments to the constructor are

defined by the user and added to the definition of T. Foo is always added

immediately after a user-selected constructor.

CHAPTER 5. DATA TYPE BASED REFACTORINGS 112

Before:

data Expr = Plus Expr Expr | Minus Expr Expr

eval :: Expr -> Int

eval (Plus e1 e2) = (eval e1) + (eval e2)

eval (Minus e1 e2) = (eval e1) - (eval e2)

After:

data Expr = Plus Expr Expr | Minus Expr Expr | Var Int

addedVar = error "added Var Int to Expr"

eval :: Expr -> Int

eval (Plus e1 e2) = (eval e1) + (eval e2)

eval (Minus e1 e2) = (eval e1) - (eval e2)

eval (Var a) = addedVar

Figure 22: Adding a constructor

• New equations are added to any definition over T to allow for pattern match-

ing definitions to include the new constructor. This includes equations in

all modules in the current project that are defined over T. An exhaustive

set of patterns is introduced for Foo in all argument positions that have

type T if the pattern sets are not already exhaustive. The refactoring always

preserves the ordering of the pattern matching. If a function, g, has an

exhaustive list of patterns for T already defined, the new pattern match for

Foo will be placed in the same position as it is placed in the definition of

the type T. If the patterns in g are not in the same order as in the definition

of the type of T then the new equation is added to the end of the definition

of g.

• If there is already a pattern match over a type S with n cases, plus a variable

over T, the refactoring adds n new equations, one for each case of S. For

example, consider we have the following data types, S and T and a function

CHAPTER 5. DATA TYPE BASED REFACTORINGS 113

foo:

data S = C1 | C2 | C3

data T = T1 | T2

foo :: S - > T -> T

foo C1 x = x

foo C2 x = x

foo C3 x = x

Adding the constructor T3 to T has the effect of adding a new pattern match

for each clause already defined for S in foo:

data S = C1 | C2 | C3

data T = T1 | T2 | T3

addedT3 = error "added T3 to T"

foo :: S - > T ->T

foo C1 T3 = addedT3

foo C1 x = x

foo C2 T3 = addedT3

foo C2 x = x

foo C3 T3 = addedT3

foo C3 x = x

If the pattern matching contains a variable in all defining locations, the new

pattern match for Foo is placed immediately before the first equation.

• It is possible that the user gives general type variables as parameters to Foo

that do not occur on the left-hand-side of the data type implementation.

For example, if the definition for the data type is: T a = C1 a and Foo a

b is added as an additional constructor with a and b as type parameters.

If this is the case, the variables must be added to the list of the data type

parameters (to produce T a b) and all type signatures must be updated

CHAPTER 5. DATA TYPE BASED REFACTORINGS 114

to reflect the addition of the new type parameters. If the type parameter

is used in the type signature under refactoring, a new polymorphic type

variable is introduced, so long as the name does not conflict with any other

type variables in scope.

5.2.4 Design Issues

This refactoring uses the type checking facilities of GHC (as described in Section

5.1). When adding a constructor, it is possible that the refactoring needs to

be able to check the type of pattern variables, particularly those occurring in

a nested pattern match. Rather than performing a rudimentary type checking

analysis using the type signatures of the definitions (which may not always be

present) under refactoring, it seemed far easier to build a mechanism to allow

GHC to return a type for a particular pattern variable of interest. Consider, for

example:

data T a = T1 a | T2

data S = S1

f :: (Int, T S) -> Int

f (x, T1 y) = 42

Supposing a new constructor, S2, is added to the definition of S. Using the be-

haviour specified in Section 5.2.3 means that a new equation must be introduced

for f:

data T a = T1 a | T2

data S = S1 | S2

addedS2 = error "Added constructor S2 to S"

f :: (Int, T S) -> Int

f (x, T1 S2) = addedS2

f (x, T1 y) = 42

CHAPTER 5. DATA TYPE BASED REFACTORINGS 115

GHC is used to infer the type parameter for the pattern match against T1; this is

so type checking analyses do not have to be implemented into the refactoring.

5.3 Removing a Constructor

Removing a constructor is defined as the inverse of adding a constructor and

is not a refactoring but rather a destructive transformation in that it potentially

eliminates equations (and therefore does not preserve the program’s behaviour).

Removing a constructor allows a constructor to be identified and all equations de-

fined over the constructor as a pattern match are commented out. All occurrences

of the constructor in an expression are replaced with calls to error.

5.3.1 Example

An example of removing a constructor Var from a data type Expr is defined

in Figure 23 on Page 117 (left to right). Var is selected for removal and the

refactoring removes the value from its defining definition, Expr and comments out

all equations referring to the value Var in a pattern. When used on the right hand

side Var is replaced with a call to error.

5.3.2 Design Issues

Removing a constructor called Foo in a destructive manner from a data type T

has the following implications:

• Foo is removed from the data type implementation of T. Any redundant

type parameters (i.e. parameters no longer used on the right hand side of

the definition) left as a result are also removed. For example, if the data

type is defined: T a b = C1 a | Foo a b and Foo a b is removed, the

updated type for T will be: T a = C1 a. All type signatures are also updated

to reflect the change in type implementation. Removing redundant type

CHAPTER 5. DATA TYPE BASED REFACTORINGS 116

parameters could also be implemented as a stand-a-lone refactoring, and

the stand-a-lone implementation is currently left as future work.

Removing redundant type parameters in this fashion may, in some rare in-

stances, result in programs that no longer type check. Removing redundant

parameters is not behaviour preserving and can be used by the programmer

occasionally to facilitate type unification. This detail is discussed in more

detail in Section 5.5 on Page 120.

• Any equations with a pattern match using Foo are commented out. This

is so that equations can still be referenced in the program source code at a

later date if the programmer wishes.

• Any references to Foo occuring within an expression are replaced with calls

to error. The error message informs the user that the constructor was

removed and also gives the function name that defines the expression.

• Any references to a definition that has been commented out as a result of

the refactoring are replaced with calls to error.

• If there are any pattern bindings involving Foo in the program then the

refactoring terminates and gives an error. Otherwise, the refactoring would

also have to eliminate all uses of variables bound within the erroneous pat-

tern binding. For example, Foo x y = e is defined as a pattern binding

within an expression, all uses of x and y must also be eliminated in that

scope. However, it is possible that if Foo occurs within a pattern binding of

the form (Foo x y, Blah z w) = ... then it may be possible to salvage

the pattern match for Blah.

This refactoring may be useful if the programmer defines a constructor that needs

to be modified: removing the constructor destructively and then adding a new

constructor allows them easily to correct this mistake. It is understood that this

sort of destructive behaviour for a refactoring tool may be dangerous: eliminating

equations and expressions in this manner changes the meaning of a program.

CHAPTER 5. DATA TYPE BASED REFACTORINGS 117

Before:

data Expr = Plus Expr Expr | Minus Expr Expr | Var Int

addedVar = error "added Var Int to Expr"

eval :: Expr -> Int

eval (Plus e1 e2) = (eval e1) + (eval e2)

eval (Minus e1 e2) = (eval e1) - (eval e2)

eval (Var a) = addedVar

After:

data Expr = Plus Expr Expr | Minus Expr Expr

addedVar = error "added Var Int to Expr"

eval :: Expr -> Int

eval (Plus e1 e2) = (eval e1) + (eval e2)

eval (Minus e1 e2) = (eval e1) - (eval e2)

{- eval (Var a) = addedVar -}

Figure 23: Destructively removing a constructor

CHAPTER 5. DATA TYPE BASED REFACTORINGS 118

5.4 Adding a Field to a Constructor of a Data

Type

Adding a field to a constructor allows a new field to be added to an identified

data type constructor.

5.4.1 Example

Figure 24, from top to bottom, shows an example of a new field being added to

a data type. The new field, of the polymorphic type b, generalises the data type

further. b is added to the left hand side of the type definition, and also to all

corresponding type signatures of Data1 in the program.

5.4.2 Conditions

Adding a field t to a constructor Foo has the following implications:

• The user inputs a type for the new field. If the type of the parameter

is a new polymorphic type not already defined on the left-hand-side of the

data type, then the parameter is added to the left-hand-side of the data type

implementation and all type signatures are updated accordingly. undefined

is used as the value for the new field in cases where the constructor is used.

• If the data type is defined as a record type, the user can input a field name

as well as a type. The name must be unique to Foo otherwise the refactoring

gives an error and terminates.

5.4.3 Design Issues

The design issues of adding a field t to a constructor Foo are as follows:

• All uses of Foo within the program are updated to take into account of the

new field, this includes pattern matching and variable binding.

CHAPTER 5. DATA TYPE BASED REFACTORINGS 119

• t is always added to the beginning of every occurrence of Foo in the program

so that partial applications can be dealt with correctly. The reason for this

was to simplify the implementation of the refactoring. Rather than perform

an analysis into all cases where a partial application may be presented and

producing a workaround, it is far easier to always add the field as the first

parameter of the constructor. Indeed, adding a parameter [67] has been

defined to behave in exactly the same way for the same reason.

• There might be cases where the user wants to add a field to all the construc-

tors of the data type. It is possible to do this by adding a field to each of

the constructors of the data type in turn.

5.4.4 Comments

One of the major drawbacks of functional programming in general is that if one

adds a field to a data type, a substantial amount of code modification has to take

place in order to introduce new pattern matching for all functions defined over that

data type. This is not a problem in object-oriented programming languages where

data types are represented by classes. Adding a new field to a class is implemented

by adding a new subclass to the class hierarchy; this has an advantage that the

methods do not need to be updated to take into account the newly added subclass.

5.5 Removing a Field

Removing a field is the complement of adding a field as described in Section

5.4.

5.5.1 Example

Figure 24 on Page 123, from bottom to top, shows an example of a field being

destructively removed from a data type. The field in question, of the polymorphic

CHAPTER 5. DATA TYPE BASED REFACTORINGS 120

type b, is removed from the left hand side of the type definition, and also from all

type signatures involving Data1.

5.5.2 Design Issues

The implications of removing a field t from the constructor Foo destructively are

as follows:

• The field t can not in general be identified by its type as there may be cases

where a constructor has two or more fields of the same type. Instead, the

field is identified by its position in the constructor application.

• Any variables referring to t in a pattern binding are removed from the

binding; any occurrences of the variables are then replaced with a call to

error in that scope. The error message informs the user where the binding

for the field has been removed.

• References to t in a constructor application within an expression are simply

eliminated from the program.

• The list of type parameters for the data type is updated to take into account

any redundant parameters after t has been removed. All type signatures

are updated to reflect this change.

It is important to note that whilst removing redundant type parameters is

not behaviour preserving, it may conflict with programs that rely on type

parameters to resolve type variable unification. For instance consider the

following Haskell program:

data Vector a = Vector a

data PackType a = Pack a deriving Show

class Pack a where

CHAPTER 5. DATA TYPE BASED REFACTORINGS 121

pack :: Vector a -> PackType a

instance Pack Int where

pack (Vector a) = Pack a

instance Pack Char where

pack (Vector a) = Pack a

test :: Pack a => Vector a -> PackType a

test v = pack v

dummy = test (Vector ’c’)

Suppose we remove the field a from the constructor Vector:

data Vector = Vector

data PackType a = Pack a deriving Show

class Pack a where

pack :: Vector -> PackType a

instance Pack Int where

pack (Vector) = Pack undefined

instance Pack Char where

pack (Vector) = Pack undefined

test :: Pack a => Vector -> PackType a

test v = pack v

CHAPTER 5. DATA TYPE BASED REFACTORINGS 122

-- dummy :: PackType Int

dummy = test (Vector {-’c’-})

This now fails to type check as it is unclear which overloaded version of pack

to use. The type variable in Vector was being used to determine the type of

PackType a and consequently the correct version of pack to call. Although

this is an extreme example, it is important to note that unification in this

way can be used to determine which overloaded version of an operator to

use.

In contrast the safe variant is defined as follows:

• t is selected by the user and an error is given if the cursor has selected an

erroneous entity. This is a user interface issue, it is easy to accidently select

an entity in the program that is not a constructor field.

• If there is no reference to t in a pattern binding —either occurring within

a function match or an explicit pattern binding— or within a constructor

application within an expression, the field is safely removed.

• The list of type parameters for the data type are updated to take into

account any redundant parameters after t has been removed from Foo. All

type signatures are updated to reflect this change.

5.6 Introducing Pattern Matches Over an Argu-

ment Position

This refactoring has three flavours: introduction of pattern matches for a top-level

variable on the left hand side of an equation, introduction of pattern matches

for a sub-pattern variable occurring on the left hand side of an equation, and

introduction of a case analysis for top-level variables and sub-level variables.

CHAPTER 5. DATA TYPE BASED REFACTORINGS 123

Before:

data Data1 a = C1 a Int Char |

C2 Int |

C3 Float

f :: Data1 a -> Int

f (C1 a b c) = b

f (C2 a) = a

f (C3 a) = 42

g (C1 (C1 x y z) b c) = y

h :: Data1 a

h = C2 42

After:

data Data1 b a = C1 a Int Char | C2 Int | C3 b Float

f :: (Data1 b a) -> Int

f (C1 a b c) = b

f (C2 a) = a

f (C3 c3_1 a) = 42

g (C1 (C1 x y z) b c) = y

h :: Data1 b a

h = C2 42

Figure 24: Adding and removing a field

CHAPTER 5. DATA TYPE BASED REFACTORINGS 124

5.6.1 Introduction of Pattern Matches

Introducing pattern matches for a function with a variable in a particular ar-

gument position in all its defining equations, replaces the variable by an exhaustive

set of patterns over the type of the variable.

Conditions

Supposing new patterns are to be introduced for a pattern x (within the equation

f x = head x + head (tail x)), the conditions for introducing new patterns

for x are as follows:

• The definition of f must have a type signature defined. The type signature

is used to calculate the type of x. The new matches are then calculated

by traversing the list of in-scopes (of identifiers) within the project until

the type is found, together with its constructors and constructor arities.

Currently, the GHC API does not have a method for inferring the type of a

given function, which is why a type signature must be defined; this issue is

discussed in more detail on Page 110, in Section 5.1.

• The type of x must not be completely polymorphic, i.e. a type variable. Type

variables do not have concrete values defined and hence no new matches can

be defined. The restriction comes back to the work around for GHC’s API

that is defined on Page 110.

• The type of x must not be a built in Haskell type such as Int. Built-in

types do not have defined constructors, but instead, rely on pre-determined

values that are usually built into the compiler implementation. The in-scope

analysis determines whether a type has any constructors defined for it or

not, built-in types (such as numerical types like Int and Float) do not

register as having constructors defined in that context.

• The selected pattern must be a variable in all defining locations. The refac-

toring always tries to introduce a complete set of exhaustive patterns for all

CHAPTER 5. DATA TYPE BASED REFACTORINGS 125

arguments; having the pattern as a variable makes this analysis much more

straight-forward to realise.

• x must be a pattern binding occurring on the left-hand-side of an equation

and not defined within an expression.

Design Issues

The implications of introducing new pattern matches for a pattern variable are as

follows:

• The new pattern matches are added to the definition of f and the introduced

patterns for x are placed within an as pattern. If the equation for f and its

type signature are as follows:

f :: [Int] -> Int

f x = head x + head (tail x)

Then the new pattern matches for f will be as follows:

f :: [Int] -> Int

f x@[] = head x + head (tail x)

f x@(y:ys) = head x + head (tail x)

The right-hand-side is copied into the new equations and any new pattern

variables that are introduced are given new, distinct, names so that no name

conflicts will occur.

It is also possible to take the introduced pattern further, so that the user

gets the variable from the head position of the introduced pattern instead

of head x. An example of this is given on Page 100.

• The original equation is left after introducing the exhaustive pattern match.

One reason for this is to cover the undefined case, in case the implementa-

tion of the type of the arguments to the equation change after the refactoring

CHAPTER 5. DATA TYPE BASED REFACTORINGS 126

Before:

f :: Either [Int] Int -> Int

f (Left a) = head a + head (tail a)

f (Right a) = a

After:

f :: Either [Int] Int -> Int

f (Left a@[]) = head a + head (tail a)

f (Left a@(x:xs)) = head a + head (tail a)

f (Left a) = head a + head (tail a)

Figure 25: Introducing pattern matches for a sub pattern

is performed. We leave it to the user to remove the left over equation if they

desire.

5.6.2 Introduction of Pattern Matches for Sub-patterns

Introducing sub-pattern matches is in many ways very similar to introducing

pattern matches as described in 5.6.1. However, in this section we introduce a

variation of introducing patterns: the ability to introduce new patterns for a

sub-pattern.

Example

An example of introducing new pattern matches for a sub pattern is shown in

Figure 25.

Conditions

The conditions for introducing new patterns for ys are analogous to those in 5.6.1.

CHAPTER 5. DATA TYPE BASED REFACTORINGS 127

Before:

f :: Either [Int] Int -> Int

f (Left a) = head a + head (tail a)

f (Right a) = a

After:

f :: Either [Int] Int -> Int

f (Left a) = case a of

x@[] -> head x + head (tail x)

x@(y:ys) -> head x + head (tail x)

f (Right a) = a

Figure 26: Introducing a case analysis for a sub pattern

5.6.3 Introduction of Case Analysis

Introducing a case analysis seemed to be a natural extension to the intro-

duction of pattern matches. Instead of creating new pattern matches it is also

possible to create a new case analysis over a pattern variable. This refactoring

works for both sub-patterns and top-level patterns occuring on the left hand side

of an equation.

Example

An example of introducing a new case analysis for a pattern is shown in Figure 26.

In this example, we select the variable a in the first equation for f to introduce

new pattern matches for a as show in the column on the right. As a has the type

[Int] new patterns have been introduced to cover all constructors defined in the

list type, these are: [] and (:).

Conditions

The conditions for this refactoring behave in the same way as described in sections

5.6.1 and 5.6.2.

CHAPTER 5. DATA TYPE BASED REFACTORINGS 128

5.7 Summary

This chapter presented a number of data type based refactorings that have been

implemented for the Haskell refactorer, HaRe. The refactorings here aim to com-

plement the set of structural refactorings described in Li’s thesis [67] and in Chap-

ter 4 wherever possible. For example, it is possible to introduce and remove a defi-

nition just as it is possible to introduce and remove a value of a data type. Adding

and removing a parameter to a function is the analogue to adding a removing a

field to a data type constructor. Also, just as dead code elimination is described

in Chapter 3, dead type variables are also removed from the left hand side of type

implementations and type signatures if they are no longer needed after a field or

constructor removal has been performed. Chapter 7 shows a real-world example

of these refactorings in practice.

Chapter 6

Clone Detection and Removal

6.1 Introduction

Duplicated code or very similar code (often called code clones) is a well known issue

in refactoring and software maintenance. The term duplicated code, in general,

refers to a code fragment that is identical or similar to another code fragment;

the exact meaning of “similar”, however, varies between different programming

contexts.

Several studies have shown that software systems with code clones are more

difficult to maintain than the software systems with little or no duplicated code

[51, 6]. It is therefore beneficial to remove clones quickly after their introduction

by the use of refactoring technology.

Software clones appear for a variety of reasons; the most obvious of which is

the use of the copy and paste function in an editor. Clones introduced by this

mechanism often indicates a poor design with a lack of function abstraction or

encapsulation [18, 72]. Refactoring can be used to eliminate this problem either

by first refactoring the code to make it more reusable, without duplicating code;

or by refactoring out the code clones at a later stage [32]. In the last decade, a

substantial amount of research has gone into duplicate code detection and removal

from software systems; the sheer size of the recent survey on the topic of clone

detection is well over 100 pages [101]. However, few such tools are available for

129

CHAPTER 6. CLONE DETECTION AND REMOVAL 130

functional programs, and there is a particular lack of clone detection support

within existing program environments.

Common terminology for the clone relations between two or more code frag-

ments are the phrases clone pair and clone class [55]. A clone pair is a pair of

code fragments that are identical or similar to each other; a clone class is the set

of code fragments which are identical or similar to each other within a code base.

The rest of this chapter details a clone detection technique for Haskell built

into the framework of HaRe. The tool should be able to handle large Haskell

programs and report as many clones as possible. Fully automating the tool would

be dangerous because it could lead to results that the user did not expect; it is

better to give the user control over which clones should be removed and extracted.

The clone detection stage is intended to be fully automatic, while the transfor-

mation stage is not. Being part of a programming environment and a large-scale

refactoring tool, the clone detection tool is far more likely to be useful to working

Haskell programmers.

The clone detection technique presented in this chapter has a stronger criterion

than other clone detection mechanisms: it is concerned with finding clones which

are common substitution instances of expressions. The clone detection technique is

able to report code fragments in a Haskell program that are syntactically identical

after an alpha variable renaming. Syntactically, these code clones are a sequence of

well-formed expressions or functions, and therefore this approach makes use of the

token stream and AST provided in HaRe as part of Programatica. Unlike a fully

automated removal of clones, which usually does not give appropriate solutions in

all cases, a different approach is taken here which respects the importance of user

intervention during the clone removal process. This intervention allows clones to

be removed in a step-by-step process under the programmer’s control, and allows

for the preservation of clones of particular kinds (for example very small clones).

In addition to the above, the clone detection technique has been extended to look

for repeated sequences of monadic “commands”. It is particularly interesting that

clone analysis in Haskell allows us to do this, and even more important is that it

CHAPTER 6. CLONE DETECTION AND REMOVAL 131

is a real contribution to the field of clone detection and elimination.

Section 6.2 gives an overview of work relating to duplicated code elimination.

Section 6.3 discusses the analysis stage of the clone removal process for HaRe and

Section 6.4 discusses the transformation stage of the clone removal process.

6.2 Related Work

A code clone, in general, refers to a code fragment that has identical or similar

code fragments to it in a program’s source code. Clone fragments often occur

through the use of copying techniques by the developer (usually via cut and paste)

with or without minor modifications in a system. If there are no modifications,

or the modifications are only a change to the copied fragment, then the original

and copied fragments are called code clones and form a clone pair. Two code

fragments can be identified as being similar if their program texts are similar, or

their semantics are similar (without necessarily being textually similar). Due to

the undecidability of function equality [58], the research reported in this thesis

only considers syntactically identical or similar code fragments, which can be

compared on the basis of their syntactic or internal representation.

This thesis identifies clones that are identical only after a consistent renaming

of local variables; top-level identifiers are not renamed (the clone analysis only

looks for cut-and-paste instances). The process here obviously ignores variations

in literals, layout and comments. The work presented here complements that of

Li on clone detection in Erlang [70]. The difference is that Li first compares clones

using an analysis of the token stream, only using the more costly AST once clone

candidates have been identified. Li also compares clones that are identical after

renaming all function names and variables names to the same name respectively.

Typically, the clone recognition process transforms the code into an interme-

diate representation and then performs a comparison over this representation.

A recent survey of existing techniques is given by Roy and Cordy in [101], an

overview of which is given in the remainder of this section.

CHAPTER 6. CLONE DETECTION AND REMOVAL 132

6.2.1 Text-based Techniques

There are several clone detection techniques that are based on pure text-based/

string-based methods. In this approach, the target source program is considered

as a sequence of lines/strings. Two code fragments are compared with each other

to find sequences of same text/strings. Once two or more code fragments are found

to be similar in their maximum possible extent (e.g. with respect to maximum

number of lines) they are returned as clone pairs or clone classes by the detection

technique.

Dup by Baker [6] uses a sequence of lines as a representation of source code

and detects clones. Therefore, it uses a lexer and a string matching algorithm

on the tokens of the individual lines. Dup removes all tabs, whitespace and

comments from the program. Dup also replaces identifiers of functions, variables

and types with a special parameter and concatenates all lines to be analysed into

a single text line. Dup then uses a suffix tree algorithm to extract a set of pairs of

longest matches. Dup can also generate scatter-plots of found matches. Detection

accuracy in Dup is fairly low e.g. it cannot detect code clones written in different

coding styles.

Johnson in [51] proposed a pure text-based approach for a redundancy finding

mechanism on a substring of the source code. In this algorithm, clone signatures

calculated per line are compared in order to identify matched substrings. First, a

text-to-text transformation is performed on the considered source file for discard-

ing the whitespace and comments. Following this, the whole text is subdivided

into a set of substrings so that every character of the text appears in at least one

substring. Matching is then performed to match substrings together, in this stage

a further transformation is applied on the raw matches to obtain better results.

6.2.2 Token-based Techniques

Token-based techniques typically first lex/transform the program into a sequence

of tokens, and then apply comparison techniques to find duplicated subsequences

CHAPTER 6. CLONE DETECTION AND REMOVAL 133

of tokens; finally, the original code portions representing the duplicated subse-

quences are returned as clones. Compared to text-based approaches, a token-based

approach is usually more effective against code changes and aesthetic structural

changes such as formatting and spacing.

CCFinder [55] is one of leading token-based techniques. First, each line of

the source file is transformed into a single token sequence; the token sequence

is then transformed using language-specific transformation rules. Transforming

the language in this way aims at regularisation of identifiers and identification of

structures. Each identifier corresponding to a type, variable or constant is replaced

with a special token. Replacing identifiers ensures that the algorithm matches

different code fragments that are equivalent but have different variable names.

CCFinder then uses a suffix-tree based approach to find similar subsequences as

clone pairs or clone classes.

Dup [6] is also a token-based clone detector in that it also uses a lexer to

tokenize the source code; the tokens of each line are then compared based on

suffix-tree analysis. Unlike CCFinder, Dup does not apply the transformation

rules. However, Dup does introduce the notion of parameterized matching by a

consistent renaming of identifiers.

CP-Miner [72] is used for identifying a similar sequence of tokenized state-

ments. Due to sequential analysis in CCFinder and Dup, the two tools generally

don’t work well with statement reordering and code insertion. A reordered or

inserted statement can break a token sequence that may otherwise be regarded as

duplicate to another sequence.

6.2.3 Tree-based Techniques

Tree-based approaches search for similar subtrees in the AST with some tree

matching techniques. In the tree-based approach, programs are parsed into an

abstract syntax tree (AST). Similar subtrees are then searched for in the tree and

the corresponding source code of the similar subtrees is returned as clone pairs

or clone classes. The AST contains all the information required to do the clone

CHAPTER 6. CLONE DETECTION AND REMOVAL 134

detection; variable names and literal values are discarded in the tree representation

allowing more sophisticated methods for the detection of clones to be applied.

CloneDR [9] is one of the pioneering AST-based clone detection techniques. A

parser is used to generate an annotated syntax tree (AST) and compares nodes

in its subtrees by characterization metrics based on a hash function through tree

matching. The source code of similar sub-trees is returned; CloneDR can check

for consistent renaming.

DECKARD [50] is another AST-based language independent clone detection

tool; its main algorithm is to compute certain characteristic vectors to approx-

imate structural information within ASTs and then cluster similar vectors, and

thus code clones.

There are also clone detection techniques based on program dependency graphs

as demonstrated in [59]. Most of the above mentioned clone detection techniques

are targeted at large legacy systems, and are not tightly integrated into any kind

of programming environment. Language independent clone detection tools tend to

have much lower precision since they do not take into account (and cannot) static

scoping rules of the particular language under analysis; language independent

clone detection techniques are not very suitable for mechanical clone refactoring.

6.3 The HaRe Clone Detector

This section discusses the analysis stage of the clone removal, and Section 6.4

discusses the transformation stage. In this section, Section 6.3.1 discusses AST-

level clone analysis and Section 6.3.2 discusses comparing expressions using an

AST.

The work presented here has mostly been done independently of the clone

detection and removal for Erlang, using Wrangler [70]. The process described

for Wrangler uses a token based technique for identifying code clones. The pro-

cess here is somewhat different, in that the HaRe approach uses a purely AST

based approach, reusing the experience gained from designing and implementing

CHAPTER 6. CLONE DETECTION AND REMOVAL 135

refactorings that work over large ASTs.

There are two separate parts of clone detection and removal: an analysis stage,

which looks over a Haskell project and calculates clone classes; and a transforma-

tion stage, which transforms identified clones from the clone classes in the first

stage into calls to an appropriate abstraction.

The HaRe Clone Detector reports clones by identifying duplicated instances of

expressions within a Haskell project. Each clone is reported with a start and end

location and clones that are instances, or near instances, of the same expression

are grouped together to form clone classes. The analysis stage allows the user

to specify the minimum token size of the clones. These clone classes are then

delivered in a report; see Appendix D for an example of a clone report for the

duplicated expressions found in the source code in Appendix C (the source code

was provided by Thompson, and first appeared in his text on Haskell [108]).

6.3.1 AST-Level Clone Analysis

The HaRe clone analysis works over an AST representation of a Haskell program,

only using the token stream to identify clone classes that have a minimum to-

ken size (configured by the user). By using an AST, the analysis detects and

transforms clones allowing the clone detector to be easily built upon the existing

HaRe framework; source location information is still retained in the AST and

white-space and comments are removed.

The analysis is started by the user opening a source file into Emacs or Vim

(preferably the Main module) and choosing clone detection from the HaRe drop-

down menu. The following describes the stages of the clone analysis:

1. The clone analysis first calculates the export relations of the module (the

modules that import the current module either directly or indirectly). When

a new project is initiated within HaRe, Programatica stores the export in-

formation in a local directory; it is possible to use this information within

HaRe to calculate the files exported or imported by the current module under

CHAPTER 6. CLONE DETECTION AND REMOVAL 136

Analysis

Report

Transformation

Clone Classes

Answers

Source Code

Transformed
Source Code

Get Answers

Report

Source Code

Figure 27: An overview of the clone detection process

CHAPTER 6. CLONE DETECTION AND REMOVAL 137

refactoring. The export relations are calculated in order for the analysis to

determine which modules need to be compared with each other. The clones

for a single module project (say module A) are determined by comparing A

against itself. If we are comparing a multiple module project that contains

the modules A, B and C, we need to be able to compare each different pair

of modules, that is n(n + 1)/2 comparisons for an n module project.

2. An initial pass over the AST groups together all expressions of the same

shape. Originally, before this grouping, the clone analysis took approxi-

mately 15 minutes to compute clones for the Huffman example. The group-

ing significantly diminished this time down to 50 seconds. By grouping ex-

pressions in this way we cut out a lot of irrelevant analysis (i.e. by comparing

an application with a section, say). For example, all function applications,

identifiers, infix applications, and sections, etc. are grouped together. The

grouping also takes into account sub-expressions, so that the expression,

(convert (cd++[L]) t1) ++ (convert (cd++[R]) t2)

is grouped into the categories as shown in Table 1.

CHAPTER 6. CLONE DETECTION AND REMOVAL 138

P
ar

en
th

es
iz

ed
ex

pr
es

si
on

Fu
nc

ti
on

ap
pl

ic
at

io
n

In
fix

op
er

at
or

ap
pl

ic
at

io
n

L
is

t
Id

en
ti
fie

r
(
c
o
n
v
e
r
t
(
c
d
+
+
[
L
]
)
t
1
)

c
o
n
v
e
r
t
(
c
d
+
+
[
L
]
)
t
1

(
c
o
n
v
e
r
t
(
c
d
+
+
[
L
]
)
t
1
)
+
+
(
c
o
n
v
e
r
t
(
c
d
+
+
[
R
]
)
t
2
)

[
L
]

c
o
n
v
e
r
t

(
c
o
n
v
e
r
t
(
c
d
+
+
[
R
]
)
t
2
)

c
o
n
v
e
r
t
(
c
d
+
+
[
R
]
)
t
2

c
d
+
+
[
L
]

[
R
]

c
d

(
c
d
+
+
[
L
]
)

c
d
+
+
[
R
]

L
(
c
d
+
+
[
R
]
)

t
1

c
o
n
v
e
r
t

c
d

R t
2

+ +

T
ab

le
1:

E
x
p
re

ss
io

n
s

gr
ou

p
ed

fo
r

cl
on

e
an

al
y
si

s

CHAPTER 6. CLONE DETECTION AND REMOVAL 139

3. For each expression in the module, the type of the expression is located and

the relevant group of expressions is traversed. A disadvantage is that some

clones are missed as the clone analysis is only able to compare expressions

with a similar shape. It is not currently possible to compare infix expressions

with function applications for example (and those would be not be clones

in the sense that we have chosen to work with in this thesis). However,

the clone analysis does detect clones between expressions and parenthesized

expressions, i.e. e and (e).

4. The clones that are found are sorted and grouped together; clones that are

contained within larger clones are removed.

5. The clones are pretty printed to a report file. The report file includes the

clone classes and their location and module information.

6.3.2 Abstract Syntax Tree Comparison

Two expressions are compared by traversing their structures. If the two structures

contain different top-level identifiers at any point during the comparison then the

analysis terminates and another expression is chosen by the traversal strategy.

• Suppose we are comparing two identifiers i1 and i2. i1 and i2 are identical

if either of the following hold:

– i1 and i2 are both locally defined identifiers. If they are locally defined,

they may be passed in as formal parameters to an abstraction in the

transformation stage.

– i1 and i2 both refer to the same top-level identifier. If i1 and i2 refer

to different top-level identifiers, then they are not duplicate expressions.

This eliminates cases such as comparing 1 + 2 with 1 - 2 ((+) and

(-) are different top level identifiers). If i1 and i2 are both local

variables then they will always match. A literal may be compared with

CHAPTER 6. CLONE DETECTION AND REMOVAL 140

any other literal or a locally defined identifier, as literals can be passed

in as parameters.

• Local identifiers may be compared with each other as local identifiers can

be passed in as parameters.

• The analysis allows for the comparison of expressions with parentheses with

expressions without parentheses. For example, suppose we are comparing

(e1) with e2: (e1) and e2 are duplicates if e1 compares with e2 struc-

turally, or either e1 or e2 are identifiers or literals. If the expression is being

compared against a literal of a locally defined variable, then the expression

can be passed in as a parameter.

• For expressions containing patterns, for example lambda abstractions and

case alternatives, the expressions are the same if their pattern structures are

also the same and their expressions are the same. For example, suppose we

are comparing the two lambda expressions:

e1 = \(x:xs) -> head xs

e2 = \(y:ys) -> head ys

If the structure of the patterns in both e1 and e2 are the same then we

rename the patterns in e2 to match those in e1; identifiers in the expression

head ys are also renamed to match the renamed patterns. Therefore, e2 is

renamed to:

e2 = \(x:xs) -> head xs

Which of course is equivalent to e1 and therefore duplicated. Lambda bind-

ings are treated in example the same way as let/where bindings (in terms

of their binding resolution). Consider an example where two lambda expres-

sions would not match.

CHAPTER 6. CLONE DETECTION AND REMOVAL 141

f1 = \(x:z:xs) -> x + length xs

f2 = \(x:z:xs) -> z + length xs

In the above example, the two expressions within the lambda bodies are

different. The first lambda expression refers to x while the second refers

to z. The process used here is exactly the same as the technique used for

folding, as described in Section 4.1.

• Expressions are compared up to alpha-equivalence.

• The analysis looks for duplicated monadic sequences and duplicated monadic

bindings or a combination of the two. For example, we may have the fol-

lowing two monadic blocks:

f = do

x <- return 565; y <- k 56

putStrLn (y ++ show x)

h = do

a <- return 1111; b <- k 56

putStrLn (b ++ show a)

return 4

The clone analysis traverses through the monadic sequences looking for sub-

sequences that are duplicated. In the above, the clone analysis first deter-

mines that the two binding structures are identical up to changes in literals

(indicated by the highlighting) by renaming the patterns in the second block

so that they match the patterns in the first block:

f = do

x <- return 565; y <- k 56

putStrLn (y ++ show x)

CHAPTER 6. CLONE DETECTION AND REMOVAL 142

h = do

x <- return 1111; y <- k 56

putStrLn (y ++ show x)

return 4

After this renaming, the analysis then determines that the two expressions

putStrLn (y ++ show x) and putStrLn (y ++ show x) are also dupli-

cates and therefore labels the binding generators x and y together with

the qualifying statement putStrLn (y ++ show x) in both blocks as being

clones.

This section discussed the analysis stage of clone detection. The analysis

stage looks over a multiple-module Haskell project and reports clones in the

form of clone classes into a report file. The section preceding this discusses

the transformation stage of clone elimination.

6.4 Refactoring Support for Clone Removal

This section discusses the transformation stage of clone elimination. In Section

6.4.1 abstracting clones is discussed; Section 6.4.2 discusses the implementation of

a step-by-step clone extractor; Section 6.4.3 discusses introducing the abstraction;

Section 6.4.4 shows how the abstraction is calculated and Section 6.4.5 details how

monadic sequences and bindings are wrapped in an abstraction.

If a program contains a large amount of duplicated code, then it is a reasonable

to assume that the program lacks abstraction and design. One of the purposes of

this thesis, therefore, is to implement refactoring technology to remove duplicated

code from within a Haskell program. Already discussed in previous chapters are

the refactorings function folding, as-pattern folding and merging that —as a side-

effect— help to remove duplicated code (and may also, however, help to introduce

CHAPTER 6. CLONE DETECTION AND REMOVAL 143

-- Order on first entry of pairs, with

-- accumulation of the numeric entries when equal first entry.

alphaMerge :: [(Char,Int)] -> [(Char,Int)] -> [(Char,Int)]

alphaMerge xs [] = xs

alphaMerge [] ys = ys

alphaMerge ((p,n):xs) ((q,m):ys)

(A)

| (p==q) = (p,n+m) : alphaMerge xs ys

(B)

| (p<q) = (p,n) : alphaMerge xs ((q,m):ys)

(C)

| otherwise = (q,m) : alphaMerge ((p,n):xs) ys

Figure 28: Duplicated instances of the same expression

duplicated code). These refactorings rely on the user identifying particular prob-

lematic areas, and then invoking the refactorings accordingly. The clone detection

tool is designed to perform the analysis automatically and to allow the user to

choose whether or not to create an abstraction for a particular clone class. Fur-

thermore, the undo feature of HaRe allows the user to recover from a transformed

program if they change their mind.

6.4.1 General Function Abstraction

This subsection introduces a new refactoring for HaRe in the form of function

abstraction. This refactoring abstracts expressions within a clone class into a call

to a new function. The refactoring takes into account instances of an expression

together with exact duplicates of the expression. To show how this abstraction

CHAPTER 6. CLONE DETECTION AND REMOVAL 144

works, consider the code fragments in Figure 28. In this example, the HaRe clone

detector has singled out the code fragments as duplicated instances of each other.

In each code fragment (A), (B) and (C) similar calls to the function (:) occur.

The HaRe clone detector reports these as a clone class to the user, and asks

whether or not they would like form an abstraction over this expression. A new

function is created automatically with the expression indicated in the clone class

as the function body; any formal parameters are added to the function abstraction;

for example, if the clone differs in a literal at each instance this is made into a

parameter. The expression instances are then replaced with a function call. The

following gives an example of the abstraction that is created for the instances

highlighted in Figure 28:

abs_1 p_1 p_2 p_3 p_4

= (p_1, p_2) : (alphaMerge p_3 p_4)

Figure 29 shows the transformed program after the abstraction is created and the

expressions are replaced with calls. This has the advantage of removing duplicated

code from within the program and encourages code reuse and maintenance. The

programmer now only needs to worry about maintaining one call to abs 1, while

before there were three calls to (:) to maintain. It is interesting to note, however,

that in the example above the introduction of the abstraction does not shorten

the expressions; it does abstract away a common sub-expression though, allow-

ing the expression to be more easily maintained at a later stage in the program

development cycle.

6.4.2 Step-by-step Clone Detection

The clone detection is designed to be fully automatic. Clone classes that are

detected are presented to the user in the form of a report, where the user can then

step through the instances, deciding whether or not they should be abstracted.

To put this into context, consider the code fragments in Figure 30. The HaRe

clone detector has detected two clone classes, the first is represented by the code

CHAPTER 6. CLONE DETECTION AND REMOVAL 145

(A)

abs_1 p_1 p_2 p_3 p_4

= (p_1, p_2) : (alphaMerge p_3 p_4)

-- Order on first entry of pairs, with

-- accumulation of the numeric entries when equal first entry.

alphaMerge :: [(Char,Int)] -> [(Char,Int)] -> [(Char,Int)]

alphaMerge xs [] = xs

alphaMerge [] ys = ys

alphaMerge ((p,n):xs) ((q,m):ys)

| (p==q) = abs_1 p (n + m) xs ys

(B)

| (p<q) = abs_1 p n xs ((q, m) : ys)

(C)

| otherwise = abs_1 q m ((p, n) : xs) ys

Figure 29: Duplicated instances replaced with a call to abs 1

CHAPTER 6. CLONE DETECTION AND REMOVAL 146

highlighted in block (A). In code block (A), HaRe has identified the expressions

on lines 6 and 9 to be instances of the same expression. HaRe shows this by

delivering a report to the user, stating that the sub-expression on line 6 is an

instance of the sub-expression on line 9. For each of the instance matches, HaRe

asks the user whether or not they would like to replace the sub-expression with a

call to an abstraction. The following is an example of the interaction:

/home/cmb21/huffman/CodeTable.hs ((46,5),(46,44)):

>spaces m ++ show c ++

" " ++ show n ++ "\\n"<

Would you like to extract this expression (Y/N)?

For each instance that matches, HaRe displays the start and end locations of the

clone instance. This report is produced automatically for each of the instances in

turn; the user only has to answer “yes” or “no” for each question. The user may

quit at any time by answering with “Q”; this has the affect of only extracting

expressions that the user has answered “yes” to up to the point of quitting; all

further expressions are left unchanged. If the user answers “yes” to any of the

answers, HaRe also asks the user for the name of the abstraction and proceeds

to transform the code to include the abstraction and the calls. This allows for

cases where the user may not want to replace all instances of a particular clone,

but only some of them; this behaviour is particularly useful if the clone detector

reports clones classes of a large size.

6.4.3 Choosing the Location of the Abstracted Function

In Haskell, there are two cases to consider when placing the extracted func-

tion. The first is in a single-module project where the extracted function can

be placed anywhere in the module. The second is a multiple-module project,

where insertion of the extracted function in one of the constituent modules may

introduce circular inclusions. Consider the code blocks in Figure 31; this figure

CHAPTER 6. CLONE DETECTION AND REMOVAL 147

(A)

1 showTreeIndent :: Int -> Tree -> String
2 showTreeIndent m (Leaf c n)
3 = spaces m ++ show c ++ " " ++ show n ++ "n"
4 showTreeIndent m (Node n t1 t2)
5 = showTreeIndent (m+4) t1 ++
6 spaces m ++ "[" ++ show n ++ "]" ++ "n" ++ showTreeIndent (m+4) t2

Figure 30: Two code fragments showing code instances for step-by-step removal

module A where
import B

emitJump p j i =
emitByte p (j) >|>
emitByte p (show l) >|>
emitByte p (show h)

where
(h,l) = i ‘divMod‘ 256

module B where

emitOp12 p op i =

case (-i) ‘divmod‘ 256 of
(0,l) -> emitByte p (op ++ "_N1") >|>

emitByte p (show l)
(h,l) -> emitByte p (op ++ "_N2") >|>

emitByte p (show h)

emitByte x y = ...

Figure 31: A multiple-module project demonstrating clone instances

module A where
import B

divMod256 i = i ‘divMod‘ 256
emitJump p j i =
emitByte p (j) >|>
emitByte p (show l) >|>
emitByte p (show h)

where
(h,l) = divMod256 i

module B where
import A (divMod256)

emitOp12 p op i =

case divMod256 (-i) of
(0,l) -> emitByte p (op ++ "_N1") >|>

emitByte p (show l)
(h,l) -> emitByte p (op ++ "_N2") >|>

emitByte p (show h)

emitByte x y = ...

Figure 32: A multiple-module project demonstrating circular inclusions

CHAPTER 6. CLONE DETECTION AND REMOVAL 148

demonstrates a multiple-module project where we have, on the left hand side,

a module that imports the module B, which is shown on the right hand side.

The highlighted expressions in the figure show that the HaRe clone detector has

discovered some cloned expressions. If the user has decided they would like to re-

place these sub-expressions with an abstraction the question is where does HaRe

place the abstraction for these sub-expressions? In Figure 32, HaRe has placed

the abstraction in the module that contains the instance of the first duplicated

sub-expression that is selected for extraction. The problem here is that a cyclic

dependancy has been introduced: module A imports module B and B imports

module A. Cyclic inclusions must be avoided during the transformation due to

the fact that transparent compilation of mutually-recursive modules is not sup-

ported by the current Haskell compilers/interpreters; although mutually-recursive

modules are a part of the Haskell 98 standard. A possible solution to this problem

is to put all the abstractions from a clone detection process into a separate mod-

ule, but this then risks having problems when the abstractions depend on other

functions themselves. The HaRe clone detector solves this problem by perform-

ing an analysis over the project under clone detection. If it is safe to place the

abstraction into the module where the highlighted expression occurs, then this is

performed. Otherwise, the abstraction is placed in the first module that does not

introduce circular inclusions. In the case that expressions over multiple-modules

are transformed into calls to the abstraction, the import relations of the modules

containing those expressions are modified to import the module containing the

abstraction. Suppose the module containing the abstraction is A and the module

importing the abstracted module is B, the design issues for placing the abstraction

are as follows:

• If module A has an explicit export list, the abstraction name is added to

the export list.

• If module B has an explicit import list for module A, then the abstraction

name is added to the explicit list of imports.

CHAPTER 6. CLONE DETECTION AND REMOVAL 149

Otherwise an import statement is added to module B so that it imports module

A with the abstraction name added to the list of imports for module A.

6.4.4 Calculating the Abstraction

The abstraction is calculated only when the transformation process can determine

which sub-expressions can be passed in as an argument. This is done by comparing

the identified expressions for transformation from the clone class. If, during the

comparison, the sub-expressions are different, then they can be passed into the

abstraction as a parameter. If the sub-expressions are the same (either as literals

or identifiers referring to the same top-level identifier) then they do not need to

passed in as arguments. Consider the following three clones:

(p,n+m) : alphaMerge xs ys

(p,n) : alphaMerge xs ((q,m):ys)

(q,m) : alphaMerge ((p,n):xs) ys

The transformation stage determines that from the three clones, the expressions

(:) and alphaMerge occur in the same place in each expression. All other

sub-expressions must be passed in as an argument. This process is called “anti-

unification” as it is finding the least general generalisation of a set of expressions.

6.4.5 Abstracting Monadic Sequences

There are two cases to consider when abstracting duplicated monadic sequences.

The first is where the abstraction contains pattern bindings that will be used

in the remainder of the function containing the clone instance. The second is

where the pattern bindings are used only in the clone. If any pattern bindings are

needed by the function then they must be returned by the abstraction, and a new

pattern binding is created to call the abstraction. Consider, for example (where

the highlighted expressions show the clones):

f = do

x <- return 565; y <- k 56

CHAPTER 6. CLONE DETECTION AND REMOVAL 150

putStrLn (y ++ show x)

h = do

a <- return 1111; b <- k 56

putStrLn (b ++ show b)

return 4

A new abstraction is created with a return statement, returning the values of the

pattern bindings as a tuple in the abstraction:

abs1 p_1

= do

x <- return p_1

y <- k 56

return (x,y)

The clone instances are then replaced with pattern bindings, so that the patterns

bound in the abstraction can be further used in the program:

f = do

(x,y) <- abs1 565

putStrLn (y ++ show x)

h = do

(a,b) <- abs1 1111

putStrLn (b ++ show b)

return 4

If the abstraction contains no pattern bindings, or the pattern bindings in the

abstraction are not needed in the program, then no return statement is added

to the abstraction. If only a subset of the variables are needed, then only these

values are returned. Consider that HaRe has detected the following highlighted

clones:

CHAPTER 6. CLONE DETECTION AND REMOVAL 151

f = do

putStrLn (show 56 ++ " " ++ show 42)

h = do

putStrLn (show 42 ++ " " ++ show 56)

return 4

The following abstraction is created:

abs p_1 p_2 = putStrLn (show p_1 ++ " " ++ show p_2)

The clone instances are then replaced with calls to the abstraction:

f = do

abs 56 42

h = do

abs 42 56

return 4

6.5 Summary

This chapter presented clone analysis and elimination as part of the HaRe in-

frastructure. In particular, two stages of clone removal were presented. The first

stage as discussed in Section 6.3 was an automatic clone detection system, where

expressions in a multiple-module project are compared against each other. Clones

are reported to a text file. The second stage, as discussed in Section 6.4 was a

transformation stage that allows the user to highlight a particular instance of

a clone. HaRe then steps though the clones in the clone class, asking the user

whether or not they would like to replace the clone with a call to an abstraction.

The identified clone instances are then replaced with a call to an abstraction. The

CHAPTER 6. CLONE DETECTION AND REMOVAL 152

location of the abstraction is discussed in Section 6.4.3. Finally monadic clone

elimination was discussed in Section 6.4.5.

Chapter 7

A Refactoring Case Study

The aim of this chapter is to present a case study of refactoring; the application of

functional refactoring to a large-scale Haskell program is investigated and reported

here.

The outline of the approach towards improving support for refactoring func-

tional languages is also presented. The Haskell project that is chosen for refactor-

ing is nhc [100]: a Haskell 98 compiler system written by members of the functional

programming group at York University. nhc is significantly large to demonstrate

the power of HaRe and it is also written using the Haskell 98 standard allowing

HaRe to refactor the nhc source code. This chapter also makes use of the notion

of a refactorer to denote the person performing the refactorings (as opposed to

the refactoring software system).

The aims of the refactorings performed in the remainder of this chapter are as

follows:

• Refactoring helps the refactorer to understand the program by transforming

it incrementally into a program which conforms to their idiomatic style

rather than the original programmer’s.

• Refactoring is used to simplify the program and to make it more amenable

to change: in this case extending the compiler in the future to deal with the

Haskell Prime standard [21], say.

153

CHAPTER 7. A REFACTORING CASE STUDY 154

• Changing the structure of a program may also change its efficiency. The

compiler is usually orthogonal to this, as using a compiler like GHC may

perform optimizations on the code by applying similar transformations at

compile time. A different Haskell compiler may not do these optimisations,

however, and therefore refactoring may change the efficiency of the program.

It is also interesting to note that having said this, refactoring may well

improve a program’s efficiency, but refactoring may also just as easily reduce

it.

The chapter starts with a case study of refactoring nhc. In Section 7.2 we present

some refactorings that are the subject of future work. Finally, in Section 7.3

we extend our refactoring case study by applying the refactorings defined in this

thesis to a simple expression processing example.

7.1 Refactoring Sequence

The example was refactored in a series of steps, which are presented here in exactly

the order in which they were performed. Upon reflection the refactorings might

be performed differently, or in a different order. Discussion of future work follows

in Section 7.2. The following refactorings are used in this chapter:

• Introduce a new definition, as defined by Li [67].

• Generalize a definition, as defined by Li [67].

• Folding, as defined in Section 4.1

Most of the rationale for the refactorings in this chapter was in terms of code

understanding: putting units that would fit better together as a single named

entity, for instance, or choosing names that more accurately reflected the action of

a piece of code. The refactoring examples in stage one concentrate on a few specific

cases for naming expressions that are of a large size. Reducing and abstracting

them, therefore, was performed in order to increase the program’s readability and

understanding.

CHAPTER 7. A REFACTORING CASE STUDY 155

7.1.1 Stage 1

1. At first glance over some of the core files of nhc, a number of obvious ap-

plications for immediate refactoring became apparent. There are a number

of expressions that can be simplified by introducing a new definition. The

first example is within the function addInstMethod in IntState.hs :

addInstMethod :: TokenId -> TokenId -> TokenId -> NewType -> Id

-> a -> IntState -> (Int,IntState)

addInstMethod tidcls tidtyp tidMethod nt iMethod down

state@(IntState unique rps st errors) =

case lookupIS state iMethod of

Just (InfoMethod u tid ie fix nt’ (Just arity) iClass) ->

(unique,IntState (unique+1) rps (addAT st (error "adding twice!")

unique (InfoIMethod unique (mkQual3 tidcls tidtyp tidMethod) nt

(Just arity) iMethod)) errors)

A further probing of the module shows that the application of InfoIMethod

is used in many places. The rationale behind this and the next step, there-

fore, is to somehow lift the application of InfoIMethod to the top level, and

abstract over certain entities within it and then perform a fold against it;

the aim here is to remove some duplicated code and to make the code more

amenable to change in the future and to allow the code to be understood

easier.

A new definition, called mkQualified, is introduced for the expression

(mkQual3 tidcls tidtyp tidMethod). In addition to this, a new defi-

nition, called infoMethod, is introduced for the expression InfoIMethod

unique mkQualified nt (Just arity) iMethod. This results in the fol-

lowing:

addInstMethod tidcls tidtyp tidMethod nt iMethod down

state@(IntState unique rps st errors) =

CHAPTER 7. A REFACTORING CASE STUDY 156

case lookupIS state iMethod of

Just (InfoMethod u tid ie fix nt’ (Just arity) iClass) ->

(unique,IntState (unique+1) rps (addAT st (error "adding twice!")

unique (infoMethod)) errors)

where

mkQualified = (mkQual3 tidcls tidtyp tidMethod)

infoMethod = InfoIMethod unique mkQualified

nt (Just arity) iMethod

2. As mentioned in the previous step, it seems that there are some places where

it would better to share InfoIMethod, i.e. to lift it to the top level and then

fold against it. However, in order to do this, the expression Just arity must

be extracted to a definition within the where clause of addInstMethod. The

reason for this is because in other instances of this expression throughout

the program use expressions other than (Just Arity) as an argument to

InfoIMethod. Therefore the expression must be generalised to take this into

account. First a new definition is introduced called justAritiy:

infoMethod = InfoIMethod unique mkQualified

nt justArity iMethod

where justArity = Just arity

and it is lifted by one level, so that infoMethod can also be lifted to the top

level of the module. This is shown as follows:

addInstMethod tidcls tidtyp tidMethod nt iMethod down

state@(IntState unique rps st errors) =

case lookupIS state iMethod of

Just (InfoMethod u tid ie fix nt’ (Just arity) iClass) ->

(unique,IntState (unique+1) rps (addAT st (error "adding twice!")

unique (infoMethod unique mkQualified nt justArity iMethod)) errors)

where

mkQualified = (mkQual3 tidcls tidtyp tidMethod)

CHAPTER 7. A REFACTORING CASE STUDY 157

justArity = Just arity

infoMethod unique mkQualified nt justArity iMethod

= InfoIMethod unique mkQualified nt justArity iMethod

However, this has the drawback of creating the inverse of the previous ab-

straction step: lifting requires that the local definitions are to be passed in

as formal arguments, which makes the call to infoMethod hold the same

complexity as it did before step 2.

3. Folding is then performed over infoMethod converting an instance of

the expression to a call to infoMethod within the function updInstMethodNT:

...

localAddAt

= addAT st fstOf i

(infoMethod u tid nt annots iMethod)

...

Thus eliminating some duplicate code and introducing a useful abstraction.

Observing this folding, it becomes apparent that an expression referring to

the constructor IntState occurs frequently throughout the module. There-

fore a new definition is introduced for (IntState unique rps localAddAt

errors) occurring within updInstMethodNT and it is immediately lifted to

the top-level. A fold is then performed over intState, transforming 12

instances of the application of IntState into calls to intState.

4. Continuing with the rationale of making large complex functions more un-

derstandable by abstracting them, the refactoring journey continues with

looking at the module Derive.hs. Particularly the function oneStep:

oneStep state given

((cls_con@(cls,con),(free,ctxs)),pos_types@(pos,types)) =

let (NewType _ _ data_ctxs _) = ntI (dropJust (lookupIS state con))

CHAPTER 7. A REFACTORING CASE STUDY 158

in

case (sort

. ctxsReduce state

. (map (mapSnd mkNTvar) data_ctxs ++)

. concatMap (ctxsSimplify [] state given)

. map (\ nt -> TypeDict cls nt [(0,pos)])) types of

ctxs -> ((cls_con,(free,map (mapSnd stripNT) ctxs)),pos_types)

Within oneStep a new definition is introduced, called sortSimplifyCtxs,

for the expression:

(concatMap (ctxsSimplify empty state given))

A new definition is introduced within Derive.hs, called toTypeDict in the

function oneStep for the expression:

(map (\ nt -> TypeDict cls nt [(0, pos)]))

A new definition is introduced within Derive.hs, called toMkNTVar in the

function oneStep for the left section:

(map (mapSnd mkNTvar) data_ctxs ++)

This produces the following definition for oneStep:

oneStep state given

((cls_con@(cls,con),(free,ctxs)),pos_types@(pos,types)) =

let (NewType _ _ data_ctxs _) = ntI (dropJust (lookupIS state con))

sortSimplifyCtxs

= sort .

((ctxsReduce state) .

((toMkNTVar) .

(simplifyCtxs .

toTypeDict)))

CHAPTER 7. A REFACTORING CASE STUDY 159

where

toTypeDict

= (map (\ nt -> TypeDict cls nt [(0, pos)]))

simplifyCtxs

= (concatMap (ctxsSimplify empty state given))

toMkNTVar = (map (mapSnd mkNTvar) data_ctxs ++)

5. A new definition is introduced within Derive.hs, called fstAndLstConstrs

in the function startDeriving for the expression:

fstAndlst . constrsI

The definition types within the first equation of startDeriving is lifted to

the top-level, as it also appears as another definition in the second equation.

The definition in the second equation is renamed to localTypes and folded

against the lifted definition of types. The local definition of localTypes is

then eliminated because it is no longer used.

6. In the module Case.hs there is an opportunity to introduce an as-pattern

called funs for the pattern (Fun args a (i:is)) within the function

matchFun. This converts the expression (Fun args a (i:is)) into funs

as follows:

matchFun :: Pos -> a -> [Fun Id] -> CaseFun PosLambda

matchFun pos fun (funs@(Fun args a ((i : is))))

= (caseUniques args) >>>=

(\ iargs ->

(caseNoMatch

("Pattern match failure in function at " ++

(strPos pos))

pos) >>>=

(\ nomatch ->

let vars = map (\ (a, i) -> (getPos a, i)) iargs

CHAPTER 7. A REFACTORING CASE STUDY 160

(A)

startDeriving tidFun state (con,(pos,cls))

| checkClass state cls tBounded =
case lookupIS state con of
Just conInfo ->
let (NewType free empty ctx _) = ntI conInfo

fstAndlst [] = []
fstAndlst [x] = [x]
fstAndlst xs = [head xs,last xs]
fstAndLstConstrs = fstAndlst . constrsI

in (((cls,con),(free,map (pair cls) free ++ ctx)),
(pos,(types (.) snub concatMap init NewType ntI
state fstAndLstConstrs conInfo)))

(B)

startDeriving tidFun state (con,(pos,cls)) =
case lookupIS state con of
Just conInfo ->
let (NewType free [] ctx _) = ntI conInfo

localTypes = types (.) snub concatMap init NewType
ntI state constrs conInfo

constrs = constrsI
in (((cls,con),(free,map (pair cls) free ++ ctx)),(pos,localTypes))

Figure 33: A code fragment within Derive.hs that has potential for refactoring

in (match (map (uncurry PosVar) vars) funs

nomatch) >>>=

(\ exp ->

unitS (PosLambda pos empty vars exp))))

7.1.2 Stage 2

This stage is concerned with the example in Figure 33 taken from Derive.hs ; it

is meant to be a separate stage to that of stage 1, although both stages could have

been performed independently of each other. At first glance at the code in the

figure, it seems that the two equations of startDeriving (defined in a local scope

within the program) are very similar (the two equations are separated in the fig-

ure and labeled as (A) and (B) respectively). There are little differences between

CHAPTER 7. A REFACTORING CASE STUDY 161

(A)

startDeriving tidFun state (con,(pos,cls))
=
case lookupIS state con of
Just conInfo ->
let (NewType free empty ctx _) = ntI conInfo

fstAndlst [] = []
fstAndlst [x] = [x]
fstAndlst xs = [head xs,last xs]
fstAndLstConstrs = fstAndlst . constrsI

in (((cls,con),(free,map (pair cls) free ++ ctx)),
(pos,(types (.) snub concatMap init NewType ntI
state constrs conInfo)))

(B)

startDeriving tidFun state (con,(pos,cls)) =
case lookupIS state con of
Just conInfo ->
let (NewType free [] ctx _) = ntI conInfo

localTypes = types (.) snub concatMap init NewType
ntI state constrs conInfo

constrs = constrsI
in (((cls,con),(free,map (pair cls) free ++ ctx)),(pos,localTypes))

Figure 34: The similarities between the two equations of startDeriving

CHAPTER 7. A REFACTORING CASE STUDY 162

(A) and (B) in that if we remove the guard from (A) and rename the expres-

sion fstAndlst . constrsI to constrsI (and therefore eliminating fstAndlst

within the where clause of (A)) the two equations now become identical, as shown

in Figure 34.

However, obviously performing the transformations as described above does

not preserve the behaviour of startDeriving: the guard predicate is crucial in

determining whether to evaluate constrsI or fstAndLst . constrsI within

the definition of types in both equations. What follows is a series of refactor-

ings that remove the second equation of startDeriving altogether. Some of the

refactorings are already implemented refactorings within HaRe and some are refac-

torings that perhaps ought to have been implemented for HaRe and, are instead,

performed manually (with an indication in the text).

1. At first glance over the code in block (A) of Figure 33, the definitions for

fstAndlst and fstAndLstConstrs would be better positioned in a where

clause for code clarity. Therefore the two let definitions are converted to a

where clause and lifted by one level so that they scope the right-hand-side

of the first equation of startDeriving.

2. A definition is manually introduced in the where clause of the first equation

as follows:

pred :: Bool -> a

pred x = error "Function \"pred\" called - "

++ "this is not yet defined"

pred will later be used to model the behaviour of the guard predicate

checkClass state cls tBounded. There is currently no transformation

in HaRe that allows one to introduce a completely new definition like this.

Perhaps it would have been worthwhile to implement a refactoring that in-

serts a definition into a selected scope. The refactoring could take a name

as a parameter and the definition’s type, introducing a skeleton function,

CHAPTER 7. A REFACTORING CASE STUDY 163

as in the example of pred above. The advantage of this is that often pro-

grammers write code incrementally, first inserting the skeleton of a function

say, and then adding pattern matching in a later stage of development, and

therefore supporting top-down development.

3. New pattern matches are then introduced for pred using the introduce pat-

terns refactoring (as described in Section 5.6). This transforms pred into

the following:

pred :: Bool -> a

pred x@False = error "Function \"pred\" called - "

++ "this is not yet defined"

pred x@True = error "Function \"pred\" called - "

++ "this is not yet defined"

Setting pred up for further refactoring for modeling the guard behaviour.

4. A new parameter called constrsI is added to the definition of pred, pro-

ducing the following:

pred :: b -> Bool -> a

pred constrsI x@False = error "Function \"pred\" called - "

++ "this is not yet defined"

pred constrsI x@True = error "Function \"pred\" called - "

++ "this is not yet defined"

5. The right-hand-side of the first equation in pred is manually replaced with

a call to constrs constrsI, as follows:

pred :: b -> Bool -> a

pred constrsI x@False = constrs constrsI

pred constrsI x@True = error "Function \"pred\" called - "

++ "this is not yet defined"

CHAPTER 7. A REFACTORING CASE STUDY 164

This is currently not a refactoring in HaRe. However, it may be a useful

transformation to add, replacing one expression with another. The only

problem was that the refactoring could not guarantee that the two expres-

sions had the same behaviour, but perhaps this would not be the user’s

intent (as in this example). It is important to note that this transforma-

tion is not a refactoring as it does not preserve the program’s behaviour.

This process is known as refinement and not behaviour preservation, as it

introduces behaviour that led to an error previously.

6. The right-hand-side of the second equation in pred is manually replaced

with a call to fstAndLstConstrs constrsI, as follows:

pred :: b -> Bool -> a

pred constrsI x@False = constrs constrsI

pred constrsI x@True = fstAndLstConstrs constrsI

Again, there is no refactoring in HaRe to do this transformation.

7. The next step is to make use of the newly introduced definition, pred in the

first equation of startDeriving.

fstAndLstConstrs constrsI

Is manually replaced with the following expression:

pred constrsI (checkClass state cls tBounded)

This is another example of replacing one expression with another. Here

we pass the guard predicate in as the second parameter to pred therefore

allowing to determine the value passed into types.

8. The guard is then manually eliminated from the first equation of startDeriving

and the second equation is commented out. Figure 35 shows the refactored

definition of startDeriving.

CHAPTER 7. A REFACTORING CASE STUDY 165

startDeriving tidFun state (con,(pos,cls)) =
case lookupIS state con of
Just conInfo ->
let (NewType free empty ctx _) = ntI conInfo

in (((cls,con),(free,map (pair cls) free ++ ctx)),
(pos,(types (.) snub concatMap init NewType ntI state
(pred constrsI (checkClass state cls tBounded))
conInfo)))

where
pred :: b -> Bool -> a
pred constrsI x@False = constrs constrsI
pred constrsI x@True = fstAndLstConstrs constrsI
pred constrsI x = error x

fstAndlst head last [] = []
fstAndlst head last [x] = [x]
fstAndlst head last xs = [head xs,last xs]
constrs constrsI = constrsI
fstAndLstConstrs = (fstAndlst head last) . constrsI

Figure 35: The refactored definition of startDeriving

CHAPTER 7. A REFACTORING CASE STUDY 166

7.1.3 Stage 3 - Clone Removal

The third, and final, stage of the case study was to run a clone analysis over

the nhc project. For the case study, the clone analyzer was configured so that

there was no limit on the size of clone classes and the minimum number of tokens

appearing in an expression is 5. Due to space restrictions in this thesis the clone

analysis was only run over the Main module to show the clone analysis as a proof

of concept. The results of the clone analysis can be found in Appendix E.

The first step was to extract some of the clones reported into abstractions.

Appendix F shows an extract of some of the clone classes that were considered

for extraction. The three clone classes are separated by calls to different top-

level identifiers. The first class makes calls to the identifier getRenameTableIS;

the second calls getSymbolTableIS and the third calls getSymbolTable. The

clone analysis does not identify two or more code fragments to be identical if they

refer to different top-level identifiers. Therefore the code in these cases must be

extracted into separate abstractions and then folded so that they can all become

instances of the same function.

First, the expressions identified in the last clone class are extracted first as

this class contains the most clone occurrences. The expression mixLine (map

show (listAT (getSymbolTable state))) is selected within HaRe and extract

expression is selected from the HaRe drop-down menu. After some small analysis,

HaRe then prompts for each expression in the clone class, whether the expression

should be extracted or not. It seems appropriate for all expressions to be extracted.

HaRe then creates an abstraction (here, state is a local variable that must be

passed in as a parameter):

abs_1 p_1

= mixLine (map show (listAT (getSymbolTable p_1)))

And replaces the expressions in the clone class with:

abs_1 state

CHAPTER 7. A REFACTORING CASE STUDY 167

The name is chosen by the refactoring automatically; however the choice of the

uninformative name can easily be fixed by a renaming. The same is performed

for the clone expressions identified in the two former clone classes of Appendix F.

The expressions occuring in the two remaining classes are selected in turn, and

extracted into calls to the following abstractions. For example, the expressions of

the form:

mixLine (map show (listAT (getRenameTableIS importState)))

are converted into calls as in the following

abs_2 importState

Likewise, expressions of the form:

mixLine (map show (listAT (getSymbolTableIS importState)))

are converted into calls as in the following

abs_3 importState

The following abstractions are introduced at the top of the module:

abs_2 p_1

= mixLine (map show (listAT (getSymbolTableIS p_1)))

abs_3 p_1

= mixLine (map show (listAT (getRenameTableIS p_1)))

It now makes sense to convert abs 3 into a call to abs 2 in the following way:

• The definition of abs 2 is generalised so that getSymbolTableIS is made a

parameter:

abs_2 p_0 p_1

= mixLine (map show (listAT (p_0 p_1)))

CHAPTER 7. A REFACTORING CASE STUDY 168

(this also update all calls to abs 2 localState with abs 2 getSymbolTableIS

localState).

• A fold is then performed against the definition of

abs_2 p_0 p_1

= mixLine (map show (listAT (p_0 p_1)))

so that abs 3 now calls abs 2:

abs_3 p_1

= abs_2 getRenameTableIS p_1

A further extraction of other clones reported by the analysis will remove even more

duplicate entities, but for the purposes of illustration only a few cases have been

summarised in this section. The last clone class of Appendix E is particularly

interesting in that, although the clone class has 26 occurrences, none of them

appear to be true duplicates, or duplicates that are worth extracting. The main

problem is that the analyzer can not distinguish between useful and non-useful

clone entities. Indeed, the analysis also compares expressions of the form

f e1 e2

with

f e1 e2 e3

The reason for this is mainly due to the fact that the clone analysis is tree-based.

f e1 e2 is actually represented as (f e1) e2 and, if e2 is a variable that is not

declared at the top-level, it will consequently match against anything.

Monadic clone detection could not be performed in this case study. nhc only

has a small amount of monadic code and that code is not suitable for clone extrac-

tion. Looking through MainNew.hs, the following is an example of the monadic

code found there:

CHAPTER 7. A REFACTORING CASE STUDY 169

(state -- :: IntState

,fixState -- :: FixState

,gcode) -- :: [Gcode]

<- return (gcodeFix flags state fixState gcode)

pF (sGcodeFix flags) "G Code (fixed)" (concatMap (strGcode state) gcode)

(gcode -- :: [Gcode]

,state) -- :: IntState

<- return (gcodeOpt1 state gcode)

pF (sGcodeOpt1 flags) "G Code (opt1)" (concatMap (strGcode state) gcode)

(gcode -- :: [Gcode]

,state) -- :: IntState

<- return (gcodeMem (sProfile flags) state gcode)

pF (sGcodeMem flags) "G Code (mem)" (concatMap (strGcode state) gcode)

In the above, sGcodeFix, sGcodeOpt1 and sGcodeMem are all different top level

identifiers and are therefore not identified as code clones.

7.2 Future Refactorings

This section discusses the various observations that were made to the nhc source

code in respect to designing new refactorings for future work.

7.2.1 Name a type

A problem that kept occurring in nhc was the use of obfuscated type signatures,

for example Figure 36 (taken from Derive.hs) introduces two complex types that

leave the refactorer puzzled as to what is going on. This problem continues with

the recurring pattern of types as shown in the code blocks in Figure 38.

It seems obvious from this that it would be beneficial in future work to add a

new refactoring to HaRe to allow the identification of an instance of a type, and

have HaRe either refactor all instances of that type into a type synonym, or only

identify some instances or one instance where the type folding would be useful.

CHAPTER 7. A REFACTORING CASE STUDY 170

The following gives a brief summary as to how this refactoring would be invoked

by the user, and any particular conditions that arises:

• The user selects a particular type occurring within a type signature and

inputs a new name for the type into HaRe. Alternatively, the user could

select the right-hand-side of an already defined type synonym, and HaRe

could step through each type that matches the selected type in question.

• As the analogue to folding for expressions, this refactoring is folding for

types. Any polymorphic types occurring in the type must be passed in as a

type parameter.

• type synonyms cannot be used in the subject of instance declaration,

therefore this refactoring will not work in instance declarations.

Figure 37 shows how the example code in Figure 36 could be simplified with a type

synonym. Looking through the code and making my own judgement, it seems the

type [(Id,[(Pos,Id)])] refers to the class that derives a list of type constructors

and their source code position. Introducing the type synonym type Derived =

[(Id,[(Pos,Id)])] and folding all occurrences of [(Id,[(Pos,Id)])] against

it results in much easier code to understand as the type in question refers to types

instances that have to be derived.

7.2.2 Transforming Between Guards and if..then..else

This refactoring could be used to great effect in eliminating complex nested

if..then..else constructs that appear as the result of badly designed func-

tions. Figure 39 shows an example of where the programmer has introduced a

nested if..then..else and as a result, the code in Figure 39 is very difficult

to understand. Figure 40 shows how converting the nested if..then..else into

guards not only simplifies the function but also allows further refactorings to be

performed easily. Converting the code to guards in this manner makes the under-

lying predicates of the nested if expressions much clearer. This refactoring has

CHAPTER 7. A REFACTORING CASE STUDY 171

(A)

1 derive :: ((TokenId,IdKind) -> Id) ->
2 IntState ->
3 [(Id,[(Pos,Id)])] ->
4 Decls Id ->
5 Either [String] (IntState,(Decls Id))
6 derive = ...

(B)

1 doPreWork :: [(Id,[(Pos,Id)])] -> [(Id,(Pos,Id))]
2 doPreWork d = ...

Figure 36: Two code fragments showing instances for name a type

(A)

1 type Derived = [(Id,[(Pos,Id)])]
2 derive :: ((TokenId,IdKind) -> Id) ->
3 IntState ->
4 Derived ->
5 Decls Id ->
6 Either [String] (IntState,(Decls Id))
7 derive = ...

(B)

1 doPreWork :: Derived -> [(Id,(Pos,Id))]
2 doPreWork d = ...

Figure 37: Two code fragments showing the refactored code for name a type

CHAPTER 7. A REFACTORING CASE STUDY 172

(A)

1 work :: [(Id,(Pos,Id))] -> [(((Int,Int),([Int],[(Int,Int)])) ,(Pos,[NT]))]
2 work preWork = ...

(B)

1 deriveOne :: IntState
2 -> ((TokenId,IdKind) -> Int)
3 -> (((Int,Int),([Int],[(Int,Int)])) ,(Pos,a))
4 -> b
5 -> IntState
6 -> (Decl Int,IntState)
7 deriveOne = ...

(C)

1 oneStep :: IntState
2 -> [((Int,Int),([Int],[(Int,Int)]))]

3 -> (((Int,Int),([Int],[(Int,Int)])) , (Pos,[NT]))

4 -> (((Int,Int),([Int],[(Int,Int)])) , (Pos,[NT]))
5 oneStep = ...

Figure 38: Further code fragments showing instances for name a type

CHAPTER 7. A REFACTORING CASE STUDY 173

(A)

1 iLex :: LexState -> Int -> [PosTokenPre] -> [PosToken]
2 iLex s i [] = []
3 iLex s i ((f,p,c,t):pt) =
4 seq p $
5 if c > i then
6 piLex f s i p t pt
7 else if c == i && i /= 0 && t /= L_in then
8 seq p’ $ (p’,L_SEMI’,s,pt) : piLex f s i p t pt
9 else if c == 0 && i == 0 then

10 piLex f s i p t pt
11 else
12 seq p’ $ (p’,L_RCURL’,s,pt) : iLex s’ i’ ((f,p,c,t):pt)
13 where
14 (_:s’@(i’:_)) = s
15 p’ = insertPos p

Figure 39: A code fragment showing an instance for if..then..else to guards

already been implicitly implemented as a part of folding (described in Section 4.1)

and would really benefit from being a separate refactoring in its own right. There

is no restriction with converting if..then..else expressions to guards, however

the converse requires there to be an otherwise case in the guard.

7.2.3 Nested Case Expression Elimination

Figure 41 shows an example of a nested case expression that could be difficult for

a maintainer of nhc to understand. Although, through first observations, there

may be only a few cases where this refactoring is useful. Converting nested case

expressions into a single top-level case expression would be very beneficial to help

reduce the propagation of bugs in a pattern match, and to also help to understand

the logic of a particular function. Suppose we have the following case expression

actually taken from a parser implementation written in Haskell (not taken from

nhc):

case s of

CHAPTER 7. A REFACTORING CASE STUDY 174

(A)

1 iLex :: LexState -> Int -> [PosTokenPre] -> [PosToken]
2 iLex s i [] = []
3 iLex s i ((f,p,c,t):pt)
4 | c > i = seq p $ piLex f s i p t pt
5 | c == i && i /= 0 && t /= L_in = seq p $ seq p’ $ (p’,L_SEMI’,s,pt)
6 : piLex f s i p t pt
7 | c == 0 && i == 0 = seq p $ piLex f s i p t pt
8 | otherwise = seq p $ seq p’ $ (p’,L_RCURL’,s,pt)
9 : iLex s’ i’ ((f,p,c,t):pt)

10 where
11 (_:s’@(i’:_)) = s
12 p’ = insertPos p

Figure 40: A code fragment showing the conversion of if..then..else to guards

(TyVar x) -> case t of

(TyVar y) -> parseVar y

otherwise

-> error "Parse error: Identifier expected!"

(x :->: y) -> case t of

(TyVar y) -> parseVar y

(x’ :->: y’) -> parseVar x’ ‘seq‘ parseVar y’

otherwise

-> error "Parse error: Identifier expected!"

The refactoring would unify the multi-layer case expressions into a single one, as

follows:

case (s,t) of

(_,TyVar y) -> parseVar y

(x :-> y,x’ :->: y’) -> parseVar x’ ‘seq‘ parseVar y’

otherwise -> error

This has the advantage of introducing sharing: the two case expressions that

produced an error are collapsed into one. The two case expressions where

CHAPTER 7. A REFACTORING CASE STUDY 175

(A)

1 updInstMethodNT :: TokenId -> TokenId -> Int -> NewType -> Int
2 -> a -> IntState -> IntState
3

4 updInstMethodNT tidcls tidtyp i nt iMethod down
5 state@(IntState unique rps st errors) =
6 case lookupAT st iMethod of
7 Just (InfoMethod _ _ _ _ _ annots _) ->
8 case lookupAT st i of
9 Just (InfoIMethod u tid’ _ _ _) ->

10 let tid = mkQual3 tidcls tidtyp (dropM tid’)
11 in IntState unique rps
12 (addAT st fstOf i (InfoIMethod u tid nt annots iMethod))
13 errors

Figure 41: A code fragment showing an instance of a nested case expression

doSomething is evaluated also gets collapsed into one. Figure 42 shows how

the nested case expressions can be collapsed into one single case expression. The

above example, however, is not meaning preserving. The first example will fail

for undefined for s, whereas (undefined, TyVar y) will succeed in the second

example.

7.3 Refactoring an Expression Processing Ex-

ample

In this section, we present a simple example for illustrating how the majority of

the refactorings described in this thesis could be used. For the example, we design

a very simple language; we then write a parser, evaluator and pretty printer for

that language. As the application is being implemented, there are cases where

the use of a refactoring tool greatly increases the productivity of the programmer,

and improves the design of the program, making the succeeding implementation

steps easier to perform. The following refactorings from this thesis are used in

CHAPTER 7. A REFACTORING CASE STUDY 176

(A)

1 updInstMethodNT :: TokenId -> TokenId -> Int -> NewType -> Int
2 -> a -> IntState -> IntState
3

4 updInstMethodNT tidcls tidtyp i nt iMethod down
5 state@(IntState unique rps st errors) =
6 case (lookupAT st iMethod, lookupAT st i) of
7 (Just (InfoMethod _ _ _ _ _ annots _), Just (InfoIMethod u tid’ _ _ _))
8 ->
9 let tid = mkQual3 tidcls tidtyp (dropM tid’)

10 in IntState unique rps
11 (addAT st fstOf i (InfoIMethod u tid nt annots iMethod))
12 errors

Figure 42: A code fragment showing an instance of a nested case expression
eliminated into a case expression with a tuple pattern match

this example:

• Splitting (described in Section 3.3.1 on Page 69).

• Merging (described in Section 3.3.2 on Page 72).

• Folding (described in Section 4.1 on Page 78).

• Add a constructor (described in Section 5.2 on Page 111).

• Remove a constructor (described in Section 5.2 on Page 111).

• Add a field to a data type (described in Section 5.4 on Page 118).

• Introduce pattern matching (described in Section 5.6 on Page 122).

In addition to these, we also make use of the following refactorings from Li’s [67]

thesis:

• Renaming.

• Generalise a definition.

CHAPTER 7. A REFACTORING CASE STUDY 177

1 module Parser where
2 import Data.Char
3

4 data Expr = Literal Int | Plus Expr Expr
5 deriving Show
6

7

8 parseExpr :: String -> (Expr, String)
9 parseExpr (’ ’:xs) = parseExpr xs

10 parseExpr (’+’:xs) = (Plus parse1 parse2, rest2)
11 where
12 (parse1, rest1) = parseExpr xs
13 (parse2, rest2) = parseExpr rest1
14 parseExpr (x:xs)
15 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)
16 where
17 lit = parseInt xs
18 parseInt :: String -> String
19 parseInt [] = []
20 parseInt (x:xs) | isNumber x = x : parseInt xs
21 | otherwise = []
22 parseExpr xs = error "Parse Error!"
23

24 eval :: Expr -> Int
25 eval (Literal x) = x
26 eval (Plus x y) = (eval x) + (eval y)

Figure 43: A parser for a simple language

• Introduce a new definition.

• Add a new parameter.

The example starts with the very basics of implementing a language, parser and

evaluator. The code for this is shown in Figure 43 on Page 177. The grammar

for the language is described in a data type on Line 4; so far, the language only

has the capacity to handle simple literals and applications of Plus. The function

parseExpr is the parser for the language: taking a String and converting it

into a tuple: the first element being the Abstract Syntax Tree for Expr, and the

second the unconsumed input. Expr is an initial segment of the input, whatever

CHAPTER 7. A REFACTORING CASE STUDY 178

is unconsumed and returned. To show this in practice, the following shows how

the parser and evaluator can be invoked from the GHCi command line:

Prelude Parser> parseExpr "+ 1 2"

(Plus (Literal 1) (Literal 2),"")

Prelude Parser> eval (fst $ parseExpr "+ 1 2")

3

For reasons of simplicity, the language does not include parentheses (although this

could easily be integrated into future versions) and + is not applied as an infix

function, also the expressions only take positive integers. For the purpose of this

example the expressions are given in a prefix format.

7.3.1 Step 1: Initial Implementation

With the basics of the parser and evaluator set up, the first step is to start

integrating other constructs into the language. Therefore, we add the constructor

Mul to Expr in order to represent the application of * in our programs. We do this

by using the refactoring add a constructor (described in Section 5.2 on Page 111).

The refactoring asks us for the name of the constructor and any parameters. We

enter Mul Expr Expr and the refactoring adds this to the end of Expr and also

generates additional pattern matching clauses to eval:

data Expr = Literal Int | Plus Expr Expr | Mul Expr Expr

addedMul = error "Added Mul Expr Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Plus x y) = (eval x) + (eval y)

eval (Mul p_1 p_2) = addedMul

The refactoring also inserts a call to the automatically created equation addedMul

which is easily replaced with actual functionality in the succeeding steps.

CHAPTER 7. A REFACTORING CASE STUDY 179

7.3.2 Step 2: Introduce Binary Operators

In the future it is hoped that the language will be able to handle any number of

mathematical binary operators. In order to handle this design decision, we imple-

ment a new data type Bin Op to handle binary operators, and a new constructor

to Expr to handle this abstraction. In order to do this implementation, we first re-

move the constructors Plus and Mul (using the remove a constructor refactoring,

defined in Section 5.2 on Page 111). The refactoring then automatically removes

both constructors and their pattern matching:

data Expr = Literal Int

...

parseExpr (’+’:xs) = (error "Plus removed from Expr"

{-Plus parse1 parse2, rest2-})

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

...

eval :: Expr -> Int

eval (Literal x) = x

{- eval (Plus x y) = (eval x) + (eval y) -}

{- eval (Mul p_1 p_2) = (eval x) * (eval y) -}

The Bin Op data type is then created with the constructors, Mul and Plus. A

new function, called eval op is then introduced, with a skeleton implementation,

as follows:

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)

eval_op x = error "Undefined Operation"

We then proceed to define the implementation for eval op: by choosing introduce

pattern matching (described in Section 5.6 on Page 122) from HaRe and selecting

the argument x within eval op, the refactoring produces the following:

CHAPTER 7. A REFACTORING CASE STUDY 180

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)

eval_op p_1@(Mul) = error "Undefined Operation"

eval_op p_1@(Plus) = error "Undefined Operation"

eval_op _ = error "Undefined Operation"

All that is left to do for this stage is to replace the right-hand-sides of eval op

with (*) and (+) respectively and remove the redundant variable p 1 introduced

by the refactoring. The completed implementation so far is given in Figure 44.

7.3.3 Stage 3: House Keeping

The next stage is to do some tidying of our newly introduced type, Bin Op. In

particular, we need to define a constructor within Expr and modify the evaluator

to call eval op for the Bin Op case.

To start, we add a constructor to Expr where HaRe also automatically adds a

new pattern clause to eval:

data Expr = Literal Int | Bin Bin_Op Expr Expr

addedBin = error "Added Bin Bin_Op Expr Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin p_1 p_2 p_3) = addedBin

The next step is then to rename (using the rename refactoring in HaRe) the

variables in the introduced pattern match to something more meaningful:

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin op e1 e2) = eval_op op (eval e1) (eval e2)

The call to error on the right hand side of parseExpr for the ’+’ case is then

replaced with Bin Plus parse1 parse2. Multiplication is then introduced in the

parser, by copying the ’+’ case into a ’*’ case, and substituting Plus for Mul on

CHAPTER 7. A REFACTORING CASE STUDY 181

1 module Parser where
2 import Data.Char
3

4 data Expr = Literal Int
5 deriving Show
6

7 data Bin_Op = Mul | Plus
8

9 addedMul = error "Added Mul Expr Expr to Expr"
10

11 parseExpr :: String -> (Expr, String)
12 parseExpr (’ ’:xs) = parseExpr xs
13 parseExpr (’+’:xs) = (error "Plus removed from Expr"
14 {-Plus parse1 parse2, rest2-})
15 where
16 (parse1, rest1) = parseExpr xs
17 (parse2, rest2) = parseExpr rest1
18 parseExpr (x:xs)
19 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)
20 where
21 lit = parseInt xs
22 parseInt :: String -> String
23 parseInt [] = []
24 parseInt (x:xs) | isNumber x = x : parseInt xs
25 | otherwise = []
26 parseExpr xs = error "Parse Error!"
27

28 eval :: Expr -> Int
29 eval (Literal x) = x
30 {- eval (Plus x y) = (eval x) + (eval y) -}
31 {- eval (Mul p_1 p_2) = (eval x) * (eval y) -}
32

33 eval_op :: (Num a) => Bin_Op -> (a -> a -> a)
34 eval_op p_1@(Mul) = (*)
35 eval_op p_1@(Plus) = (+)
36 eval_op _ = error "Undefined Operation"

Figure 44: The parser implementation with the generality of binary operators
expressed

CHAPTER 7. A REFACTORING CASE STUDY 182

the right hand side. The complete implementation, so far, is shown in Figure 45

on Page 183.

7.3.4 Stage 4: Generalisation

The next step is to do some generalisation and folding. As can be seen from Figure

45, two equations of parseExpr contain some duplicated code (this is highlighted

in the figure). We eliminate this duplicate code, by first introducing a new defini-

tion (using the introduce new definition refactoring in HaRe) by highlighting the

code on lines 20 - 22 from Figure 45. We enter parseBin as the name for the new

expression, and HaRe introduces the following code:

...

parseExpr (’+’:xs) = parseBin xs

...

parseBin xs = (Bin Plus parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

The code highlighted in italics show how the refactoring has replaced the right

hand side of the equation parseExpr with a call to parseBin. Obviously, the

function parseBin should now be generalised so that the constructors Plus and

Mul can be passed in as formal arguments. This will also allow us to fold (using

folding as described in Section 4.1 on Page 78) the equation parseExpr defined

on Line 15 of Figure 45 against the new definition parseBin. The following code

illustrates this:

parseExpr :: String -> (Expr, String)

parseExpr (’ ’:xs) = parseExpr xs

parseExpr (’*’:xs) = parseBin Mul xs

parseExpr (’+’:xs) = parseBin Plus xs

parseExpr (x:xs)

CHAPTER 7. A REFACTORING CASE STUDY 183

1 module Parser where
2 import Data.Char
3

4 data Expr = Literal Int | Bin Bin_Op Expr Expr
5 deriving Show
6

7 data Bin_Op = Mul | Plus deriving Show
8

9 addedMul = error "Added Mul Expr Expr to Expr"
10 addedBin = error "Added Bin Bin_Op Expr Expr to Expr"
11

12

13 parseExpr :: String -> (Expr, String)
14 parseExpr (’ ’:xs) = parseExpr xs
15 parseExpr (’*’:xs) = (Bin Mul parse1 parse2, rest2)
16 where
17 (parse1, rest1) = parseExpr xs

18 (parse2, rest2) = parseExpr rest1

19 parseExpr (’+’:xs) = (Bin Plus parse1 parse2, rest2)
20 where
21 (parse1, rest1) = parseExpr xs

22 (parse2, rest2) = parseExpr rest1
23 parseExpr (x:xs)
24 | isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)
25 where
26 lit = parseInt xs
27 parseInt :: String -> String
28 parseInt [] = []
29 parseInt (x:xs) | isNumber x = x : parseInt xs
30 | otherwise = []
31 parseExpr xs = error "Parse Error!"
32

33 eval :: Expr -> Int
34 eval (Literal x) = x
35 eval (Bin op e1 e2) = eval_op op (eval e1) (eval e2)
36

37 eval_op :: (Num a) => Bin_Op -> (a -> a -> a)
38 eval_op p_1@(Mul) = (*)
39 eval_op p_1@(Plus) = (+)
40 eval_op _ = error "Undefined Operation"

Figure 45: The parser implementation with plus and multiplication

CHAPTER 7. A REFACTORING CASE STUDY 184

| isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

where

lit = parseInt xs

parseInt :: String -> String

parseInt [] = []

parseInt (x:xs) | isNumber x = x : parseInt xs

| otherwise = []

parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

This refactoring has allowed to keep the implementation consistent: there is now

a separate evaluator for binary operators as well as a separate parser for binary

operators; this allows for the code to be easily maintained in future versions.

7.3.5 Stage 5: Introduce Variables

We now add variables to our language by defining the let expression. In order to

do this, we need to add the Let construct to our language Expr and then extend

the parser to deal with the new construct. Having variables in our language also

means that we need to be able to store bindings within an environment, and then

use a lookup on that environment when we evaluate the Abstract Syntax Tree.

To perform this extension to our language, first we perform an add constructor

refactoring to the definition of Expr, adding LetExp String Expr as an argument

to the refactoring. The refactoring then introduces new pattern matching for eval,

as follows:

data Expr = Literal Int | Bin Bin_Op Expr Expr

| LetExp String Expr

addedBin = error "Added LetExp String Expr to Expr"

CHAPTER 7. A REFACTORING CASE STUDY 185

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin op e1 e2) = eval_op op (eval e1) (eval e2)

eval (LetExp p_1 p_2) = addedLetExp

The lookup function is now defined, but while implementing this, we soon realise

that LetExp in fact needs a new field added to it to be able to represent the

expression bound to the variable. We therefore choose add a field from HaRe

(defined in Section 5.4 on Page 118) and enter Expr as a parameter. This then

modifies the implementation of LetExp and also adds a new variable to the pattern

matching in eval, the following illustrates this:

data Expr = Literal Int | Bin Bin_Op Expr Expr

| LetExp String Expr Expr

addedBin = error "Added LetExp String Expr to Expr"

...

eval :: Expr -> Int

eval (Literal x) = x

eval (Bin op e1 e2) = eval_op op (eval e1) (eval e2)

eval (LetExp n e e 2) = addedLetExp

We then modify the parser to cope with Let expressions in the language, and

add a new constructor Var String to Expr (again, using the add a constructor

refactoring. The full implementation up to this point is illustrated in Appendix

I.1 on Page 266.

7.3.6 Stage 6: Merging

The next stage is concerned with implementing a pretty printer for our language.

We do this by defining a function prettyPrint over the type Expr with a type

signature, and choose the introduce pattern matching from HaRe. This produces

the following:

CHAPTER 7. A REFACTORING CASE STUDY 186

prettyPrint :: Expr -> String

prettyPrint x@(Literal x) = error "Unable to pretty print!"

prettyPrint x@(Bin op e1 e2) = error "Unable to pretty print!"

prettyPrint x@(LetExp n e e_2) = error "Unable to pretty print!"

prettyPrint x@(Var n) = error "Unable to pretty print!"

prettyPrint x = error "Unable to pretty print!"

The implementation for prettyPrint is completed, and the same proceedure is

repeated for a function prettyBinOp (including introduce pattern matching) in

order to represent the pretty printing of binary operators. This gives us the

following definitions:

prettyPrint :: Expr -> String

prettyPrint x@(Literal y) = show y

prettyPrint x@(Bin op e1 e2) = prettyPrintBinOp op

++ " " ++ (prettyPrint e1) ++ " " ++ (prettyPrint e2)

prettyPrint x@(LetExp n e e_2) = "let " ++ n ++ " = "

++ (prettyPrint e) ++ " in " ++ (prettyPrint e_2)

prettyPrint x@(Var n) = n

prettyPrint x = error "Unable to pretty print!"

prettyPrintBinOp :: Bin_Op -> String

prettyPrintBinOp x@(Mul) = "*"

prettyPrintBinOp x@(Plus) = "+"

prettyPrintBinOp x = error "Unable to pretty print binary operator"

To show how the pretty printer and parser work in practice, the following shows

an example from the GHCi prompt:

Prelude Parser> parseExpr "let x + 1 1 x"

(LetExp "x" (Bin Plus (Literal 1) (Literal 1)) (Var "x"),"")

Prelude Parser> prettyPrint (LetExp "x" (Bin Plus (Literal 1)

CHAPTER 7. A REFACTORING CASE STUDY 187

(Literal 1)) (Var "x"))

"let x = + 1 1 in x"

Prelude Parser> eval [] (LetExp "x" (Bin Plus (Literal 1)

(Literal 1)) (Var "x"))

2

As can be seen, both eval and prettyPrint take an Expr as an argument. It

would be nice to merge the two functions together so that it may be possible to

pretty print and evaluate an abstract syntax tree simultaneously. This may lead

a function that parses an input, and pretty prints and evaluates the output, as

follows:

Prelude Parser> parse "let x + 1 1 x"

"The value of let x = + 1 1 in x is 2"

In order to implement this feature, we first merge the definitions of prettyPrint

and eval together (the merge refactoring is defined in Section 3.3.2 on Page 72).

We also move the definitions of eval op and prettyPrintBinOp to a where clause

of the newly merged eval function. We then merge these two functions as well,

producing the code in Figure 46. Appendix I.2 on Page 268 shows the current

state of the parser implementation up to the end of this stage.

7.3.7 Stage 7: Splitting

In the final stage of writing the parser, we extract the first element of the parseExpr

function by splitting its result (using splitting as defined in Section 3.3.1 on Page

69). The reason we do this splitting is because, at the moment, parseExpr returns

a tuple: the first component being the Abstract Syntax Tree for the parsed input,

and the second component being the unconsumed input. In the final state of the

parse, however, we do not want to return the unconsumed input, and therefore

extract the first element of the parser into a new definition. We then use this new

definition to call the original parser, eliminating the unconsumed input.

CHAPTER 7. A REFACTORING CASE STUDY 188

1 eval :: Environment -> Expr -> (String, Int)
2 eval env (Literal x) = (show x, x)
3 eval env (Bin op e1 e2) = ((fst (eval_op op)) ++ " "
4 ++ (fst $ eval env e1) ++ " "
5 ++ (fst $ eval env e2),
6 (snd $ eval_op op) (snd $ eval env e1)
7 (snd $ eval env e2))
8 where
9 eval_op :: (Num a) => Bin_Op -> (String, (a -> a -> a))

10 eval_op p_1@(Mul) = ("*", (*))
11 eval_op p_1@(Plus) = ("+",(+))
12 eval_op _ = error "Undefined Operation"
13 eval env (LetExp n e e_2) = ("let " ++ n ++ " = " ++ (fst $ eval env e)
14 ++ " in " ++ (fst $ eval env e_2),
15 snd $ eval (addEnv n e env) e_2)
16 eval env (Var n) = (n, snd $ eval env (lookUp n env))

Figure 46: The parser implementation with the generality of binary operators
expressed

In order to do the splitting, we move the current definition of parseExpr into

a where clause of a newly defined function called parse. We then extract the first

component of the result of parseExpr using splitting, as follows:

parse :: String -> Expr

parse input = parseFst input

where

parseFst :: String -> Expr

parseFst (’ ’:xs) = parseFst xs

parseFst (’*’:xs) = fst $ parseBin Mul xs

parseFst (’+’:xs) = fst $ parseBin Plus xs

parseFst (x:xs)

| isNumber x = Literal (read (x:lit)::Int)

where

lit = parseInt xs

parseFst (x:xs)

CHAPTER 7. A REFACTORING CASE STUDY 189

| isChar x = case var of

"let" -> LetExp (isName name) expr1 expr2

x -> Var var

where

name = parseVar remainder

(expr1, rest2) = parseExpr (drop (length name) remainder)

expr2 = parseFst rest2

remainder = (drop (length var) xs)

var = x: (parseVar xs)

parseExpr :: String -> (Expr, String)

parseExpr (’ ’:xs) = parseExpr xs

parseExpr (’*’:xs) = parseBin Mul xs

parseExpr (’+’:xs) = parseBin Plus xs

parseExpr (x:xs)

| isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

where

lit = parseInt xs

parseExpr (x:xs)

| isChar x = case var of

"let" -> (LetExp (isName name) expr1 expr2, rest3)

x -> (Var var, remainder)

where

name = parseVar remainder

(expr1, rest2) = parseExpr (drop (length name) remainder)

(expr2, rest3) = parseExpr rest2

remainder = (drop (length var) xs)

var = x: (parseVar xs)

CHAPTER 7. A REFACTORING CASE STUDY 190

parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)

where

(parse1, rest1) = parseExpr xs

(parse2, rest2) = parseExpr rest1

The same procedure is then repeated for parseBin, extracting out the first compo-

nent of its result, and the expressions fst $ parseBin Mul xs within parseFst

are transformed into calls to the extracted function parseBinFst. It is important

to note that this results in a more efficient implementation than in the original

program as evaluating and pretty printing now share the same variables. The

result of the final parser implementation is shown in Appendix I.3 on Page 269.

7.4 Summary

This chapter presented a summary of a case study of refactoring for nhc. Stage

1 (described in Section 7.1.1) showed a set of rudimentary refactorings that were

performed over a number of core files of nhc. In particular, the folding refactoring,

as described in Section 4.1, was used after introducing definitions and generalising

them. Stage 2 (described in Section 7.1.2) showed an example where refactoring

can be used to great effect in showing a special case of clone elimination. A

function where two of its (almost identical) equations was presented; refactoring

was then performed to completely eliminate the need for the second equation.

Stage 3 (described in Section 7.1.3) gave a summary of some clone analysis and

elimination. A number of refactorings that could be pursued as future work were

presented that were obvious design choices after studying the nhc source code were

presented in Section 7.2. The chapter concluded in Section 7.3 with a extended

example for refactoring an expression processing example. In particular a number

of the core refactorings from this thesis were used to help extend and design the

example from scratch.

Chapter 8

Related Work

This chapter reviews relevant work in the literature in both refactoring and related

areas. For an extensive survey of refactoring tools and techniques, Mens produced

a refactoring survey in 2004 detailing the most common refactoring tools and

practices [80].

The chapter is structured as follows: Section 8.2 explores current research

in refactoring including refactoring tools and language-parameterised refactoring.

Section 8.3 explores refactoring in a functional programming context. Finally

Section 8.4 explores techniques based on the refactoring process such as identifying

refactorings from source-code changes.

8.1 Behaviour Preservation and Refactoring

An essential property of a refactoring is that the behaviour of the program being

refactored is to be preserved. Ideally, the best approach is to prove that the

refactorings preserve the full program semantics. This requires a formal semantics

for the program language to be defined. One could argue, however, that with the

exception of Standard ML [82], no practical language has a properly defined formal

semantics.

Opdyke [86] proposed a set of seven invariants to preserve behaviour of refac-

torings. These invariants are: unique superclass, distinct class names, distinct

191

CHAPTER 8. RELATED WORK 192

member names, inherited member variables not redefined, compatible signatures

in member function redefinition, type-safe assignments and semantically equiv-

alent reference and operations. In addition to these, Opdyke’s refactorings also

included proofs which demonstrated that the enabling conditions preserved the

invariants. Tokuda et al in [111] also made use of program invariants to show that

refactorings preserve behaviour. The notion of a precondition is also used in [118]

for formal restructuring using the formal language WSL.

Tip et. al. in [110] explored the use of type constraints to verify the pre-

conditions and to determine the allowable source code modifications for a number

of generalisation related refactorings in an object-oriented program language con-

text.

Mens et. al. used a different approach [79] by exploring the idea of using graph

transformations to formalise the effect of refactorings and prove behaviour preser-

vation of refactorings. The motivation is that there is a relation between refac-

toring and graph transformations: a program can be expressed as a graph, and

refactoring corresponds to graph transformations. The application of a refactoring

is a graph transformation and refactoring pre and post conditions are expressed

as application pre and post conditions. [79] also discussed the formalisation of

two refactorings: Encapsulate Field and PullupMethod.

Fowler makes the point about how it is sufficient to write automatic regression

tests for refactoring [32]. In his book, he points out that using a test-driven

environment is an effective and efficient way of writing stable software systems.

In practice, this seems to be the default for many systems, including HaRe [68]

and the Erlang Refactoring tool, Wrangler [61].

8.2 Refactoring Tools

A growing number of tools have been developed to automate the refactoring pro-

cess. In particular, there are a large number of refactoring tools for object-oriented

programming languages. Most tools provide the bare essentials of refactorings

CHAPTER 8. RELATED WORK 193

such as extracting a method, and renaming and moving blocks of code around.

Refactoring tools such as Eclipse [28] (described in Section 8.2.4) now offer an

extensive range of refactorings also including inlining, extract constant, introduce

parameter and encapsulate a field. Many refactoring tools are fully fledged com-

mercial or open-source products. More details regarding the commercial aspect

of refactoring engines can be found at Fowler’s refactoring website [33].

The following section is a survey of a selection of refactoring tools that are

most relevant to the work presented in this thesis.

8.2.1 The Smalltalk Refactoring Browser

The Refactoring Browser [97] was the first successfully implemented tool, and is

still one of the most full-featured tools. It supports refactorings for the Smalltalk

language [74]. The Refactoring Browser is an extension of the Smalltalk devel-

opment browser, which offers both program transformation and code browsing

facilities.

The Refactoring Browser conforms to Opdyke’s preconditions [86] and Roberts’

postconditions [98] of a refactoring process.

The Refactoring Browser works by first parsing the code to be refactored into

an Abstract Syntax Tree (AST). The available refactorings are coded as templates

in the form of ASTs, which may contain template variables. The refactoring is

executed by a parse tree rewriter that matches the concrete AST with a template

AST and performs a tree-to-tree transformation. Finally, the modified AST is

passed into the Formatter to reconstruct the source back from the tree. Instead

of using the standard Smalltalk parser, the Refactoring Browser uses its own

Smalltalk parser in order to accept pattern variables and keep comments in the

AST. The Refactoring Browser does not support layout preservation.

Refactorings are implemented by using RefactoryChange objects in The Refac-

toring Browser. Each RefactoryChange object also implements an undo method

which can undo the changes performed by the object. By ensuring that each of

the small changes can undo itself reliably, the Refactoring Browser can ensure

CHAPTER 8. RELATED WORK 194

Method Refactorings Variable Refactorings
Remove Method Add Instance Variable
Rename Method Remove Instance Variable
Add Parameter to Methods Rename Instance Variable
Remove Parameter from Method Abstract Instance Variable
Remove Class Method Create Accessors for Instance Variable
Extract Code as Method Add Class Variable
Push Up/Down Method Rename Temporary
Move Method to Component Rename Class Variable
Inline Call Inline Temporary

Abstract class Variable
Class Refactorings Convert Temporary to Instance Variable
Add Class Create Accessors for Class Variable
Remove Class Extract Code as Temporary
Rename Class Push Up/Down Instance Variable
Convert Superclass to Sibling Push Up/Down Class Variable

Convert Instance Variable to Value Holder
Protect Instance Variable
Move Temporary to Inner Scope

Table 2: Refactorings implemented in the Refactoring Browser

that complex refactorings can be undone safely, this, in effect, works by keeping a

history of small changes. The undo method in the Haskell Refactorer, HaRe also

works in the same way.

The refactorings implemented in the Refactoring Browser are shown in Table

2 and they are typical to most object-oriented programming languages. They can

be categorized as: class refactorings that change the relationships between the

classes in the systems, method refactorings which change the methods within the

system, and variable refactorings which change the instances of variables within

classes.

8.2.2 CRefactory

Garrido at the University of Illinios at Urbana-Champaign worked on a refactoring

tool for C programs called CRefactory [34]. A major challenge with refactoring

C programs was that the source code of C programs has preprocessor directives

intermixed. Preprocessor directives are hard to handle because directives are lost

CHAPTER 8. RELATED WORK 195

during transition from the source code to abstract program representations and it

is difficult to guarantee correctness in the refactoring. In [35], Garrido proposed

an approach to allow incompatible conditional branches of an AST to be analysed

and modified simultaneously; this is achieved by maintaining multiple branches

in the transformed program tree, each annotated with its respective conditions.

In order to include conditional directives in the AST, a pre-transformation phase

is performed to ensure that condition directives appear at the same level as ex-

ternal declarations or statements in the C program. As to the implementation

architecture, Garrido reused most of the design ideas of the Smalltalk Refactoring

Browser [97], with the re-implementation of some components of the architecture

in a C context.

8.2.3 Language-parameterised Refactoring

Lämmel proposed the idea of representing program transformations for refactoring

in a language-parametric manner using Strafunski [64, 65].

The idea of a language-parameterised refactoring (or generic refactoring) frame-

work is this: first, generic algorithms are offered to perform simple analysis and

transformations in the course of refactoring; second, an abstraction interface is

provided to deal with the relevant abstractions of a language; and then the actual

generic refactorings are defined in terms of generic algorithms and against the ab-

straction interface. The framework is designed in a way that it can be instantiated

for different languages, such as Java, PROLOG [12] and Haskell. Lämmel used the

abstraction extraction refactoring as a running example, and illustrated how this

framework can be instantiated for (a subset of) Java. This is a challenging task

because of the multiple languages that are subject to analysis and transformation,

the program-entity based nature of refactoring tools, the complexity of language

semantics and the different semantics between different programming languages.

Due to the challenging nature of the work, the project is currently unsuccessful

in being integrated into a working application.

CHAPTER 8. RELATED WORK 196

Physical Structure Class Level Structural
Rename Push Down Inline
Move Pull Up Extract Method
Change Method Signature Extract Interface Extract Local Variable
Convert Anonymous Class to Nested Generalise Type Extract Constant
Convert Nested Type to Tope Level User Supertype Where Possible Introduce Parameter
Move Member Type to New File Introduce Factory

Encapsulate Field

Table 3: Refactorings implemented for the Eclipse platform

8.2.4 Eclipse

Eclipse [28] is an open source community whose projects are focused on building

an extensive program development platform. The Eclipse platform has built-in

editing support for Java and Erlang, amongst many other programming languages.

Aside from just an editor, Eclipse also provides a refactoring environment for

Java programs built on the Java Development Tooling platform [29]. Eclipse

includes basic refactorings such as safe rename and move refactorings, advanced

refactorings such as Extract Method and Extract Superclass together with complex

refactorings which can be applied across large projects such as Use Supertype and

Infer Type Arguments. The Eclipse refactoring framework also includes an API to

allow programmers to devise their own refactorings. The Eclipse platform contains

three types of refactorings: refactorings that change the physical structure of the

code and classes; refactorings that change the code structure at the class level ;

and refactorings that change the code within a class at the structural level. Table

3 shows the current refactorings implemented for the Eclipse Ganymede platform.

8.2.5 NetBeans

NetBeans [30] is an IDE that supports —amongst others— Java, C, C++ and

JavaScript. Similar to Eclipse (see Section 8.2.4), NetBeans also provides a refac-

toring framework and API for Java developers [31]. Starting from NetBeans IDE

4.0, a new Java language infrastructure and refactoring API framework needed

for implementing refactorings has been devised. So far the NetBeans development

CHAPTER 8. RELATED WORK 197

team have implemented some basic refactorings as a proof of concept. Future re-

leases of NetBeans will contain a more extensive list of refactoring features. Table

4 shows the current refactorings that are supported by the NetBeans 6.1 frame-

work.

8.2.6 Eclipse vs. NetBeans

Eclipse and NetBeans both claim to be universal tool platforms. NetBeans, how-

ever, lacks an open-source compiler and an AST model for the development of

refactorings; the open-source compiler and AST model will impede the develop-

ment of refactorings for vital Java extensions and structure-aware support. Lack

of structure-aware support means that NetBeans falls short for extensions of Java

such as AspectJ [56].

The Eclipse platform, on the other hand, has tight integration for advanced

features such as refactoring, inheritance and call hierarchy views, structured search

and structure-aware repository report. Unlike NetBeans, these features are not

plug-ins: they are at the heart of the Eclipse platform. This also makes it possible

to extend these features without having to re-implement basic strategies such as

AST rewriting and traversal.

CHAPTER 8. RELATED WORK 198

C
la

ss
R
ef

ac
to

ri
n
gs

M
et

ho
d

R
ef

ac
to

ri
n
gs

V
ar

ia
bl
e

R
ef

ac
to

ri
n
gs

E
x
tr

ac
t

In
te

rf
ac

e/
S
u
p
er

cl
as

s
P

u
ll

U
p

M
et

h
o
d

S
af

e
D

el
et

e
C

on
ve

rt
A

n
on

y
m

ou
s

to
In

n
er

C
la

ss
P

u
sh

D
ow

n
M

et
h
o
d

M
ov

e
In

n
er

T
o

O
u
te

r
L
ev

el
U

se
S
u
p
er

ty
p
e

W
h
er

e
P
os

si
b
le

E
x
tr

ac
t

M
et

h
o
d

R
en

am
e

In
st

an
ce

V
ar

ia
b
le

M
ov

e
C

la
ss

R
en

am
e

C
la

ss
R

en
am

e
M

et
h
o
d

R
en

am
e

V
ar

ia
b
le

C
h
an

ge
M

et
h
o
d

S
ig

n
at

u
re

E
x
tr

ac
t

L
o
ca

l
V

ar
ia

b
le

E
n
ca

p
su

la
te

F
ie

ld
In

li
n
e

L
o
ca

l
V

ar
ia

b
le

In
li
n
e

M
et

h
o
d

M
ov

e
M

et
h
o
d

G
en

er
if
y

C
le

an
-U

p
C

o
d
e

R
ep

la
ce

M
et

h
o
d

D
u
p
li
ca

te
s

T
ab

le
4:

R
ef

ac
to

ri
n
gs

im
p
le

m
en

te
d

in
N

et
B

ea
n
s

CHAPTER 8. RELATED WORK 199

8.3 Refactoring in Functional Languages

Program transformation for functional programs has a long history, with early

work in the field being described by Partsch and Steinbruggen in 1983 [88]. Other

work in program transformation for functional languages is described by Hudak

in his survey [45]. In a general sense, a program transformation is a conversion

of one source program into another. In the case of a refactoring, and correctness

preserving transformations, the transformation is bi-directional, as a refactoring

does not alter the program’s semantics.

8.3.1 Refactoring Erlang

The University of Kent and Eötvös Loránd University are now in the process of

building a refactoring tool for Erlang programs [61]. However, different techniques

have been used to represent and manipulate the program under refactoring. The

Kent approach uses the Annotated Abstract Syntax Tree (AAST) as the internal

representation of an Erlang program, and program analyses and transformations

manipulate the AAST directly. The Eötvös Loránd approach uses the relational

database MySQL [81] to store both syntactic and semantic information of the Er-

lang program under refactoring; therefore, program analyses and transformations

are carried out by manipulating the information stored in the database. The rest

of this sub-section describes the two approaches, and compares them.

The Kent Approach

In this approach, the refactoring engine is built on top of the infrastructure pro-

vided by SyntaxTools [16]. Wrangler uses the Annotated Abstract Syntax Tree

(AAST) as the internal representation for an Erlang program. The SyntaxTools

library contains modules for handling Erlang Abstract Syntax Trees (ASTs), in a

way that is the analogue of the methods described for HaRe in Chapter 2:

• The uniform representation of the AST nodes and the type information

preserved by the AST allow the Kent group to write generic functions that

CHAPTER 8. RELATED WORK 200

traverse into subtrees of an AST while treating most nodes in a uniform

way, and treating the nodes with a specific type in a specific way.

• SyntaxTools allows comments to be preserved in the AST, this liberates the

Kent group from the problem of preserving comments in the AST.

• The AST contains the following information: binding information, which

allows for, say, the checking of whether two variable names may refer to the

same entity; location information, which makes it easier to map a syntax

phrase selected from its textual representation in the editor to its AST repre-

sentation; category information, which allows entities such as patterns to be

distinguishable from expressions; and type information, which is currently a

work in progress.

The Eötvös Loránd Approach

Instead of annotating ASTs with the information that is necessary for program

analysis and transformation, the Eötvös Loránd approach uses a relational MySQL

database; the database is used to store both abstract Erlang syntax trees and the

associated static semantic information. SQL is then used to manipulate the stored

database information.

A number of database tables are used to store different information about the

program under refactoring: the syntax-related table corresponds to the node types

of the abstract syntax tree of Erlang as introduced in the Erlang parser. Semantic

information, namely location and binding information, is stored separately in an

extensible group of tables. Adding a new feature to the refactoring tools there-

fore requires the implementation of additional tables storing collected semantic

information.

Consider the code fragment in Figure 47 and its AST database representation

in Table 5; the table elements: clause, name, infix expr and application refer to

the corresponding syntactic catergories. Without addressing any further technical

details, one may observe that each table relates parent nodes of the corresponding

CHAPTER 8. RELATED WORK 201

gcd30(N15, M16) when N17 >=18 M19 ->

gcd23 (N24 -15 M26, M28);

Figure 47: Source code of the example function clause

information in the AST database equivalent
table name record in that

table
1st parameter of clause 30 node 15 clause 30, 0, 1, 15
the name of variable 15 is N name 15, “n”
2nd parameter of clause 30 is node 16 clause 30, 0, 2, 16
clause 30 has a guard, node 22 clause 30, 1, 1, 22
the left and right operands and the opera-
tor of the infix expression 20 are nodes 17,
19 and 18, respectively

infix expr 20, 17, 18, 19

the body of clause 30 is node 29 clause 30, 2, 1, 29
application 29 applies node 23 application 29, 0, 23
the content of atom 23 is gcd name 23, “gcd”
1st param. of application 29 is node 27 application 29, 1, 27

Table 5: The representation of the code in Figure 47 in a database

type with their child nodes.

A Comparison Between the Two Approaches

The major difference between the two approaches discussed lies in how the syn-

tactic and semantic information is stored and manipulated. The Eötvös Loránd

approach needs more time and effort on database design and migration of in-

formation from Erlang abstract syntax trees to the database; whereas the Kent

approach is relatively easier to maintain and store information about refactor-

ings. However, as the Eötvös Loránd approach tries to avoid reconstruction of

the database between two consecutive refactorings —by incrementally updating

the database, so as to keep the stored syntactic and semantic information up-to-

date— it may be worth the effort. The two universities would like to test the

two approaches further, once both tools support a more substantial number of

representative, module-aware refactorings [69].

CHAPTER 8. RELATED WORK 202

8.3.2 The Haskell Equational Reasoning Assistant

The Haskell Equational Reasoning Assistant, HERA [36] is a system that provides

both a GUI level and a batch level Haskell rewrite engine inside a single tool.

The interactive interface is used to create and edit non-trivial translations that

can be used to extend the batch level API. The batch level API can be used

to implement powerful, context sensitive rewrites that can be provided to the

interactive interface.

HERA uses the Haskell AST provided by Template Haskell [94], and provides

three mechanisms for specifying rewrites over the AST. The rewrite strategies are

primitive rewrites, such as beta-reduction and case rewrite rules as provided in

the Haskell report [92]. The rewrites are implemented as AST to AST transfor-

mations.

HERA records every rewrite as an equation, with the left hand side as the

starting fragment, and the right hand side as the fragment after all the rewrites

are applied. Any equation written using HERA stores a list of primitive rewrites

or equations applied, allowing for easy playback, basic proof management and

presentation opportunities.

HERA shares the basic properties of HaRe. It is important to notice a differ-

ence however, HaRe works purely at the source level of a program, and applies

well-understood software engineering patterns. HERA handles large-scale rewrites

in a different way, using only a series of small steps performed in a strict bottom

up manner. The HERA user focuses on one binding group at a time, eventually

splitting the rewritten functions into a series of workers and wrappers [38]. The

wrappers respect the original interface of the function, and the workers represent

the rewritten function. Inlining any newly created wrapper inside any call side

is correctness preserving. It is possible to implement particular refactorings from

HaRe in HERA such as renaming and generalisation. However, the HERA tool

doesn’t provide an advanced API for program transformation and so refactor-

ings would have to be described in terms of small transformations, which in some

CHAPTER 8. RELATED WORK 203

respects would make it more difficult to scale to large-scale transformations.

8.3.3 Kansas University Rewrite Engine

The Kansas University Rewrite Engine (or KURE) [37] is a Haskell hosted Domain

Specific Language (DSL) for writing transformation systems based on rewrite

strategies. KURE is hosted in Haskell and provides a small set of combinators

that can be used to build parameterized term rewriting and general user-defined

rule applications. KURE builds upon the tradition of systems like Stratego [115]

and Strafunski [64] by adding a strongly typed strategy control language. It is

intended for writing reasonably efficient rewrite systems, makes use of type families

to provide a delimited generic mechanism for tree rewriting, and provides support

for efficient identity rewrite detection.

KURE is an attempt to revisit the design decisions of Strafunski and Stratego,

and to build a more efficient rewrite system hosted in Haskell. Specifically, KURE

replaces the powerful hammer of “scrap your boilerplate” generics [53] provided in

Strafunski with a more precise, user configurable and lightweight generics mecha-

nism. KURE was used (along with Template Haskell) to provide the basic rewrite

abilities inside HERA.

8.3.4 Fold/Unfold

The fold/unfold system of Burstall and Darlington [14] was intended to transform

recursively defined functions. The overall aim of the fold/unfold system was to

help programmers to write correct programs which are easy to modify. There are

six basic transformation rules that the system is based on:

• Unfolding : Replacing a function call with a body of the function where the

actual arguments are substituted for formal arguments.

• Folding : Replacing an expression with a call to a function if the function’s

body can be instantiated to the given expression with suitable arguments.

CHAPTER 8. RELATED WORK 204

• Instantiation: Introducing a substitution instance of an existing equation.

• Abstraction: Introducing a where clause by assigning a new name to an

expression. This can be used in combination with folding and instantiation

to introduce sharing, and hence gain efficiency.

• Definition: The addition of a new function declaration.

• Laws : The use of laws about the primitives of the language.

The advantage of using this methodology is that it is simple and very effective

at a wide range of program transformations which aim to develop more efficient

definitions; the disadvantage is that the use of the fold rule may result in non-

terminating definitions.

8.3.5 The Munich CIP Project

Another representative work of program transformation was the Munich CIP

(Computer-aided Intuition-guided Programming) [8, 7]. The central idea of this

project was to develop programs by a series of small, well understood transfor-

mations. CIP uses a rule-based language to describe transformations, and all

transformation rules are specified by laws about program schemes [89]. For in-

stance, a rule to eliminate a condition statement can be expressed as:

if B then E else E DEF (B)

E

This rule uses scheme variables B and E to identify parts of the expression to

be transformed. The other condition of this rule states that the transformation is

only valid if the boolean expression B is defined.

Somehow similar to refactoring tools, the expressiveness of this approach de-

pends on the available transformation rules, so systems using this approach may

have dozens of transformation rules, and the user needs to search for applicable

rules to solve the problem at hand.

CHAPTER 8. RELATED WORK 205

8.3.6 The Bird-Meertens Formalism (BMF)

The Bird-Meertens Formalism (BMF) [5], also called Squiggol, is a calculus for

deriving programs from their specification by a process of equational reasoning.

It consists of a set of higher-order functions that operate mainly on lists including

map, fold, scan, filter, inits, tails, cross product and function composition. BMF is

based on a computational model of categorical data types and their accompanying

operations. Program developments in BMF are directed by considerations of data

structure, as opposed to program structure.

8.3.7 Other Program Transformation Systems

Other recent work on program transformation aimed for program derivation and

optimisation includes:

• The Ultra [39] system which can assist programmers in deriving correct and

efficient Haskell programs formally and interactively. The design of Ultra is

conceptually based on CIP-S [7], but with some modifications.

• PATH (Programmer Assistant for Transforming Haskell) [112] is another

interactive program transformation system. The system is aimed to leverage

the advantages of both the fold/unfold approach and that taken by the CIP

project, and the disadvantages of neither.

• The HsOpt optimiser [116] for the Helium compiler, a subset of Haskell

developed at Utrecht University, in the transformation language Stratego.

• The prototype framework HSX [117] for experimentation with the applica-

tion of rewriting strategies using the transformation language Stratego for

program optimisation.

• The MAG program transformation system for a subset of Haskell, developed

by O. de Moor and G. Sittampalam [23].

CHAPTER 8. RELATED WORK 206

Program derivation and optimisation within the functional paradigm has been

studied extensively. However, they pose problems for a refactorer. Program

derivation transforms simple, obviously correct, programs into more efficient and

usually more complex variants. Transformations for program optimisation within

compilers, (e.g. deforestation [106]), which is used to eliminate intermediate trees

tend to be localised, addressing a program’s control or data flow and are hidden

from the user. The kind of program structure considered for refactoring is often

non-localised and related to the overall program design and knowledge represen-

tation – they are more commonly related to large scale declarative aspects rather

than smaller scale operational ones.

8.4 Refactoring Support

There has been a great interest in refactoring-frameworks, such as automatically

detecting where refactorings can be applied in a source program and how refac-

torings could be composed together. This section discusses how refactoring tools

can be taken a step further with tools and techniques to help the programmer in

designing and applying refactorings.

8.4.1 JunGL

Jungle Graph Language (JunGL) is a domain-specific language developed by Ver-

baere et. al. [114] for refactoring and is designed to enable developers and tool

authors to implement, easily and correctly, refactoring support for any language.

JunGL is, however, principally aimed at object-oriented paradigms.

JunGL is a hybrid of a functional-based language in the style of ML and a logic

query language similar to Datalog [3]. JunGL manipulates a graph data structure

that represents all information about a program including ASTs, variable binding,

control flow and dataflow. JunGL has a notion of demand-driven evaluation for

constructing edges of the graph, and allows powerful path queries to be run over

CHAPTER 8. RELATED WORK 207

the program. Like ML, JunGL has features such as pattern matching and higher-

order functions, while also allowing the use of updatable references (as does ML).

The main data structure manipulated by functions in JunGL is a graph that

represents the program one wishes to transform. Each node and edge in the graph

has a kind that is represented by a string. For example, edges that indicate the

control flow from one statement to the other are labeled “csfsucc”, for Control

Flow Successor.

The graph will consist of only ASTs initially —where the edges indicate chil-

dren and parents— additional computed information is added via “lazy” edge

definitions. These definitions will only be evaluated when their value is accessed.

The object query graph (similar to the AST) is manipulated by a number

of queries to find out specific information where destructive updates may be per-

formed on the graph. The notion of a predicate was added to the JunGL language,

this effectively makes JunGL a hybrid functional-logic language.

Predicates are most commonly created by constructing path queries : regular

expressions that identify paths in the program graph. For example, here is a

predicate that describes a path from a variable occurrence, var, to its declaration:

[var]

parent+

[?m:Kind("MethodDecl")]

child

[?dec:Kind("ParamDecl")]

&

?dec.name == var.name

The path components between square brackets are conditions on nodes, whereas

child and parent match edge labels. The above example embodies the requirement

that we can reach a method declaration by following one or more parent edges

from the var node. Furthermore, that method declaration (named ?m) has a

child that is a parameter declaration (named ?dec). Finally, the last conjunct

CHAPTER 8. RELATED WORK 208

checks that the parameter’s name coincides with the name of the variable node

we started out with. It is important that the variable occurrence var is known, so

that the predicate above can be used to find instantiations of the logical variables

?m and ?dec so that the above predicate is true.

The design of JunGL was validated through a number of non-trivial refactoring

scripts on a substantial subset of the C# language [73]. In particular, some bugs in

the IntelliJ IDEA [11] and Visual Studio system were demonstrated and discussed

by expressing the refactoring in JunGL.

8.4.2 Guru

Guru [83] is a prototype tool developed by Moore for restructuring inheritance

hierarchies expressed in the Self programming language [113]. Although not a

refactoring tool, Guru can automatically restructure an inheritance hierarchy into

an optimal hierarchy for all the objects currently in the system, whilst preserving

the behaviour of programs. Optimal means that there are no duplicated methods

and there are the minimum of objects and inheritance relationships required for

such an inheritance hierarchy.

The optimisation is achieved by first creating a copy of the objects to be

restructured and discarding the inheritance hierarchy, then building a replacement

inheritance which ensures no duplication.

Moore found that the inheritance hierarchies produced by Guru are easy to

understand when restructuring code that is easy to understand. For code that

is not easy to understand, the inheritance hierarchies created by Guru may bear

so little resemblance either to the original system, or to any concepts that are

understood by the programmer or designer, so the restructured system may be

difficult to understand, although it can assist the programmer in identifying the

faults in the original design.

CHAPTER 8. RELATED WORK 209

8.4.3 Star Diagram

Developed by Bowbridge [10], the Star Diagram is a graphical visualisation tool,

providing a hierarchical tree-structured representation of the source code relating

to a particular data type, eliding code unrelated to the data structure’s use. Sim-

ilar code fragments are merged into node stacks to reveal potentially redundant

computations. The tool can help the programmer design transformations based

on how the transformation is distributed and how the fragments are related to

each other. The visualisation is mapped directly to the program text, therefore

manipulation of the visualisation also restructures the program.

The visualisation provided by the Star Diagram system is targeted at support-

ing the specific task of data encapsulation. Other kinds of transformation would

require the assistance of other views.

Tools based on the notion of Star Diagram have been developed for C, Ada

and Tcl/Tk [24]. Korman applied the Star Diagram concept to Java programs

and implemented a tool called Elbereth. In [60], he described how programmers

can be supported in performing a variety of refactoring tasks, such as extracting

a method or replacing an existing class with an enhanced version. While the tool

can assist the programmer in planning the restructuring, the restructuring itself

has to be performed by hand.

8.4.4 CatchUp!

In [42], Henkel and Diwan present an idea to record how a library developer

changes a software project, or API. As the library developer invokes particular

refactorings over the library, CatchUp! records them. The refactoring changes are

then replayed back to update any client code automatically. This allows recording

and replaying of software refactorings to be performed with little cost for both

the library developer and the client maintainer. The approach is very lightweight

in that it does not require a central version repository system or a configuration

management system; the approach also integrates well with modern development

CHAPTER 8. RELATED WORK 210

environments, such as Eclipse [28].

Deprecation in Java implementations (and, indeed, in any other language

implementation) points out serious problems with library development: once a

particular API is developed, developers are forced to maintain it. Developers

may choose to deprecate and later remove unwanted methods and types, but this

largely depends on the amount of client code that needs to be fixed in order to

migrate to a new API. CatchUp! allows this transition to be easier by applying a

refactoring automatically to remove deprecated entities.

CatchUp! allows refactorings to be applied automatically to client programs

by means of the programmer choosing the recorded refactorings from a list. Since

subsequent refactorings can destroy the results produced by previous refactorings,

CatchUp! uses a step-by-step view showing each stage of the refactoring process.

This is particularly useful if the developer doesn’t wish to apply all the recorded

refactorings.

The strategy used by CatchUp! is to extract enough information from the

refactorings so that they can later be replayed. To replay refactorings, CatchUp!

recreates Eclipse’s refactoring objects according to the specifications given in the

refactoring trace. Currently, CatchUp! supports a limited number of Java refac-

torings that are embedded within Eclipse, with support to script these refactorings

by recording the application of the refactorings over an API; the recorded scripts

are then executed over a client code base.

8.4.5 Static Composition of Refactorings

In [57] Kniesel argues that the lack of user-definable refactorings is equally unsat-

isfactory for tool providers and for their users: for tool providers who continuously

invest time and money in the infinite evolution of refactorings; for the users, be-

cause they are forced either to wait for some release, hoping to find their desired

refactoring there, or to implement their own refactorings. However, the latter op-

tion is probably not ideal to most users, as implementing a lot of time and effort

into a new refactoring is probably not worth it, especially if they have a tight

CHAPTER 8. RELATED WORK 211

schedule to develop a project.

A solution to this problem is a provision to allow users to compose their own

refactorings together using some kind of higher order language that makes it easy

to describe compositions. Kniesel describes in his paper a method for a static

composition of refactorings. In his paper he introduces a refactoring editor that

essentially allows one to create, compose and edit refactorings.

Although the main motivation for this work and its primary application is

in the domain of refactorings, the paper takes a much broader approach. The

paper describes a conditional transformation as their basic concept. A condition

transformation (CT) is a pair consisting of a precondition and its transformation,

where its transformation is performed on a given program only if its precondition

evaluates to true. The following discusses the various approaches of composition

that the paper investigated:

• Composition: in order to compose transformations, the preconditions of

each of the transformations in a given composition must be analysed. Each

transformation in the chain must satisfy the preconditions of the next trans-

formation in the chain.

• AND-sequences: in many transformation scenarios the execution should

not continue if one CT in a sequence fails. It is also often the case that

each transformation in a given chain is applied. Execution of an AND se-

quence of conditional transformations applies each transformation, provided

that each precondition is true when it is checked. Otherwise, none of the

transformations are applied.

• OR-sequences: an OR-sequence is the simplest form of a sequence in that

the preconditions of the individual CTs are not related in any way.

• Enabling Refactorings: The composition can infer that earlier refactor-

ings can set up the preconditions of later ones. This is particularly useful

when certain preconditions cannot be evaluated by static program analysis.

CHAPTER 8. RELATED WORK 212

• Chaining Undo: in a conjunction of refactorings, it is useful to include the

possibility that something will go wrong. An undo function to roll back to

before the composition was applied is necessary, as in as undo to roll back

through each step of the composition.

Conditions for a refactoring via a transformation description; each refactoring

states whether a certain condition must hold or not to succeed. For each program

transformation one can describe effects on conditions either forward or backward.

A forward description of a transformation T takes a condition that holds (im-

mediately) before the transformation is performed and returns the condition that

will hold (immediately) afterwards. A backward description of a transformation

T takes a condition that is assumed to hold immediately after the completion of

T and produces the equivalent condition to be checked before performing T.

In his pioneering work, Opdyke [86] introduced many of the ideas on which

much of the current work on refactorings is based. This includes the use of pre-

conditions for ensuring behavior-preservation, their evaluation on the basis of a

set of analysis functions and the idea of composing transformations. However, his

notion of composition is sequential execution, corresponding to Kniesel’s notion

of OR-sequence.

The Smalltalk Refactoring Browser [97] has postconditions that correspond

conceptually to Kniesel’s forward transformation descriptions. Analysis functions

and conditions can be regarded as abstractions of programs. Their transforma-

tions reflect the semantics of a program transformation at a more abstract level.

Kniesel’s approach eliminates the intermediate level of analysis functions, describ-

ing the effect of transformations directly on conditions. Instead of transforming

interpretations of function and predicate symbols with respect to a program, trans-

formation descriptions simply rewrite predicate symbols.

CHAPTER 8. RELATED WORK 213

8.4.6 Munich CIP-S

CIP-S [7] provides an extension to the Munich CIP system by allowing the ma-

nipulation of concrete programs. CIP-S also supports the derivation of new trans-

formation rules, transformation of algebraic types and the verification of the ap-

plicability conditions.

The system includes a generative set of transformations, including general

principles (such as fold, unfold, etc. [14]), the definitional rules of the language

and the axioms and inference rules for the predefined types. In addition to these,

some frequently used derived rules about language constructs and a few general

techniques concerning control constructs are also made available.

These default rules provide the user with a basis for which to derive further

rules that they consider useful for the particular problem domain that they are

working on. The CIP-S system guarantees that all rules that are inferred within

the system are correct with respect to the initial collection of rules. Rules that

are not inferred in this way are left to the responsibility of the user to ensure their

correctness.

The default rules in the system are schematic rules over which more com-

plex rules can be derived as transformation algorithms. These transformation

algorithms serve for partly automating the transformation process.

The core of CIP-S is independent of a particular language, instead special

variants of the system are derived for any algebraically defined language. This

also means that other languages that are used by the system (i.e. for operating

the system and for formulating transformational tasks) are also exchangeable as

well. The standard implementation of CIP-S uses the language of CIP-L [8] in its

Algol or Pascal variant.

CIP-S was designed to be used as an extensive software development tool.

Hence it supports each individual step and task that may occur within the program

development cycle. The starting point for a formal development usually consists

of a formal specification; the CIP-S system can aid the formulation of a formal

CHAPTER 8. RELATED WORK 214

specification by offering the following facilities:

• A basic catalogue of the standard data-types that are frequently used at the

specification level.

• Various surveys over these types, including:

– the set of types;

– the laws of individual operators;

– the relations among the types.

• Support for the modification of already available types, including enrich-

ment, restriction, renaming and parametrisation.

• Support for the instantiation of a type, together with the instantiation of

the transformation rules gained from its laws.

This system support facilitates the formulation of specifications as the necessary

data-types are already available or obtainable by the modification of existing data

types. In addition to these facilities, CIP-S also provides the following features

with respect to the transformation system:

• Provides the basic catalogue of schematic transformation rules that express

general programming techniques;

• Search facility for syntactically applicable rules;

• A graphical representation of rule applications showing the instantiation

gained by the matching process (and showing the variables not instantiated).

The CIP-S also keeps a history of the transformation steps allows the use to

backtrace to previous steps if necessary.

CHAPTER 8. RELATED WORK 215

8.5 Summary

The main challenges faced by automating the refactoring process are: a) iden-

tifying refactoring opportunities, b) global behaviour-preserving program trans-

formation, and c) program appearance preservation. Automating the refactoring

process benefits from the previous work on program lexing, parsing, analysis and

transformation, but also exposes new research areas, such as producing ASTs or

token streams with richer information, verifying global behaviour preservation, a

general framework for building refactoring tools etc. As functional programming

languages and object-oriented programming languages expose different program

structures, it is no surprise that each of them have a collection of refactorings

particularly appropriate to their own program structures.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis has explored transforming (in the sense of both general program trans-

formation, and refactoring) and analysing the functional programming language

Haskell. The thesis has extended the existing work on refactoring Haskell pro-

grams made by Li in her PhD thesis [67] and has also aimed to complement the

existing work in program refactoring and transformation in other functional pro-

gramming and object-oriented fields. Specifically, the contributions of this thesis

are as follows:

• The creation and study of a set of refactorings for Haskell (structural refac-

torings were described in Chapter 4 and data type based refactorings were

described in Chapter 5). A collection of Haskell refactorings have been

derived and analysed in terms of their side-conditions and transformation

rules. Side-conditions together with the transformation rules guarantee that

a refactoring does not change the program’s external behavior.

• Enhancing the design and implementation of HaRe and its API. This thesis

introduces a collection of new refactorings and transformations for Haskell.

The API for HaRe is extended to include additional functionality for these

216

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 217

new refactorings. In particular, additional type-checking query and trans-

formation functions were added to the API.

• The investigation and implementation of duplicate code elimination for

Haskell (described in Chapter 6). Using the infrastructure of HaRe, a set

of refactoring and analyses have been developed to aid the programmer in

removing duplicate code. A survey comparing the duplicate code analyser

developed as part of this thesis with duplicate code analysers for other lan-

guages is undertaken. The clone analysis and extraction is also extended

to take sequences of monadic “commands” into account, as well as common

substitution instances of expressions.

• Program slicing (described in Chapter 3). The investigation and implemen-

tation of program slicing techniques as Haskell transformations to help the

programmer remove redundant code. In particular, function splitting and

merging. Splitting is concerned with taking a function returning a tuple and

creating new functions encapsulating the semantics of each tuple element

(or from a subset of fields from the original tuple). The converse, merging,

is taking a set of functions and fusing them together, forming a new function

returning a tuple.

• The investigation of and inclusion in HaRe of the type checking facilities of

the Glasgow Haskell Compiler (GHC) [77] (expansion on the type checking

is discussed in Section 5.1). The type checker can be used to add additional

side-conditions and also to act as a partial control for the post-conditions:

checking that a program is still type-safe after a particular transformation.

For example, as part of the splitting process, the Haskell module is type

checked. If the type-checking fails, the refactoring is not performed.

• A case study into refactoring Haskell programs (described in Chapter 7).

The case study not only looks at current refactorings for HaRe, but also

discusses potential refactorings that could be added to HaRe to aid better

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 218

understanding of the program; some of these refactorings are discussed in

more detail in future work.

A particular limitation lies with designing refactorings in their full generality in-

stead of a large set of smaller, simpler refactorings. Simpler refactorings can be

described clearly, with a clear set of conditions and limitations. Larger refactor-

ings, that aim to be more general, and which are designed and implemented for

this thesis, are difficult to describe in terms of both the conditions and the lim-

itations. A possible solution to this would be to formalize the refactorings, but

then a danger lies in over-complicating an already complex issue.

Haskell is a very complex language, and its model of type signatures, pattern

matching, guards, where clauses and type classes, makes it a difficult language to

refactor. Indeed, for many of the refactorings discussed in this thesis, there have

been occasions where it is not clear what the refactoring should do. In most cases,

it was decided to take a tractable subset of the full diversity and provide a full

solution to a subset rather than a partial solution to all.

For example, when adding a data constructor as discussed in Chapter 5, it

is possible to come across situations where we have a recursive data structure

defined and pattern matching over that data structure:

data T = C1 T | C2

f :: T -> Int

f (C1 (C1 C2)) = 3

f (C1 C2) = 2

Adding a new constructor, C3, to the type, T, creates a situation where it is not

exactly clear what new equations must be added for f. Should we create new

equations for f introducing a new pattern match for the new constructor where

it could occur in the previous equations?

data T = C1 T | C2 | C3

addedC3 = error "Added C3 to T"

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 219

f :: T -> Int

f (C1 (C1 C2)) = 3

f (C1 (C1 C3)) = addedC3

f (C1 C2) = 2

f (C1 C3) = addedC3

f C3 = addedC3

Or only one new equation, which captures the simplest of situations?

data T = C1 T | C2 | C3

addedC3 = error Added C3 to T"

f :: T -> Int

f (C1 (C1 C2)) = 3

f (C1 C2) = 2

f C3 = addedC3

The refactorings in this thesis have tried to follow the simplest design choice as

possible so not to refactor code into something that the programmer does not

expect. The solutions for adding a new constructor, therefore, adds one new

equation so at least calls to f will not result in a pattern match error if f is

called with the value C3 (and, more importantly, gives an error indicating that

f is not defined for the newly added constructor C3). It may be noted, however,

that some users would consider the first example to be correct, as it covers all

situations where the previous equations could be called with the value C3.

The case study presented in Chapter 7 resulted in some interesting conclusions.

It seems that the simpler, atomic, refactorings are more useful in refactoring large-

scale programs than the larger more complex ones. Some of the more complex

refactorings defined in this thesis may only be applicable in specialized situations.

This certainly gives motivation to create larger refactorings from lots of smaller

atomic refactorings. The most commonly used refactorings were introduce new

definition, generalise definition and folding ; these three refactorings exploit the

idea of higher-order polymorphism resulting in abstracting code [107].

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 220

In addition, the case study also begged the question as to whether it would

have been more appropriate to have performed the case-study first as part of the

design of HaRe, and then to have proceeded with designing refactorings that are

obviously necessary. However, researching extensively into refactoring for Haskell

first, and then performing the case study at the end allows the opportunity for

more refactoring cases to be observed, as designing and implementing refactoring

helps one to understand their implication and use.

The view that has been taken for this thesis is that of implementing atomic

operations from which more complex refactorings can be constructed. However, in

hindsight it would have been more useful to separate out the atomic components

of the refactorings so that they could be executed singularly if desired.

A general conclusion from designing large-scale refactorings for Haskell is the

lack of viable refactoring tool-support. It seems that rather than spending time

and effort in designing and implementing a large refactoring set for Haskell, more

time has been invested in learning and understanding the platform architecture

on which HaRe sits.

9.2 Future Work

The work presented in this thesis can still be carried forward in a number of

directions.

• Adding more refactorings to HaRe. The number of refactorings for HaRe has

increased, but there are still a number of refactorings listed in the catalogue

[96] that are still awaiting implementation. An example of a few of the more

useful structural refactorings are given here.

– Swap Arguments. Swap the position of two arguments of a function,

this requires all argument lists to be transformed to take the swapped

arguments into account. It may be better to implement a separate

permute arguments refactoring (or define permute arguments as a series

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 221

of swaps), and then make this a more special case.

– (Un)Currying of function arguments. A subsequence of n arguments

of a function is selected for conversion to an n-tuple. This refactoring

will require the conversion of all argument lists, type signatures and

uncurrying must also take partial applications into account.

– Replacing a multi-equation definition with a single-equation def-

inition using case expressions. This transformation has already been

defined, to some extent by case analysis introduction (in Section 5.6.3)

and by unfolding, but is certainly worth being a separate, more general,

refactoring. This refactoring would make use of uncurrying, alterna-

tively a series of nested case statements, one per argument, will be

required.

• Chapter 5 discusses various type-level refactorings; specifically, refactorings

that transform at a type level rather than at a term level. There are still

a number of refactorings that could be implemented using the type check-

ing facilities derived for the work in Chapter 5. In particular, these might

include:

– Name a type. Identify uses of a type in a particular way by making

them instances of a type synonym. This refactoring was identified as

an important future refactoring in the case study in Section 7.2 on

Page 169. This has no semantic effect on the program except that type

synonyms cannot be the subject of any instance declarations within

the program. This refactoring could be used to remove duplicated code

at the type level and to also better understand a Haskell project.

– Introduce class and instance. This can be done by identifying a

type and a collection of functions over that type. This trades off pattern

matching (on the algebraic type) against extensibility, à la OOP and

will not work well with binary methods. This can be seen as a sequence

of simpler refactorings, including splitting the sum into its constituent

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 222

parts, introducing an interface (class) for the functions over the types

and so forth.

data Shape = Circle Float | Rect Float Float

area (Circle r) = pi * r^2

area (Rect h w) = h * w

It is possible to introduce an existential quantification over Shape and

then have overloaded implementations of area over Shape.

data Shape = forall a. Sh a => Shape a

class Sh a where

area :: a -> Float

data Circle = Circle Float

instance Sh Circle

area (Circle r) = pi * r ^2

data Rect = Rect Float Float

instance Sh Rect

area (Rect h w) = h * w

This approach is not without its drawbacks. In Haskell 98, binary

operators become problematic. For example it is possible to define

(==) on the first version of shape using the standard definition by case

analyses. Instead it is necessary to convert shapes to a single type

(via Show) to turn a case analysis over types into corresponding cases

over values. Unfolding could also be extended to take the inlining of

overloaded functions into account. Binary operators are not just an

issue for Haskell classes, they are a well recognised problem in OO in

general. Consider the following:

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 223

class MyInt

{

private:

Word32 i;

public:

MyInt add (MyInt other);

}

In the above, add has the type MyInt -> MyInt -> MyInt as it is

encoded as taking an implicit parameter, in this case the class that it

is defined in. If we were to add a subclass MyInt2:

class MyInt2 (MyInt)

{

public:

MyInt2 add (MyInt2 other);

}

The overloading properties of OO programming prevent us from chang-

ing the type of add, so MyInt2 would be disallowed. Consequently, for

MyInt2 this would force add to have the meaningless type MyInt2 ->

MyInt -> MyInt for instances of the MyInt2 class.

• Make more use of type information with the current refactorings in HaRe.

For instance, when generalising a function definition that has a type sig-

nature declared, the type of the identified expression needs to be inferred,

and added to the type signature as the type of the function’s first argument.

Converting a pattern binding in a where to a pattern binding in a let may

make an originally polymorphic definition monomorphic, and fail at program

compilation. Adding a correct type signature to the lifted pattern binding

would solve this problem.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 224

• Coping with literate Haskell modules. The current Programatica-based

HaRe only refactors source modules that are not literate Haskell files. As

some users —particularly those who are learning Haskell— use the literate

style of Haskell programming, it would be beneficial to allow HaRe to cope

with literate files, albeit this is a minor issue.

• Coping with Haskell pre-processing directives. Currently the Programatica-

based HaRe does not pre-process pragmas in a Haskell program. In partic-

ular, this occurred when refactoring nhc [100] in Chapter 7, as the source

modules had to be run through cpp [49] first. This problem would also relate

specifically to a tool designed to refactor C and C++ programs: as the use

of pre-processing pragmas (including the use of #include directives) are an

essential part of the C and C++ programming languages. It is therefore

plausible to port solutions for refactorings tools for C and C++ over to

HaRe to attempt to solve the pre-processing issue.

• Moving HaRe to a more advanced compiler API. Currently, HaRe works with

the Haskell 98 standard of Haskell. However, most Haskell users currently

work with the GHC standard of Haskell. The Programatica compiler is

currently not being maintained and as Haskell is moving more towards the

Haskell Prime standard [21] it makes even more sense to move compiler

front-ends. There has been some work by Ryder [102] on porting HaRe over

to the GHC API; currently, Chaddäı Fouché is working towards porting a

basic refactoring of HaRe over to GHC.

• In the future, it is hoped that HaRe will be extended to allow refactorings to

be scripted. Scripting refactorings allows elementary —or atomic— refac-

torings to be stitched together, creating the effect of a complete refactoring

process. For example, with the folding refactoring described in section 4.1,

it is possible to define the refactoring in terms of if..then..else to guards and

folding rather than the two refactorings being part of a more complex one.

For the introduction of pattern matches, as described in Section 5.6.1, it

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 225

is also possible to define the refactoring with introduce sub-pattern, unfold-

ing and case analysis simplification (indeed, an example is given of this in

Section 4.7).

The more atomic refactorings that HaRe provides, the more cases there are

for refactoring composition and the more likely there will be some com-

monly used refactoring patterns. It would be helpful, therefore, to have a

simple script language that can be used by HaRe or the users to easily build

composite refactorings from existing ones. The script language should be

expressive enough to contain constructs that allow sequencing, iteration and

alternation to be defined. The script would also need to be interpreted by

HaRe and stored, so that the script can be invoked once it has been defined.

An immediate problem that comes from scripting refactorings in HaRe is

how to retain, or define, the parameters for the sequenced refactorings. Usu-

ally, in HaRe each refactoring takes a program entity of interest as a param-

eter (usually as a start and end location, or as a region specified by start

and end locations). In scripted refactorings, the user will not have access to

the intermediate results of the refactorings, and will therefore not be able to

highlight any code entities for parameterising the intermediate refactorings.

In addition to this, the result of one refactoring may transform the pro-

gram in such a way that identifiers change from refactoring to refactoring,

this may prevent the user from identifying the changes and inputting new

parameters for the remaining refactorings in the composite chain. It may

only be possible, therefore, to script refactorings that share a similar set of

arguments so that the parameter problem can be solved with AST infor-

mation. This problem could be solved using addressing somehow, which is

rather more semantic than the current “position in a text file” that HaRe

currently uses.

A näıve way of executing a composite refactoring is to execute the involved

atomic refactorings in the specified order; the composite refactoring fails

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 226

if one of the atomic refactorings fail, and succeeds if all the atomic refac-

torings succeed. It is not always possible, however, to take the union of

side-conditions for the atomic refactorings to derive the side-conditions for

the composite refactoring. Some conditions that are not satisfied by the cur-

rent program may become satisfied after certain refactorings are performed,

and vice versa. Post-conditions were introduced as a means to determine

the side conditions for composite refactorings [98]. Further discussions for

how side-conditions for composite refactorings can be computed manually is

shown in [19]. However, there has not been much work done on computing

side-coditions for arbitrary composite refactorings automatically.

• The number of possible refactorings to implement seems endless and no tool

developer will ever be able to implement refactorings for every programmer’s

needs. HaRe aims to provide a set of core refactorings, but even these are not

sufficient in satisfying every possibility. Providing a user with the ability to

compose their own refactorings does not achieve the same effect as providing

a user with the ability to define his or her own refactorings.

It could be possible to research into a language for defining refactorings from

scratch. Rather than designing refactorings in HaRe using the API, it may

be better to provide a high-level language specifically for the creation of

refactorings and their pre and post conditions. The language would have

to contain constructs to be able to specify a set of rules for transforming

a program, and also a set of constructs for specifying the conditions of the

refactoring. A compiler to convert the refactoring source files into HaRe

target files would also have to be investigated, as well as the addition of an

interface in HaRe to read refactoring source files.

• More interaction between HaRe and the user. Interaction between HaRe

and the user during the refactoring process will allow the users to provide

the refactorer with more information to allow the refactorer to be more

specific when performing refactorings. Chapter 5, introduced the notion of

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 227

a for one and a for all mode for refactorings; it is also possible to introduce

a for some mode (such as in the clone detector, described in Chapter 6)

which allows HaRe to cycle through a list of possibilities, allowing the user

to decide whether or not to perform the refactoring in that instance or not.

Wrangler, the Erlang refactoring tool also uses a step-by-step approach for

clone extraction. The current refactorings for HaRe could be re-implemented

using the step-by-step approach.

• Applying the research results to other functional programming languages is

an important topic of future research. Currently the Kent Group is also

researching into refactoring the Erlang functional language, by means of

the tool Wrangler [61]. The work could just as easily be extended to other

functional paradigms. The Epigram project [78] at Nottingham has oppor-

tunities for a dependently typed refactoring system. Also, it would be very

interesting to see how refactoring could be used to maintain programs at a

visual level —and the analogies this has with circuit design— rather than

at a code level.

• In the future it is planned that dead code elimination will be expanded to

take a whole program into account and not just a selected function. Dead

code elimination could remove the parts of the program that are not directly

related to the main function, which would allow the process to be extended

to the whole of a large Haskell project.

• It is also planned to modify the splitter to analyze the whole scope of a

program rather than simply tuple-returning functions in the scope of a par-

ticular function of interest. It is also planned to modify the splitter so that

tuple-returning functions that are called from outside a function’s scope can

be extracted.

• Further work will detail work on refactoring with monads. It is intended

for the work on slicing to be extended further to investigate backwards,

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 228

dynamic slicing and forwards slicing (both static and dynamic). There are

many more exciting possibilities to analyze for the refactoring of Haskell

code; and it is hoped to continue work in these directions.

Appendix A

Strafunski

A.1 Traversal Scheme Excerpts

-- * Recursive traversal

-- * Authors: Joost Visser and Ralph Lammel.

-- ** Full traversals

--

-- * td -- top-down

-- * bu -- bottom-up

-- | Full type-preserving traversal in top-down order.

full_tdTP :: Monad m => TP m -> TP m

full_tdTP s = s ‘seqTP‘ (allTP (full_tdTP s))

-- | Full type-preserving traversal in bottom-up order.

full_buTP :: Monad m => TP m -> TP m

full_buTP s = (allTP (full_buTP s)) ‘seqTP‘ s

-- | Full type-unifying traversal in top-down order.

full_tdTU :: (Monad m, Monoid a) => TU a m -> TU a m

full_tdTU s = op2TU mappend s (allTU’ (full_tdTU s))

-- ** Traversals with stop conditions

229

APPENDIX A. STRAFUNSKI 230

-- | Top-down type-preserving traversal that is cut off below nodes

-- where the argument strategy succeeds.

stop_tdTP :: MonadPlus m => TP m -> TP m

stop_tdTP s = s ‘choiceTP‘ (allTP (stop_tdTP s))

-- | Top-down type-unifying traversal that is cut off below nodes

-- where the argument strategy succeeds.

stop_tdTU :: (MonadPlus m, Monoid a) => TU a m -> TU a m

stop_tdTU s = s ‘choiceTU‘ (allTU’ (stop_tdTU s))

-- ** Single hit traversal

-- | Top-down type-preserving traversal that performs its argument

-- strategy at most once.

once_tdTP :: MonadPlus m => TP m -> TP m

once_tdTP s = s ‘choiceTP‘ (oneTP (once_tdTP s))

-- | Top-down type-unifying traversal that performs its argument

-- strategy at most once.

once_tdTU :: MonadPlus m => TU a m -> TU a m

once_tdTU s = s ‘choiceTU‘ (oneTU (once_tdTU s))

-- | Bottom-up type-preserving traversal that performs its argument

-- strategy at most once.

once_buTP :: MonadPlus m => TP m -> TP m

once_buTP s = (oneTP (once_buTP s)) ‘choiceTP‘ s

-- | Bottom-up type-unifying traversal that performs its argument

-- strategy at most once.

once_buTU :: MonadPlus m => TU a m -> TU a m

once_buTU s = (oneTU (once_buTU s)) ‘choiceTU‘ s

Appendix B

The Definition of PNT, from
Programatica

-- The definition of PNT and its comprising data types.

data PNT = PNT PName (IdTy PId) OptSrcLoc

data PN i = PN i Orig

type PName = PN HsName

type PId = PN Id

data HsName = Qual ModuleName Id

| UnQual Id

type Id = String

data Orig = L Int

| G ModuleName Id OptSrcLoc

| D Int OptSrcLoc

| S SrcLoc

| Sn Id SrcLoc

| P

data ModuleName = PlainModule String

data ModuleName = PlainModule String

| MainModule FilePath

newtype OptSrcLoc = N (Maybe SrcLoc)

data SrcLoc = SrcLoc {srcPath :: FilePath

srcChar, srcLine, srcColumn :: !Int}

231

APPENDIX B. THE DEFINITION OF PNT, FROM PROGRAMATICA 232

data IdTy i = Value

| FieldOf i (TypeInfo i)

| MethodOf i [i]

| ConstrOf i (TypeInfo i)

| Class [i]

| Type (TypeInfo i)

| Assertion

| Property

data TypeInfo i = TypeInfo { defType :: (Maybe DefTy)

constructors :: [ConInfo i]

fields :: [i]

}

data DefTy = Newtype

| Data

| Synonym

| Primitive

data ConInfo i = ConInfo { conName :: i

conArity :: Int

conFields :: (Maybe [i])

}

Appendix C

Huffman Tree Encoding

-- Main.lhs

-- The main module of the Huffman example

-- (c) Simon Thompson, 1995,1998.

-- The main module of the Huffman example

module Main (main) where

import Types (Tree(Leaf,Node), Bit(L,R), HCode , Table)

import Coding (codeMessage, decodeMessage)

import MakeCode (codes, codeTable)

main = print decoded

-- Examples

-- ^^^^^^^^

-- The coding table generated from the text "there is a green hill".

tableEx :: Table

tableEx = codeTable (codes "there is a green hill")

-- The Huffman tree generated from the text "there is a green hill",

-- from which tableEx is produced by applying codeTable.

treeEx :: Tree

treeEx = codes "there is a green hill"

233

APPENDIX C. HUFFMAN TREE ENCODING 234

-- A message to be coded.

message :: String

message = "there are green hills here"

-- The message in code.

coded :: HCode

coded = codeMessage tableEx message

-- The coded message decoded.

decoded :: String

decoded = decodeMessage treeEx coded

APPENDIX C. HUFFMAN TREE ENCODING 235

-- Codetable.lhs

--

-- Converting a Huffman tree to a ord table.

--

-- (c) Simon Thompson, 1995, 1998.

--

module CodeTable (codeTable) where

import Types (Tree(Leaf,Node), Bit(L,R), HCode, Table)

-- Making a table from a Huffman tree.

codeTable :: Tree -> Table

codeTable = convert []

-- Auxiliary function used in conversion to a table. The first argument is

-- the HCode which codes the path in the tree to the current Node, and so

-- codeTable is initialised with an empty such sequence.

convert :: HCode -> Tree -> Table

convert cd (Leaf c n) = [(c,cd)]

convert cd (Node n t1 t2)

= (convert (cd++[L]) t1) ++ (convert (cd++[R]) t2)

-- Show functions

-- ^^^^^^^^^^^^^^

-- Show a tree, using indentation to show structure.

--

showTree :: Tree -> String

showTree t = showTreeIndent 0 t

-- The auxiliary function showTreeIndent has a second, current

-- level of indentation, as a parameter.

showTreeIndent :: Int -> Tree -> String

showTreeIndent m (Leaf c n)

= spaces m ++ show c ++ " " ++ show n ++ "\n"

showTreeIndent m (Node n t1 t2)

= showTreeIndent (m+4) t1 ++

spaces m ++ "[" ++ show n ++ "]" ++ "\n" ++

APPENDIX C. HUFFMAN TREE ENCODING 236

showTreeIndent (m+4) t2

-- A String of n spaces.

spaces :: Int -> String

spaces n = replicate n ’ ’

-- To show a sequence of Bits.

showCode :: HCode -> String

showCode = map conv

where

conv R = ’R’

conv L = ’L’

-- To show a table of codes.

showTable :: Table -> String

showTable

= concat . map showPair

where

showPair (ch,co) = [ch] ++ " " ++ showCode co ++ "\n"

APPENDIX C. HUFFMAN TREE ENCODING 237

--

-- Coding.lhs

--

-- Huffman coding in Haskell.

-- The top-level functions for coding and decoding.

--

-- (c) Simon Thompson, 1995.

module Coding (codeMessage , decodeMessage) where

import Types (Tree(Leaf,Node), Bit(L,R), HCode, Table)

-- Code a message according to a table of codes.

codeMessage :: Table -> [Char] -> HCode

codeMessage tbl = concat . map (lookupTable tbl)

-- lookupTable looks up the meaning of an individual char in

-- a Table.

lookupTable :: Table -> Char -> HCode

lookupTable [] c = error "lookupTable"

lookupTable ((ch,n):tb) c

| (ch==c) = n

| otherwise = lookupTable tb c

-- Decode a message according to a tree.

--

-- The first tree arguent is constant, being the tree of codes;

-- the second represents the current position in the tree relative

-- to the (partial) HCode read so far.

decodeMessage :: Tree -> HCode -> String

decodeMessage tr

= decodeByt tr

where

decodeByt (Node n t1 t2) (L:rest)

= decodeByt t1 rest

APPENDIX C. HUFFMAN TREE ENCODING 238

decodeByt (Node n t1 t2) (R:rest)

= decodeByt t2 rest

decodeByt (Leaf c n) rest

= c : decodeByt tr rest

decodeByt t [] = []

APPENDIX C. HUFFMAN TREE ENCODING 239

--

-- Frequency.lhs

--

-- Calculating the frequencies of words in a text, used in

-- Huffman coding.

--

-- (c) Simon Thompson, 1995, 1998.

--

module Frequency (frequency) where

import CodeTable2

-- Calculate the frequencies of characters in a list.

--

-- This is done by sorting, then counting the number of

-- repetitions. The counting is made part of the merge

-- operation in a merge sort.

frequency :: [Char] -> [(Char,Int)]

frequency

= mergeSort freqMerge . mergeSort alphaMerge . map start

where

start ch = (ch,1)

-- Merge sort parametrised on the merge operation. This is more

-- general than parametrising on the ordering operation, since

-- it permits amalgamation of elements with equal keys

-- for instance.

--

mergeSort :: ([a]->[a]->[a]) -> [a] -> [a]

mergeSort merge xs

| length xs < 2 = xs

| otherwise

= merge (mergeSort merge first)

(mergeSort merge second)

where

first = take half xs

second = drop half xs

half = (length xs) ‘div‘ 2

-- Order on first entry of pairs, with

-- accumulation of the numeric entries when equal first entry.

alphaMerge :: [(Char,Int)] -> [(Char,Int)] -> [(Char,Int)]

APPENDIX C. HUFFMAN TREE ENCODING 240

alphaMerge xs [] = xs

alphaMerge [] ys = ys

alphaMerge ((p,n):xs) ((q,m):ys)

| (p==q) = (p,n+m) : alphaMerge xs ys

| (p<q) = (p,n) : alphaMerge xs ((q,m):ys)

| otherwise = (q,m) : alphaMerge ((p,n):xs) ys

-- Lexicographic ordering, second field more significant.

--

freqMerge :: [(Char,Int)] -> [(Char,Int)] -> [(Char,Int)]

freqMerge xs [] = xs

freqMerge [] ys = ys

freqMerge ((p,n):xs) ((q,m):ys)

| (n<m || (n==m && p<q))

= (p,n) : freqMerge xs ((q,m):ys)

| otherwise

= (q,m) : freqMerge ((p,n):xs) ys

APPENDIX C. HUFFMAN TREE ENCODING 241

--

-- MakeCode.lhs

--

-- Huffman coding in Haskell.

--

-- (c) Simon Thompson, 1995, 1998.

--

module MakeCode (codes, codeTable) where

import Types

import Frequency (frequency)

import MakeTree (makeTree)

import CodeTable (codeTable)

-- Putting together frequency calculation and tree conversion

codes :: [Char] -> Tree

codes = makeTree . frequency

APPENDIX C. HUFFMAN TREE ENCODING 242

--

-- makeTree.lhs

--

-- Turn a frequency table into a Huffman tree

--

-- (c) Simon Thompson, 1995.

--

module MakeTree (makeTree) where

import Types (Tree(Leaf,Node), Bit(L,R), HCode, Table)

-- Convert the trees to a list, then amalgamate into a single

-- tree.

makeTree :: [(Char,Int)] -> Tree

makeTree = makeCodes . toTreeList

-- Huffman codes are created bottom up: look for the least

-- two frequent letters, make these a new "isAlpha" (i.e. tree)

-- and repeat until one tree formed.

-- The function toTreeList makes the initial data structure.

toTreeList :: [(Char,Int)] -> [Tree]

toTreeList = map (uncurry Leaf)

-- The value of a tree.

value :: Tree -> Int

value (Leaf _ n) = n

value (Node n _ _) = n

-- Pair two trees.

pair :: Tree -> Tree -> Tree

pair t1 t2 = Node (v1+v2) t1 t2

where

v1 = value t1

v2 = value t2

APPENDIX C. HUFFMAN TREE ENCODING 243

-- Insert a tree in a list of trees sorted by ascending value.

insTree :: Tree -> [Tree] -> [Tree]

insTree t [] = [t]

insTree t (t1:ts)

| (value t <= value t1) = t:t1:ts

| otherwise = t1 : insTree t ts

--

-- Amalgamate the front two elements of the list of trees.

amalgamate :: [Tree] -> [Tree]

amalgamate (t1 : t2 : ts)

= insTree (pair t1 t2) ts

-- Make codes: amalgamate the whole list.

makeCodes :: [Tree] -> Tree

makeCodes [t] = t

makeCodes ts = makeCodes (amalgamate ts)

APPENDIX C. HUFFMAN TREE ENCODING 244

-- Types.lhs

--

-- The types used in the Huffman coding example.

--

-- (c) Simon Thompson, 1995, 1998

-- The interface to the module Types is written out

-- explicitly here, after the module name.

module Types (Tree(Leaf,Node), Bit(L,R),

HCode , Table) where

-- Trees to represent the relative frequencies of characters

-- and therefore the Huffman codes.

data Tree = Leaf Char Int | Node Int Tree Tree

-- The types of bits, Huffman codes and tables of Huffman codes.

data Bit = L | R deriving (Eq,Show)

type HCode = [Bit]

type Table = [(Char,HCode)]

Appendix D

Clone Report for Huffman
Coding

/home/cmb21/huffman/CodeTable.hs ((70,5),(70,18)): >concat . map showPair<
/home/cmb21/huffman/Coding.hs ((18,19),(18,48)): >concat . map (lookupTable tbl)<
2 occurrences.

/home/cmb21/huffman/Frequency.hs ((61,22),(61,24)): >p<q<
/home/cmb21/huffman/Frequency.hs ((61,6),(61,8)): >n<m<
2 occurrences.

/home/cmb21/huffman/CodeTable.hs ((46,5),(46,44)):
>spaces m ++ show c ++ " " ++ show n ++ "\n"<

/home/cmb21/huffman/CodeTable.hs ((49,5),(50,26)):
>spaces m ++ "[" ++ show n ++ "]" ++ "\n" ++

showTreeIndent (m+4) t2<
2 occurrences.

/home/cmb21/huffman/Frequency.hs ((51,19),(51,50)): >(p,n) : alphaMerge xs ((q,m):ys)<
/home/cmb21/huffman/Frequency.hs ((50,19),(50,43)): >(p,n+m) : alphaMerge xs ys<
/home/cmb21/huffman/Frequency.hs ((52,19),(52,49)): >(q,m) : alphaMerge ((p,n):xs) ys<
3 occurrences.

/home/cmb21/huffman/Frequency.hs ((62,7),(62,37)): >(p,n) : freqMerge xs ((q,m):ys)<
/home/cmb21/huffman/Frequency.hs ((64,7),(64,36)): >(q,m) : freqMerge ((p,n):xs) ys<
2 occurrences.

/home/cmb21/huffman/CodeTable.hs ((39,14),(39,31)): >showTreeIndent 0 t<
/home/cmb21/huffman/CodeTable.hs ((48,5),(48,26)): >showTreeIndent (m+4) t1<
2 occurrences.

/home/cmb21/huffman/MakeTree.hs ((53,37),(53,47)): >insTree t ts<
/home/cmb21/huffman/MakeTree.hs ((60,5),(60,26)): >insTree (pair t1 t2) ts<

245

APPENDIX D. CLONE REPORT FOR HUFFMAN CODING 246

2 occurrences.

/home/cmb21/huffman/Coding.hs ((51,15),(51,28)): >decodeByt tr rest<
/home/cmb21/huffman/Coding.hs ((45,11),(45,24)): >decodeByt t1 rest<
/home/cmb21/huffman/Coding.hs ((48,11),(48,24)): >decodeByt t2 rest<
/home/cmb21/huffman/Frequency.hs ((35,9),(36,38)): >merge (mergeSort merge first)

(mergeSort merge second)<
4 occurrences.

/home/cmb21/huffman/CodeTable.hs ((25,27),(25,32)): >(c,cd)<
/home/cmb21/huffman/Frequency.hs ((23,16),(23,21)): >(ch,1)<
2 occurrences.

/home/cmb21/huffman/Coding.hs ((27,5),(27,11)): >(ch==c)<
/home/cmb21/huffman/Frequency.hs ((50,5),(50,10)): >(p==q)<
2 occurrences.

/home/cmb21/huffman/CodeTable.hs ((27,4),(27,25)): >(convert (cd++[L]) t1)<
/home/cmb21/huffman/CodeTable.hs ((27,30),(27,51)): >(convert (cd++[R]) t2)<
2 occurrences.

Appendix E

Clone Report for MainNew within
nhc

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((554,30),(554,40)):
>foreigns++newforeigns<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((287,24),(287,73)):
>"Actual imports used by this module ("++modname++"):"<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((294,40),(296,59)):
>"Couldn’t write interface file "

++ sTypeFile flags ++ ":"
++ show ioerror ++ "\n"<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((587,23),(587,58)):
>"Intermediate need after import "++fname<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((589,24),(589,67)):
>"Intermediate symbol table after import "++fname<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((591,25),(591,68)):
>"Intermediate rename table after import "++fname<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((599,20),(599,50)):
>strIS state v ++ "{"++show v++"}"<
7 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((578,15),(578,72)):
>mixLine (map show (listAT (getRenameTableIS importState)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((592,9),(592,66)):
>mixLine (map show (listAT (getRenameTableIS importState)))<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((576,15),(576,72)):
>mixLine (map show (listAT (getSymbolTableIS importState)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((590,9),(590,66)):
>mixLine (map show (listAT (getSymbolTableIS importState)))<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((191,10),(191,59)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((218,11),(218,60)):

247

APPENDIX E. CLONE REPORT FOR MAINNEW WITHIN NHC 248

>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((232,13),(232,62)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((280,11),(280,60)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((312,12),(312,61)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((333,12),(333,61)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((344,12),(344,61)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((372,7),(372,56)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((390,7),(390,56)):
>mixLine (map show (listAT (getSymbolTable state)))<
9 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((412,35),(412,56)):
>return (eslabs,escode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((428,13),(428,35)):
>return (eslabs, escode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((553,19),(553,40)):
>return (eslabs,escode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((413,21),(417,28)):
>return (foldr (\a b-> gcodeGather Labels state b a)

(emitWord Labels "42" eslabs) zcons
,foldr (\a b-> gcodeGather Code state b a)

(emitWord Code "42" escode) zcons
)<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((543,17),(544,62)):
>return (gcodeGather Labels state eslabs gcode

,gcodeGather Code state escode gcode)<
5 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((359,14),(359,42)):
>return (stgArity state decls)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((378,14),(378,42)):
>return (stgArity state decls)<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((574,15),(574,57)):
>show (listM (thd3 (getNeedIS importState)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((588,9),(588,51)):
>show (listM (thd3 (getNeedIS importState)))<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((98,25),(98,33)):
>pF True errmsg<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((328,7),(328,15)):
>pF True "Warning pattern removal"<

APPENDIX E. CLONE REPORT FOR MAINNEW WITHIN NHC 249

2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((262,3),(262,19)):
>pF (sScc flags) "Declarations after scc:"<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((264,3),(264,19)):
>pF (sScc flags) "Class/instances after scc:"<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((475,12),(475,27)):
>hPutStr handle "\n#include <haskell2c.h>\n#include <HsFFI.h>\n"<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((419,20),(421,57)):
>hPutStr handle (gcodeHeader

(foldr (\ a b -> foldr (gcodeDump state) b a)
"\n" zcons))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((476,24),(476,55)):
>hPutStr handle (strForeign f "")<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((464,17),(465,49)):
>hPutStr handle (foldr (\a b -> foldr (gcodeDump state) b a)

"\n" gcode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((546,26),(546,76)):
>hPutStr handle (foldr (gcodeDump state) "\n" gcode)<
5 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((458,18),(458,59)):
>mapM_ (hPutStr handle) (emit Code escode’)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((457,18),(457,61)):
>mapM_ (hPutStr handle) (emit Labels eslabs’)<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((514,31),(514,58)):
>concatMap (strGcode state) gcode<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((520,42),(520,69)):
>concatMap (strGcode state) gcode<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((525,42),(525,69)):
>concatMap (strGcode state) gcode<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((530,40),(530,67)):
>concatMap (strGcode state) gcode<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((535,42),(535,69)):
>concatMap (strGcode state) gcode<
5 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((331,12),(331,38)):
>strPCode (strISInt state) decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((342,12),(342,38)):
>strPCode (strISInt state) decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((353,7),(353,33)):
>strPCode (strISInt state) decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((370,7),(370,33)):
>strPCode (strISInt state) decls<

APPENDIX E. CLONE REPORT FOR MAINNEW WITHIN NHC 250

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((388,48),(388,74)):
>strPCode (strISInt state) decls<
5 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((157,16),(157,63)):
>catchError info ("In file: "++sSourceFile flags)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((579,3),(579,37)):
>catchError (getErrIS importState) "Errors after importing module"<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((131,16),(132,58)):
>catchError (parseit parseProg lexdata)

("In file: "++sSourceFile flags)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((213,15),(214,26)):
>catchError (derive tidFun state derived decls)

"Deriving failed"<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((185,11),(187,22)):
>catchError (rename flags modid qualFun expFun inf decls

importState overlap)
"Errors when renaming"<

5 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((442,15),(442,35)):
>generateCode handle flags<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((554,3),(554,23)):
>generateCode handle flags<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((360,3),(361,38)):
>pF (sArity flags) "Declarations after first arity grouping"

(strPCode (strISInt state) decls)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((379,3),(380,38)):
>pF (sArity flags) "Declarations after second arity grouping"

(strPCode (strISInt state) decls)<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((446,3),(447,51)):
>pF (sGcodeRel flags) "G Code (rel)"

(concatMap (strGcodeRel state) (concat gcode))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((539,3),(539,75)):
>pF (sGcodeRel flags) "G Code (rel)" (concatMap (strGcodeRel state) gcode)<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((192,3),(192,58)):
>catchError (getErrorsIS state) "Errors after renaming" mixLine<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((233,3),(233,63)):
>catchError (getErrorsIS state) "Errors after extract phase" mixLine<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((247,3),(247,65)):
>catchError (getErrorsIS state) "Errors after removing fields" mixLine<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((281,3),(281,73)):
>catchError (getErrorsIS state) "Errors after type inference/checking" mixLine<

APPENDIX E. CLONE REPORT FOR MAINNEW WITHIN NHC 251

4 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((165,18),(166,28)):
>nhcImport flags (addPreludeTupleInstances () (initIS need))

imports<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((593,3),(593,31)):
>nhcImport flags importState xs<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((455,36),(455,63)):
>gcodeGather Code state b a<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((454,36),(454,63)):
>gcodeGather Labels state b a<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((189,10),(189,47)):
>prettyPrintId flags state ppTopDecls decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((216,12),(216,49)):
>prettyPrintId flags state ppTopDecls decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((246,11),(246,48)):
>prettyPrintId flags state ppTopDecls decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((263,6),(263,43)):
>prettyPrintId flags state ppTopDecls decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((278,11),(278,48)):
>prettyPrintId flags state ppTopDecls decls<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((310,12),(310,66)):
>prettyPrintId flags state ppTopDecls (DeclsParse decls)<
6 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((402,34),(405,34)):
>hPutStr stderr ("Couldn’t open object file "

++ sObjectFile flags ++ ":"
++ show ioerror ++ "\n")

exit<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((423,34),(427,34)):
>hPutStr stderr

("Failed writing to object file "
++ sObjectFile flags ++ ":"
++ show ioerror ++ "\n")

exit<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((459,30),(463,30)):
>hPutStr stderr

("Failed writing code to object file "
++ sObjectFile flags ++ ":"
++ show ioerror ++ "\n")

exit<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((467,31),(471,31)):
>hPutStr stderr

("Failed appending tables to object file "
++ sObjectFile flags ++ ":" ++

APPENDIX E. CLONE REPORT FOR MAINNEW WITHIN NHC 252

show ioerror ++ "\n")
exit<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((548,40),(552,40)):
>hPutStr stderr

("Failed appending to object file "
++ sObjectFile flags ++ ":"
++ show ioerror ++ "\n")

exit<
5 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((328,41),(328,56)):
>(mixLine errors)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((288,10),(288,50)):
>(mixLine (reportFnImports modname state))<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((98,40),(98,56)):
>(showErrors errs)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((230,22),(230,42)):
>(extract decls state)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((445,19),(445,49)):
>(gcodeFixFinish state fixState)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((435,24),(435,49)):
>(gcodeFixInit state flags)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((524,21),(524,43)):
>(gcodeOpt1 state gcode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((534,21),(534,43)):
>(gcodeOpt2 state gcode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((149,20),(149,45)):
>(needProg flags parsedPrg)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((387,21),(387,41)):
>(posAtom state decls)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((292,9),(292,72)):
>(writeFile (sTypeFile flags) (buildInterface flags modid state))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((125,18),(125,70)):
>(map (\ (p,l,_,_) -> strPos p ++ ’:’:show l) lexdata)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((206,24),(206,52)):
>(ffiTrans decls tidFun state)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((308,19),(308,48)):
>(fixSyntax decls state tidFun)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((351,21),(351,59)):
>(freeVar (sKeepCase flags) decls state)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((529,21),(529,59)):
>(gcodeMem (sProfile flags) state gcode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((399,19),(399,57)):
>(gcodeZCon (sProfile flags) state zcon)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((120,22),(123,47)):
>(lexical (sUnderscore flags) (sSourceFile flags)

(if sUnlit flags
then unlit (sSourceFile flags) mainChar
else mainChar))<

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((368,21),(368,49)):

APPENDIX E. CLONE REPORT FOR MAINNEW WITHIN NHC 253

>(liftCode decls state tidFun)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((133,29),(133,73)):
>(prettyPrintTokenId flags ppModule parsedPrg)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((244,21),(244,52)):
>(removeDecls decls tidFun state)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((259,19),(259,48)):
>(rmClasses tidFun state decls)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((513,21),(513,58)):
>(stgGcode (sProfile flags) state decl)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((519,21),(519,57)):
>(gcodeFix flags state fixState gcode)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((265,5),(265,49)):
>(prettyPrintId flags state ppClassCodes code)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((340,21),(340,64)):
>(primCode primFlags True tidFun state decls)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((276,21),(276,70)):
>(typeTopDecls tidFun userDefault state code decls)<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((322,21),(325,63)):
>(caseTopLevel (if sPrelude flags

then "Prelude:"++ sSourceFile flags
else reverse (unpackPS (mrpsIS state)))
t2i code decls state tidFun)<

26 occurrences.

Appendix F

Clone Class Extract

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((578,15),(578,72)):
>mixLine (map show (listAT (getRenameTableIS importState)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((592,9),(592,66)):
>mixLine (map show (listAT (getRenameTableIS importState)))<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((576,15),(576,72)):
>mixLine (map show (listAT (getSymbolTableIS importState)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((590,9),(590,66)):
>mixLine (map show (listAT (getSymbolTableIS importState)))<
2 occurrences.

/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((191,10),(191,59)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((218,11),(218,60)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((232,13),(232,62)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((280,11),(280,60)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((312,12),(312,61)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((333,12),(333,61)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((344,12),(344,61)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((372,7),(372,56)):
>mixLine (map show (listAT (getSymbolTable state)))<
/home/cmb21/caseStudy/noHier/stage3/src/compiler98/MainNew.hs ((390,7),(390,56)):
>mixLine (map show (listAT (getSymbolTable state)))<
9 occurrences.

254

Appendix G

Folding As Patterns
Implementation

-- |

-- Module : RefacAsPatterns

-- Copyright : (c) Christopher Brown 2007

--

-- Maintainer : cmb21@kent.ac.uk

-- Stability : provisional

-- Portability : portable

--

-- This module contains a transformation for HaRe.

-- Convert all patterns into AS patterns and

-- change all reference to the pattern on the RHS to references

-- to the AS name.

--

module RefacAsPatterns where

import System.IO.Unsafe

import PrettyPrint

import RefacTypeSyn

import RefacLocUtils

import GHC (Session)

import Data.Char

import GHC.Unicode

import AbstractIO

import Maybe

import List

import RefacUtils

data Patt = Match HsMatchP | MyAlt HsAltP | MyDo HsStmtP | MyListComp HsExpP

deriving (Show)

refacAsPatterns args

= do let

fileName = args!!0

name = args!!1

beginRow = read (args!!2)::Int

beginCol = read (args!!3)::Int

endRow = read (args!!4)::Int

endCol = read (args!!5)::Int

AbstractIO.putStrLn "refacAsPatterns"

unless (isVarId name)

$ error "The new name is invalid!\n"

255

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 256

-- Parse the input file.

modInfo@(inscps, exps, mod, tokList) <- parseSourceFile fileName

-- there are two modes to this refactoring:

-- either one selects a pattern, or, one selects an expression (referring to a pattern).

let exp = locToExp (beginRow, beginCol) (endRow, endCol) tokList mod

case exp of

Exp (HsId (HsVar (PNT (PN (UnQual "unknown") (G (PlainModule "unknown")

"--" (N Nothing))) Value (N Nothing))))

-> do

let (pnt, pat, match) = findPattern tokList (beginRow, beginCol) (endRow, endCol) mod

((_,m), (newToks, newMod)) <- applyRefac (changePattern name pat match)

(Just (inscps, exps, mod, tokList)) fileName

unless (newMod /= mod) $ AbstractIO.putStrLn "Pattern does not occur on the rhs!"

writeRefactoredFiles False [((fileName, m), (newToks, newMod))]

AbstractIO.putStrLn "Completed.\n"

_

-> do

-- all we need is the expression and the pattern to which it is imitating...

let pat = getPat exp mod

((_,m), (newToks, newMod)) <- applyRefac (changePatternSimple name pat exp)

(Just (inscps, exps, mod, tokList)) fileName

writeRefactoredFiles False [((fileName, m), (newToks, newMod))]

AbstractIO.putStrLn "Completed.\n"

getPat exp t

= fromMaybe (error "No Pattern is associated with the highlighted expression!")

(applyTU (once_tdTU (failTU ‘adhocTU‘ worker)) t)

where

worker (p :: HsPatP)

| rewritePats p == exp = Just p

| otherwise = Nothing

convertPat :: String -> HsPatP -> HsPatP

convertPat _ (Pat (HsPAsPat n p)) = error "The selected pattern is already an as-pattern!"

convertPat _ (Pat (HsPId _)) = error "Cannot perform to-as-patterns on a simple variable!"

convertPat _ (Pat (HsPLit _ _)) = error "Cannot perform to-as-patterns on a constant value!"

convertPat name (Pat (HsPParen p)) = convertPat name p

convertPat name p = (Pat (HsPAsPat (nameToPNT name) p))

changePatternSimple name pat exp (_, _, t)

= do

inscopeNames <- hsVisibleNames exp t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

-- let newPats = checkPats name pat [p]

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat exp

newT <- update exp newExp t

newT2 <- update pat convertedPat newT

return newT2

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 257

changePattern name pat (Match match) (_, _,t)

= do

newDecl <- lookInMatches t name pat [match]

newT <- update match (newDecl !! 0) t

return newT

changePattern name pat (MyAlt alt) (_, _, t)

= do

newAlt <- lookInAlt t name pat alt

newT <- update alt newAlt t

return newT

changePattern name pat (MyDo inDo) (_,_, t)

= do

newDo <- lookInDo t name pat inDo

newT <- update inDo newDo t

return newT

changePattern name pat (MyListComp inList) (_,_,t)

= do

newList <- lookInList t name pat inList

newT <- update inList newList t

return newT

convertPatterns t name pat dec@(Dec (HsPatBind a b (HsBody e) ds))

= do

newExp <- checkExpr (Pat (HsPAsPat (nameToPNT name) pat)) e

return (Dec (HsPatBind a b (HsBody newExp) ds))

convertPatterns t name pat (Dec (HsFunBind loc matches))

=

do

rest <- lookInMatches t name pat matches

return (Dec (HsFunBind loc rest))

lookInMatches _ _ _ [] = return []

lookInMatches t name pat (match@(HsMatch s pnt (p:ps) (HsGuard g@((_,_,e):gs)) ds):ms)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat (p:ps)

let convertedPat = convertPat name pat

newGuard <- checkGuards convertedPat g

newDS <- mapM (convertPatterns t name pat) ds

rest <- lookInMatches t name pat ms

if newGuard == g && newDS == ds

then do

return (HsMatch s pnt (p:ps) (HsGuard g) ds : rest)

else do

return (HsMatch s pnt newPats (HsGuard newGuard) newDS : rest)

lookInMatches t name pat (match@(HsMatch s pnt (p:ps) (HsBody e) ds):ms)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat (p:ps)

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat e

newDS <- mapM (convertPatterns t name pat) ds

rest <- lookInMatches t name pat ms

if newExp == e && newDS == ds

then do

return (HsMatch s pnt (p:ps) (HsBody e) ds : rest)

else do

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 258

return (HsMatch s pnt newPats (HsBody newExp) newDS : rest)

lookInAlt t name pat (alt@(HsAlt s p (HsGuard g@((_,_,e):gs)) ds)::HsAltP)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat [p]

let convertedPat = convertPat name pat

newGuard <- checkGuards convertedPat g

newDS <- mapM (convertPatterns t name pat) ds

-- rest <- lookInMatches t name pat ms

if newGuard == g && newDS == ds

then do

return (HsAlt s p (HsGuard g) ds)

else do

return (HsAlt s (ghead "lookInAlt" newPats) (HsGuard newGuard) newDS)

lookInAlt t name pat (alt@(HsAlt s p (HsBody e) ds)::HsAltP)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat [p]

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat e

newDS <- mapM (convertPatterns t name pat) ds

-- rest <- lookInMatches t name pat ms

if newExp == e && newDS == ds

then do

return (HsAlt s p (HsBody e) ds)

else do

return (HsAlt s (ghead "lookInAlt" newPats) (HsBody newExp) newDS)

lookInDo t name pat (inDo@(HsGenerator s p e rest))

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat [p]

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat e

newDS <- lookInExps t name pat rest

-- rest <- lookInMatches t name pat ms

if newExp == e && newDS == rest

then do

return (HsGenerator s p e rest)

else do

return (HsGenerator s (ghead "lookInDo" newPats) newExp newDS)

lookInList t name pat (inList@(Exp (HsListComp d)))

= do

res <- lookInDo t name pat d

return (Exp (HsListComp res))

lookInExps t name pat (HsLast e)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat e

return (HsLast newExp)

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 259

lookInExps t name pat (HsGenerator s p e rest)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let newPats = checkPats name pat [p]

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat e

newDS <- lookInExps t name pat rest

-- rest <- lookInMatches t name pat ms

if newExp == e && newDS == rest

then do

return (HsGenerator s p e rest)

else do

return (HsGenerator s (ghead "lookInDo" newPats) newExp newDS)

lookInExps t name pat (HsQualifier e rest)

= do

inscopeNames <- hsVisibleNames e t

unless (not (name ‘elem‘ inscopeNames))

$ error ("the use of the name: " ++ name ++ " is already in scope!")

let convertedPat = convertPat name pat

newExp <- checkExpr convertedPat e

newDS <- lookInExps t name pat rest

return (HsQualifier newExp newDS)

lookInExps t name pat (HsLetStmt ds rest)

= do

let convertedPat = convertPat name pat

newRest <- lookInExps t name pat rest

newDS <- mapM (convertPatterns t name pat) ds

-- rest <- lookInMatches t name pat ms

if newDS == ds && rest == newRest

then do

return (HsLetStmt ds rest)

else do

return (HsLetStmt newDS newRest)

checkPats :: String -> HsPatP -> [HsPatP] -> [HsPatP]

checkPats _ _ [] = []

checkPats name pat (pat2@(Pat (HsPParen p)): ps)

| pat == pat2 = (Pat (HsPParen (Pat (HsPAsPat (nameToPNT name) p)))) : checkPats name pat ps

| otherwise = (Pat (HsPParen res)) : (checkPats name pat ps)

where

res = ghead "checkPats HsPParen res" $ checkPats name pat [p]

checkPats name pat (pat2@(Pat (HsPApp i ps)):pss)

| pat == pat2 = (Pat (HsPAsPat (nameToPNT name) pat2)) : checkPats name pat pss

| otherwise = (Pat (HsPApp i (checkPats name pat ps))) : checkPats name pat pss

checkPats name pat (pat2@(Pat (HsPTuple s ps)):pss)

| pat == pat2 = (Pat (HsPAsPat (nameToPNT name) pat2)) : checkPats name pat pss

| otherwise = (Pat (HsPTuple s (checkPats name pat ps))) : checkPats name pat pss

checkPats name pat (pat2@(Pat (HsPList s ps)) : pss)

| pat == pat2 = (Pat (HsPAsPat (nameToPNT name) pat2)) : checkPats name pat pss

| otherwise = (Pat (HsPList s (checkPats name pat ps))) : checkPats name pat pss

checkPats name pat ((Pat (HsPInfixApp p1 i p2)) : pss)

= (Pat (HsPInfixApp res1 i res2)) : checkPats name pat pss

where

res1 = ghead "checkPats HsPInFixApp res1" $ checkPats name pat [p1]

res2 = ghead "checkPats HsPInfixApp res2" $ checkPats name pat [p2]

checkPats name pat (p:ps)

| pat == p = (Pat (HsPAsPat (nameToPNT name) p)) : checkPats name pat ps

| otherwise = p : (checkPats name pat ps)

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 260

-- checkGuards [] g = return g

checkGuards _ [] = return []

checkGuards pat@(Pat (HsPAsPat s p)) ((s1, e1, e2):gs)

= do

-- rewrite the guard

newGuard <- rewriteExp s (rewritePats p) e1 pat

-- newGuard’ <- checkExpr ps newGuard

-- rewrite the RHS of the guard

rhs <- rewriteExp s (rewritePats p) e2 pat

-- rhs’ <- checkExpr ps rhs

rest <- checkGuards pat gs

return ((s1, newGuard, rhs):rest)

-- checkExpr :: [HsPatP] -> HsExpP -> m HsExpP

-- checkExpr [] e = return e

checkExpr pat@(Pat (HsPAsPat s p)) e

= do

newExp <- rewriteExp s (rewritePats p) e pat -- error $ show (rewritePats p)

-- newExp’ <- checkExpr ps newExp

return newExp

checkExpr _ e = return e

-- rewrite exp checks to see whether the given expression occurs within

-- the second exp. If it does, the expression is replaced with the name of the ’as’

-- pattern.

-- rewriteExp :: String -> HsExpP -> HsExpP -> HsExpP

rewriteExp name e1 e2 t

= applyTP (full_tdTP (idTP ‘adhocTP‘ (inExp e1))) e2

where

-- inExp :: HsExpP -> HsExpP -> HsExpP

inExp (Exp (HsParen e1)::HsExpP) (e2::HsExpP)

= do

-- error $ show e2

allDef <- allDefined e2 t

if (rmLocs e1) == (rmLocs e2) && (and allDef)

then do

return (nameToExp (pNTtoName name))

else do

return e2

inExp (e1::HsExpP) (e2::HsExpP)

| (rmLocs e1) == (rmLocs e2) = return (nameToExp (pNTtoName name))

| otherwise = return e2

allDefined e t

= applyTU (full_tdTU (constTU [] ‘adhocTU‘ inPNT)) e

where

inPNT (p@(PNT pname ty _)::PNT)

= return [findPN pname t]

rewritePats :: HsPatP -> HsExpP

rewritePats (pat1@(Pat (HsPRec x y)))

= Exp (HsRecConstr loc0 x (map sortField y))

where

sortField :: HsFieldI a HsPatP -> HsFieldI a HsExpP

sortField (HsField i e) = (HsField i (rewritePats e))

rewritePats (pat1@(Pat (HsPLit x y)))

= Exp (HsLit x y)

rewritePats (pat1@(Pat (HsPAsPat i p1)))

= Exp (HsAsPat i (rewritePats p1))

rewritePats (pat1@(Pat (HsPIrrPat p1)))

= Exp (HsIrrPat (rewritePats p1))

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 261

rewritePats (pat1@(Pat (HsPWildCard)))

= nameToExp "undefined"

rewritePats (pat1@(Pat (HsPApp i p1)))

= createFuncFromPat i (map rewritePats p1)

rewritePats (pat1@(Pat (HsPList _ p1)))

= Exp (HsList (map rewritePats p1))

rewritePats (pat1@(Pat (HsPTuple _ p1)))

= Exp (HsTuple (map rewritePats p1))

rewritePats (pat1@(Pat (HsPInfixApp p1 x p2)))

= Exp (HsInfixApp (rewritePats p1)

(HsCon x)

(rewritePats p2))

rewritePats (pat@(Pat (HsPParen p1)))

= Exp (HsParen (rewritePats p1))

rewritePats (pat1@(Pat (HsPId (HsVar (PNT (PN (UnQual (i:is)) a) b c)))))

| isUpper i = (Exp (HsId (HsCon (PNT (PN (UnQual (i:is)) a) b c))))

| otherwise = (Exp (HsId (HsVar (PNT (PN (UnQual (i:is)) a) b c))))

rewritePats (pat1@(Pat (HsPId (HsCon (PNT (PN (UnQual (i:is)) a) b c)))))

= (Exp (HsId (HsCon (PNT (PN (UnQual (i:is)) a) b c))))

-- rewritePats p = error $ show p

-- strip removes whitespace and ’\n’ from a given string

strip :: String -> String

strip [] = []

strip (’ ’:xs) = strip xs

strip (’\n’:xs) = strip xs

strip (x:xs) = x : strip xs

isInfixOf needle haystack = any (isPrefixOf needle) (tails haystack)

--check whether the cursor points to the beginning of the datatype declaration

--taken from RefacADT.hs

checkCursor :: String -> Int -> Int -> HsModuleP -> Either String HsDeclP

checkCursor fileName row col mod

= case locToTypeDecl of

Nothing -> Left ("Invalid cursor position. Please place cursor at the beginning of the definition!")

Just decl -> Right decl

where

locToTypeDecl = find (definesPNT (locToPNT fileName (row, col) mod)) (hsModDecls mod)

definesPNT pnt d@(Dec (HsPatBind loc p e ds))

= findPNT pnt d

definesPNT pnt d@(Dec (HsFunBind loc ms)) = findPNT pnt d

definesPNT pnt _ = False

{-|

Takes the position of the highlighted code and returns

the function name, the list of arguments, the expression that has been

highlighted by the user, and any where\/let clauses associated with the

function.

-}

{-findPattern :: Term t => [PosToken] -- ^ The token stream for the

-- file to be

-- refactored.

-> (Int, Int) -- ^ The beginning position of the highlighting.

-> (Int, Int) -- ^ The end position of the highlighting.

-> t -- ^ The abstract syntax tree.

-> (SrcLoc, PNT, FunctionPats, HsExpP, WhereDecls) -- ^ A tuple of,

-- (the function name, the list of arguments,

-- the expression highlighted, any where\/let clauses

APPENDIX G. FOLDING AS PATTERNS IMPLEMENTATION 262

-- associated with the function).

-}

findPattern toks beginPos endPos t

= fromMaybe (defaultPNT, defaultPat, error "Invalid pattern selected!")

(applyTU (once_tdTU (failTU ‘adhocTU‘ inMatch

‘adhocTU‘ inCase

‘adhocTU‘ inDo

‘adhocTU‘ inList)) t)

where

--The selected sub-expression is in the rhs of a match

inMatch (match@(HsMatch loc1 pnt pats rhs ds)::HsMatchP)

-- is the highlighted region selecting a pattern?

| inPat pats == Nothing = Nothing

| otherwise = do

let pat = fromJust (inPat pats)

Just (pnt, pat, Match match)

inCase (alt@(HsAlt s p rhs ds)::HsAltP)

| inPat [p] == Nothing = Nothing

| otherwise = do

let pat = fromJust (inPat [p])

Just (defaultPNT, pat, MyAlt alt)

inDo (inDo@(HsGenerator s p e rest)::HsStmtP)

| inPat [p] == Nothing = Nothing

| otherwise = do

let pat = fromJust (inPat [p])

Just (defaultPNT, pat, MyDo inDo)

inDo x = Nothing

inList (inlist@(Exp (HsListComp (HsGenerator s p e rest)))::HsExpP)

| inPat [p] == Nothing = Nothing

| otherwise = do

let pat = fromJust (inPat [p])

Just (defaultPNT, pat, MyListComp inlist)

inList x = Nothing

inPat :: [HsPatP] -> Maybe HsPatP

inPat [] = Nothing

inPat (p:ps)

= if p1 /= defaultPat

then Just p1

else inPat ps

where

p1 = locToLocalPat beginPos endPos toks p

Appendix H

Excerpts from the HaRe API

--

-- | Same as ‘hsVisiblePNs’ except that the returned identifiers are in String format.

-- | Implemented by Huiqing Li.

hsVisibleNames:: (Term t1, Term t2, FindEntity t1, MonadPlus m) => t1 -> t2 -> m [String]

hsVisibleNames e t =do d<-hsVisiblePNs e t

return ((nub.map pNtoName) d)

{- | The Update class, implemented by Huiqing Li and Christopher Brown-}

class (Term t, Term t1)=>Update t t1 where

-- | Update the occurrence of one syntax phrase in a given scope by another syntax phrase of the same type.

update::(MonadPlus m, MonadState (([PosToken],Bool),(Int,Int)) m)

=> t -- ^ The syntax phrase to be updated.

-> t -- ^ The new syntax phrase.

-> t1 -- ^ The contex where the old syntax phrase occurs.

-> m t1 -- ^ The result.

instance (Term t) =>Update RhsP t where

update oldRhs newRhs t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inRhs)) t

where

inRhs (r::RhsP)

| r == oldRhs && srcLocs r == srcLocs oldRhs

= do (newRhs’,_) <- updateToks oldRhs newRhs prettyprint

return newRhs’

inRhs r = mzero

instance (Term t) =>Update HsExpP t where

update oldExp newExp t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inExp)) t

where

inExp (e::HsExpP)

| e == oldExp && srcLocs e == srcLocs oldExp

= do (newExp’, _) <-updateToks oldExp newExp prettyprint

return newExp’

inExp e = mzero

instance (Term t) =>Update HsStmtP t where

update oldStmt newStmt t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inStmt)) t

where

inStmt (s::HsStmtP)

| s == oldStmt && srcLocs s == srcLocs oldStmt

= do (newStmt’, _) <-updateToks oldStmt newStmt prettyprint

263

APPENDIX H. EXCERPTS FROM THE HARE API 264

return newStmt’

inStmt s = mzero

instance (Term t) => Update HsAltP t where

update oldExp newExp t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inExp)) t

where

inExp (e::HsAltP)

| e == oldExp && srcLocs e == srcLocs oldExp

= do (newExp’, _) <-updateToks oldExp newExp prettyprint

return newExp’

inExp e = mzero

instance (Term t) =>Update PNT t where

update oldExp newExp t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inExp)) t

where

inExp (e::PNT)

| e == oldExp && srcLocs e == srcLocs oldExp

= do (newExp’,_) <- updateToks oldExp newExp prettyprint

return newExp’

inExp e = mzero

instance (Term t) =>Update HsMatchP t where

update oldExp newExp t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inExp)) t

where

inExp (e::HsMatchP)

| e == oldExp && srcLocs e == srcLocs oldExp

= do (newExp’,_) <- updateToks oldExp newExp prettyprint

return newExp’

inExp e = mzero

instance (Term t) =>Update HsPatP t where

update oldPat newPat t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inPat)) t

where

inPat (p::HsPatP)

| p == oldPat && srcLocs p == srcLocs oldPat

= do (newPat’, _) <- updateToks [oldPat] [newPat] (prettyprintPatList False)

return $ ghead "update" newPat’

inPat e = mzero

instance (Term t) =>Update [HsPatP] t where

update oldPat newPat t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inPat)) t

where

inPat (p::[HsPatP])

| sameOccurrence p oldPat

= do (newPat’, _) <- updateToks oldPat newPat (prettyprintPatList False)

return newPat’

inPat e = mzero

instance (Term t) =>Update [HsDeclP] t where

update oldDecl newDecl t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inDecl)) t

where

inDecl (d::[HsDeclP])

| sameOccurrence d oldDecl

= do

(newDecl’,_) <- updateToks oldDecl newDecl prettyprint

return newDecl’

inDecl e = mzero

instance (Term t) =>Update HsDeclP t where

APPENDIX H. EXCERPTS FROM THE HARE API 265

update oldDecl newDecl t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inDecl)) t

where

inDecl (d::HsDeclP)

| sameOccurrence d oldDecl

= do (newDecl’,_) <- updateToks oldDecl newDecl prettyprint

return newDecl’

inDecl e = mzero

instance (Term t) =>Update HsImportDeclP t where

update oldImpDecl newImpDecl t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inDecl)) t

where

inDecl (d::HsImportDeclP)

| sameOccurrence d oldImpDecl

=do (newImpDecl’, _) <-updateToks oldImpDecl newImpDecl prettyprint

return newImpDecl’

inDecl e = mzero

instance (Term t) => Update HsExportEntP t where

update oldEnt@(EntE s) newEnt@(EntE s1) t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inEnt)) t

where

inEnt (e::HsExportEntP)

| sameOccurrence e oldEnt

= do (s1’,_) <- updateToks s s1 prettyprint

return (EntE s1’)

inEnt e = mzero

instance (Term t) => Update HsTypeP t where

update oldType newType t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inType)) t

where

inType (t::HsTypeP)

| sameOccurrence t oldType

= do (newType’, _) <- updateToks oldType newType prettyprint

return newType’

inType t = mzero

instance (Term t) => Update HsConDeclP t where

update oldType newType t

= applyTP (once_tdTP (failTP ‘adhocTP‘ inType)) t

where

inType (t::HsConDeclP)

| sameOccurrence t oldType

= do (newType’, _) <- updateToks oldType newType prettyprint

return newType’

inType t = mzero

Appendix I

The Stages of the Expression
Processor

I.1 Stage 1 Parser

module Parser where
import Data.Char

data Expr = Literal Int | Bin Bin_Op Expr Expr
| LetExp String Expr Expr | Var String

deriving Show

data Bin_Op = Mul | Plus deriving Show

type Environment = [(String, Expr)]

addedMul = error "Added Mul Expr Expr to Expr"
addedBin = error "Added Bin Bin_Op Expr Expr to Expr"
addedLetExp = error "Added LetExp String Expr to Expr"

parseExpr :: String -> (Expr, String)
parseExpr (’ ’:xs) = parseExpr xs
parseExpr (’*’:xs) = parseBin Mul xs
parseExpr (’+’:xs) = parseBin Plus xs
parseExpr (x:xs)

| isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)
where
lit = parseInt xs
parseInt :: String -> String
parseInt [] = []
parseInt (x:xs) | isNumber x = x : parseInt xs

| otherwise = []
parseExpr (x:xs)

| isChar x = case var of

266

APPENDIX I. THE STAGES OF THE EXPRESSION PROCESSOR 267

"let" -> (LetExp (isName name) expr1 expr2, rest3)
x -> (Var var, remainder)
where
name = parseVar remainder
(expr1, rest2) = parseExpr (drop (length name) remainder)
(expr2, rest3) = parseExpr rest2

isName xs | xs /= "let" = xs
| otherwise = error "Parse Error"

remainder = (drop (length var) xs)
var = x: (parseVar xs)
parseVar :: String -> String
parseVar [] = []
parseVar (x:xs) | isChar x = x : parseVar xs

| otherwise = []
isChar :: Char -> Bool
isChar x = x ‘elem‘ [’a’..’z’]

parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)
where
(parse1, rest1) = parseExpr xs
(parse2, rest2) = parseExpr rest1

eval :: Environment -> Expr -> Int
eval env (Literal x) = x
eval env (Bin op e1 e2) = eval_op op (eval env e1) (eval env e2)
eval env (LetExp n e e_2) = eval (addEnv n e env) e_2
eval env (Var n) = eval env (lookUp n env)

eval_op :: (Num a) => Bin_Op -> (a -> a -> a)
eval_op p_1@(Mul) = (*)
eval_op p_1@(Plus) = (+)
eval_op _ = error "Undefined Operation"

addEnv :: String -> Expr -> Environment -> Environment
addEnv name expr env = (name, expr) : env

lookUp :: String -> Environment -> Expr
lookUp name [] = error ("Cannot find variable "

++ name ++ " within the list of variables defined.")
lookUp name ((var, expr):xs)

| name == var = expr
| otherwise = lookUp name xs

APPENDIX I. THE STAGES OF THE EXPRESSION PROCESSOR 268

I.2 Stage 6 Parser

module Parser where
import Data.Char

data Expr = Literal Int | Bin Bin_Op Expr Expr
| LetExp String Expr Expr | Var String
deriving Show

data Bin_Op = Mul | Plus deriving Show

type Environment = [(String, Expr)]

addedMul = error "Added Mul Expr Expr to Expr"
addedBin = error "Added Bin Bin_Op Expr Expr to Expr"
addedLetExp = error "Added LetExp String Expr to Expr"

parseExpr :: String -> (Expr, String)
parseExpr (’ ’:xs) = parseExpr xs
parseExpr (’*’:xs) = parseBin Mul xs
parseExpr (’+’:xs) = parseBin Plus xs
parseExpr (x:xs)
| isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

where
lit = parseInt xs
parseInt :: String -> String
parseInt [] = []
parseInt (x:xs) | isNumber x = x : parseInt xs

| otherwise = []
parseExpr (x:xs)
| isChar x = case var of

"let" -> (LetExp (isName name) expr1 expr2, rest3)
x -> (Var var, remainder)
where
name = parseVar remainder
(expr1, rest2) = parseExpr (drop (length name) remainder)
(expr2, rest3) = parseExpr rest2

isName xs | xs /= "let" = xs
| otherwise = error "Parse Error"

remainder = (drop (length var) xs)
var = x: (parseVar xs)
parseVar :: String -> String
parseVar [] = []
parseVar (x:xs) | isChar x = x : parseVar xs

| otherwise = []
isChar :: Char -> Bool

APPENDIX I. THE STAGES OF THE EXPRESSION PROCESSOR 269

isChar x = x ‘elem‘ [’a’..’z’]
parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)
where
(parse1, rest1) = parseExpr xs
(parse2, rest2) = parseExpr rest1

eval :: Environment -> Expr -> (String, Int)
eval env (Literal x) = (show x, x)
eval env (Bin op e1 e2) = ((fst (eval_op op)) ++ " "

++ (fst $ eval env e1) ++ " "
++ (fst $ eval env e2),
(snd $ eval_op op) (snd $ eval env e1)
(snd $ eval env e2))

where
eval_op :: (Num a) => Bin_Op -> (String, (a -> a -> a))
eval_op p_1@(Mul) = ("*", (*))
eval_op p_1@(Plus) = ("+",(+))
eval_op _ = error "Undefined Operation"

eval env (LetExp n e e_2) = ("let " ++ n ++ " = "
++ (fst $ eval env e) ++ " in "
++ (fst $ eval env e_2),
snd $ eval (addEnv n e env) e_2)

eval env (Var n) = (n, snd $ eval env (lookUp n env))

addEnv :: String -> Expr -> Environment -> Environment
addEnv name expr env = (name, expr) : env

lookUp :: String -> Environment -> Expr
lookUp name [] = error ("Cannot find variable " ++ name ++

" within the list of variables defined.")
lookUp name ((var, expr):xs)

| name == var = expr
| otherwise = lookUp name xs

I.3 Final Parser

module Parser where
import Data.Char

data Expr = Literal Int | Bin Bin_Op Expr Expr
| LetExp String Expr Expr | Var String
deriving Show

data Bin_Op = Mul | Plus deriving Show

APPENDIX I. THE STAGES OF THE EXPRESSION PROCESSOR 270

type Environment = [(String, Expr)]

addedMul = error "Added Mul Expr Expr to Expr"
addedBin = error "Added Bin Bin_Op Expr Expr to Expr"
addedLetExp = error "Added LetExp String Expr to Expr"

parseVar :: String -> String
parseVar [] = []
parseVar (x:xs) | isChar x = x : parseVar xs

| otherwise = []
isChar :: Char -> Bool
isChar x = x ‘elem‘ [’a’..’z’]

parseInt :: String -> String
parseInt [] = []
parseInt (x:xs) | isNumber x = x : parseInt xs

| otherwise = []

isName xs | xs /= "let" = xs
| otherwise = error "Parse Error"

parse :: String -> Expr
parse input = parseFst input

where
parseFst :: String -> Expr
parseFst (’ ’:xs) = parseFst xs
parseFst (’*’:xs) = parseBinFst Mul xs
parseFst (’+’:xs) = parseBinFst Plus xs
parseFst (x:xs)
| isNumber x = Literal (read (x:lit)::Int)

where
lit = parseInt xs

parseFst (x:xs)
| isChar x = case var of

"let" -> LetExp (isName name) expr1 expr2
x -> Var var
where
name = parseVar remainder
(expr1, rest2) = parseExpr (drop (length name) remainder)
expr2 = parseFst rest2

remainder = (drop (length var) xs)
var = x: (parseVar xs)

parseBinFst p_1 xs = Bin p_1 parse1 parse2
where
(parse1, rest1) = parseExpr xs

APPENDIX I. THE STAGES OF THE EXPRESSION PROCESSOR 271

parse2 = parseFst rest1

parseExpr :: String -> (Expr, String)
parseExpr (’ ’:xs) = parseExpr xs
parseExpr (’*’:xs) = parseBin Mul xs
parseExpr (’+’:xs) = parseBin Plus xs
parseExpr (x:xs)
| isNumber x = (Literal (read (x:lit)::Int), drop (length lit) xs)

where
lit = parseInt xs

parseExpr (x:xs)
| isChar x = case var of

"let" -> (LetExp (isName name) expr1 expr2, rest3)
x -> (Var var, remainder)
where
name = parseVar remainder
(expr1, rest2) = parseExpr (drop (length name) remainder)
(expr2, rest3) = parseExpr rest2
remainder = (drop (length var) xs)
var = x: (parseVar xs)

parseExpr xs = error "Parse Error!"

parseBin p_1 xs = (Bin p_1 parse1 parse2, rest2)
where
(parse1, rest1) = parseExpr xs
(parse2, rest2) = parseExpr rest1

eval :: Environment -> Expr -> (String, Int)
eval env (Literal x) = (show x, x)
eval env (Bin op e1 e2) = ((fst (eval_op op)) ++ " "

++ (fst $ eval env e1) ++ " "
++ (fst $ eval env e2),
(snd $ eval_op op) (snd $ eval env e1)
(snd $ eval env e2))

where
eval_op :: (Num a) => Bin_Op -> (String, (a -> a -> a))
eval_op p_1@(Mul) = ("*", (*))
eval_op p_1@(Plus) = ("+",(+))
eval_op _ = error "Undefined Operation"

eval env (LetExp n e e_2) = ("let " ++ n ++ " = "
++ (fst $ eval env e) ++ " in "
++ (fst $ eval env e_2),
snd $ eval (addEnv n e env) e_2)

eval env (Var n) = (n, snd $ eval env (lookUp n env))

APPENDIX I. THE STAGES OF THE EXPRESSION PROCESSOR 272

addEnv :: String -> Expr -> Environment -> Environment
addEnv name expr env = (name, expr) : env

lookUp :: String -> Environment -> Expr
lookUp name [] = error ("Cannot find variable " ++ name ++

" within the list of variables defined.")
lookUp name ((var, expr):xs)

| name == var = expr
| otherwise = lookUp name xs

References

[1] PacSoft. Programatica: Integrating Programming, Properties and Val-

idation. http://www.cse.ogi.edu/PacSoft/projects/programatica/,

2005.

[2] Andreas Abel. Type-based termination of generic programs. Science of

Computer Programming, 74(8):550–567, 2009. MPC’06 special issue.

[3] Miklós Ajtai and Yuri Gurevich. Datalog vs. first-order logic. Journal of

Computer Systems Science, 49(3):562–588, 1994.

[4] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-

current Programming in Erlang. Prentice-Hall, second edition, 1996.

[5] Roland Carl Backhouse and Paul F. Hoogendijk. Elements of a Relational

Theory of Datatypes. In Formal Program Development, volume 755 of Lec-

ture Notes in Computer Science, pages 7–42. Springer, 1993.

[6] B. S. Baker. On finding duplication and near-duplication in large software

systems. In WCRE ’95: Proceedings of the Second Working Conference on

273

REFERENCES 274

Reverse Engineering, page 86, Washington, DC, USA, 1995. IEEE Computer

Society.

[7] F.L. Bauer, H. Ehler, R. Horsch, B. Möller, H. Partsch, O. Paukner, and

P. Pepper. The Munich Project CIP. Vol. II: The Transformation System

CIP-S, LNCS 292, volume II. Springer Verlag, Berlin, Heidelberg, New

York, Berlin, 1987.

[8] Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch,

Franz Geiselbrechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd

Krieg-Brückner, Alfred Laut, Thomas Matzner, Bernhard Möller, Friederike

Nickl, Helmuth Partsch, Peter Pepper, Klaus Samelson, Martin Wirsing,

and Hans Wössner. The Munich Project CIP, Volume I: The Wide Spec-

trum Language CIP-L, volume 183 of Lecture Notes in Computer Science.

Springer, 1985.

[9] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and

Lorraine Bier. Clone detection using abstract syntax trees. In ICSM ’98:

Proceedings of the International Conference on Software Maintenance, page

368, Washington, DC, USA, 1998. IEEE Computer Society.

[10] Robert W. Bowdidge and William G. Griswold. Supporting the restructur-

ing of data abstractions through manipulation of a program visualization.

ACM Transactions on Software Engineering and Methodology, 7(2):109–157,

1998.

REFERENCES 275

[11] Jet Brains Inc. Intellij IDE - Java IDE With Refactoring Support.

http://www.jetbrains.com/idea/, 2009.

[12] Ivan Bratko. Prolog programming for artificial intelligence. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[13] Christopher Brown and Simon Thompson. Refactorings that Split and

Merge Programs. In Draft Proceedings of the 19th International Symposium

on Implementation and Application of Functional Languages, IFL, Septem-

ber 2007.

[14] R. M. Burstall and John Darlington. A Transformation System for Devel-

oping Recursive Programs. J. ACM, 24(1):44–67, 1977.

[15] Debra Cameron, James Elliott, and Marc Loy. Learning GNU Emacs.

O’Reilly, December 2004.

[16] R Carlsson. Erlang Syntax Tools. http://www.erlang.org/

doc/doc-5.4.12/lib/syntax tools-1.4.3/doc/html, 2007.

[17] Olaf Chitil. Source-Based Trace Exploration. In IFL, volume 3474 of Lecture

Notes in Computer Science, pages 126–141. Springer, 2004.

[18] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson R.

Engler. An Empirical Study of Operating Systems Errors. In SOSP ’01:

Proceedings of the eighteenth ACM symposium on Operating systems prin-

ciples, pages 73–88, New York, NY, USA, 2001. ACM.

REFERENCES 276

[19] M. Cinneide and P. Nixon. Composite Refactorings for Java Programs. Tech-

nical report, Department of Computer Science, University College Dublin,

2000.

[20] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random

testing of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

[21] The Haskell Committee. Haskell prime. http://hackage

.haskell.org/trac/haskell-prime/, 2008.

[22] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In

Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 238–252, Los Angeles,

California, 1977. ACM Press, New York, NY.

[23] Oege de Moor and Ganesh Sittampalam. Higher-order matching for program

transformation. Theoretical Computer Science, 269(1–2):135–162, 2001.

[24] TclTK Developer Community. Tcl/tk. http://www.tcl.tk/, 2005.

[25] Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A Formal Specifi-

cation of the Haskell 98 Module System. In Haskell ’02: Proceedings of the

2002 ACM SIGPLAN Workshop on Haskell, pages 17–28, New York, NY,

USA, 2002. ACM.

[26] The DrIFT Development Team. The DrIFT homepage. http://

repetae.net/computer/haskell/DrIFT/, 2003.

REFERENCES 277

[27] Michael Ellims, James Bridges, and Darrel Ince. The economics of unit

testing. Empirical Software Engineering, 11(1):5–31, March 2006.

[28] Eclipse Foundation. Eclipse - an Open Development Platform.

http://www.eclipse.org, 2009.

[29] Eclipse Foundation. Eclipse Java Development Tools. http://www.

eclipse.org/jdt/, 2009.

[30] NetBeans Foundation. Netbeans - an open-source ide. http://www.

netbeans.org, 2009.

[31] NetBeans Foundation. Netbeans - refactoring. http://refactoring

.netbeans.org/, 2009.

[32] Martin Fowler. Refactoring: improving the design of existing code. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[33] Martin Fowler. Refactoring Home Page. http://www.refactoring.com,

2008.

[34] Alejandra Garrido and Ralph Johnson. Challenges of Refactoring C Pro-

grams. In IWPSE ’02: Proceedings of the International Workshop on Prin-

ciples of Software Evolution, pages 6–14, New York, NY, USA, 2002. ACM.

[35] Alejandra Garrido and Ralph Johnson. Refactoring C with Conditional

Compilation. Automated Software Engineering, International Conference

on, 0:323, 2003.

REFERENCES 278

[36] Andy Gill. Introducing the Haskell Equational Reasoning Assistant. In

Proceedings of the 2006 ACM SIGPLAN Workshop on Haskell, pages 108–

109. ACM Press, 2006.

[37] Andy Gill. A Haskell Hosted DSL for Writing Transformation Systems.

Submitted to the IFIP Working Conference on Domain Specific Languages,

December 2008.

[38] Andy Gill and Graham Hutton. The Worker Wrapper Transformation.

Journal of Functional Programming, 2009.

[39] W. Guttmann, H. Partsch, W. Schulte, and T. Vullinghs. Tool Support

for the Interactive Derivation of Formally Correct Functional Programs.

Technical report, Universität Ulm Fakultät für Informatik, July 2002.

[40] Thomas Hallgren. Haskell Tools from the Programatica Project. In Haskell

’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages

103–106, New York, NY, USA, 2003. ACM Press.

[41] Matthew S. Hecht. Flow Analysis of Computer Programs. Elsevier Science

Inc., New York, NY, USA, 1977.

[42] Johannes Henkel and Amer Diwan. Catchup!: Capturing and Replaying

Refactorings to Support API Evolution. In ICSE ’05: Proceedings of the

27th international conference on Software engineering, pages 274–283, New

York, NY, USA, 2005. ACM.

REFERENCES 279

[43] Dean Herington. HUnit 1.0 Users Guide. http://hunit.source

forge.net, 2002.

[44] John H. Holland. Adaptation in natural and artificial systems. MIT Press,

Cambridge, MA, USA, 1992.

[45] Paul Hudak. Conception, Evolution, and Application of Functional Pro-

gramming Languages. ACM Computing Survey, 21(3):359–411, 1989.

[46] John Hughes. The design of a pretty-printing library. In Advanced Func-

tional Programming, volume 925 of Lecture Notes in Computer Science,

pages 53–96. Springer, 1995.

[47] Huiqing Li and Simon Thompson. Testing Erlang Refactorings with

QuickCheck. In Draft Proceedings of the 19th International Symposium

on Implementation and Application of Functional Languages, IFL 2007,

Freiburg, Germany, September 2007.

[48] Graham Hutton and Erik Meijer. Monadic parser combinators. Technical

Report NOTTCS-TR-96-4, 1996.

[49] Free Software Foundation INC. The C Preprocessor. http://gcc.

gnu.org/onlinedocs/cpp/, 2008.

[50] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.

Deckard: Scalable and accurate tree-based detection of code clones. In ICSE

’07: Proceedings of the 29th international conference on Software Engineer-

ing, pages 96–105, Washington, DC, USA, 2007. IEEE Computer Society.

REFERENCES 280

[51] J. Howard Johnson. Identifying Redundancy in Source Code Using Finger-

prints. In CASCON ’93: Proceedings of the 1993 conference of the Centre

for Advanced Studies on Collaborative research, pages 171–183. IBM Press,

1993.

[52] Thomas Johnsson. Lambda lifting: Transforming programs to recursive

equations. pages 190–203. Springer-Verlag, 1985.

[53] Simon L. Peyton Jones and Ralf Lämmel. Scrap Your Boilerplate. In

APLAS, volume 2895 of Lecture Notes in Computer Science, page 357.

Springer, 2003.

[54] Frederick P. Brooks Jr. The mythical man-month: After 20 years. IEEE

Software, 12(5):57–60, 1995.

[55] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. Ccfinder: a mul-

tilinguistic token-based code clone detection system for large scale source

code. IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

[56] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,

and William G. Griswold. An Overview of AspectJ. In ECOOP, volume

2072 of Lecture Notes in Computer Science, pages 327–353. Springer, 2001.

[57] Günter Kniesel and Helge Koch. Static composition of refactorings. Sci.

Comput. Program., 52(1-3):9–51, 2004.

[58] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal

algebras. In Computational Problems in Abstract Algebra, pages 263–297,

REFERENCES 281

Oxford, 1970. Pergamon Press. Proceedings of a Conference held at Ox-

ford under the auspices of the Science Research Council Atlas Computer

Laboratory, 1967.

[59] Raghavan Komondoor and Susan Horwitz. Tool Demonstration: Finding

Duplicated Code Using Program Dependences. In ESOP, volume 2028 of

Lecture Notes in Computer Science, pages 383–386. Springer, 2001.

[60] W. Korman and W. Griswold. Elbereth: Tool Support for Refactoring Java

Programs. Master’s thesis, University of California, San Diego Department

of Computer Science and Engineering, May 1998.

[61] Tamás Kozsik, Zoltán Csörnyei, Zoltán Horváth, Roland Király, Róbert

Kitlei, László Lövei, Tamás Nagy, Melinda Tóth, and Anikó Vı́g. Use cases

for refactoring in erlang. In CEFP, volume 5161 of Lecture Notes in Com-

puter Science, pages 250–285. Springer, 2007.

[62] Ralf Lämmel and Simon Peyton Jones. Scrap More Boilerplate: reflection,

zips, and generalised casts. In Proceedings of the ACM SIGPLAN Interna-

tional Conference on Functional Programming (ICFP 2004), pages 244–255.

ACM Press, 2004.

[63] Ralf Lämmel, Simon Thompson, and Markus Kaiser. Programming errors

in traversal programs over structured data. In 8th Workshop on Language

Description, Tools and Applications, ENTCS. Springer, April 2008.

[64] Ralf Lämmel and Joost Visser. Typed combinators for generic traversal. In

REFERENCES 282

PADL, volume 2257 of Lecture Notes in Computer Science, pages 137–154.

Springer, 2002.

[65] Ralf Lämmel and Joost Visser. A Strafunski Application Letter. In Proc.

of Practical Aspects of Declarative Programming (PADL’03), volume 2562

of LNCS, pages 357–375. Springer-Verlag, January 2003.

[66] Peter J. Landin. The next 700 programming languages. Commun. ACM,

9(3):157–166, 1966.

[67] Huiqing Li. Refactoring Haskell Programs. PhD thesis, Computing Labora-

tory, University of Kent, Canterbury, Kent, UK, September 2006.

[68] Huiqing Li, Claus Reinke, and Simon Thompson. Tool Support for Refac-

toring Functional Programs. In ACM SIGPLAN 2003 Haskell Workshop,

pages 27–38. Association for Computing Machinery, August 2003.

[69] Huiqing Li and Simon Thompson. A Comparative Study of Refactor-

ing Haskell and Erlang Programs. In Sixth IEEE International Workshop

on Source Code Analysis and Manipulation (SCAM 2006), pages 197–206.

IEEE, September 2006.

[70] Huiqing Li and Simon Thompson. Clone Detection and Removal for Er-

lang/OTP within a Refactoring Environment. In PEPM, pages 169–178.

ACM, 2009.

[71] Huiqing Li, Simon Thompson, and Claus Reinke. The Haskell Refactorer:

REFERENCES 283

HaRe, and its API. In Proceedings of the 5th workshop on Language De-

scriptions, Tools and Applications (LDTA 2005), April 2005. Published as

Volume 141, Number 4 of Electronic Notes in Theoretical Computer Science.

[72] Zhenmin Li, Shan Lu, and Suvda Myagmar. Cp-Miner: Finding Copy-Paste

and Related Bugs in Large-Scale Software Code. IEEE Trans. Softw. Eng.,

32(3):176–192, 2006. Member-Yuanyuan Zhou.

[73] Jesse Liberty. Learning C#. O’Reilly & Associates, Inc., Sebastopol, CA,

USA, 2002.

[74] Chamond Liu. Smalltalk, objects, and design. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1996.

[75] Simon Marlow. Hatchet: A Type Checking and Inference Tool for Haskell

98. http://www.cs.mu.oz.au/ bjpop/code.html, 2007.

[76] Simon Marlow. Haddock: A Haskell Documentation Tool. http://

www.haskell.org/haddock/, 2008.

[77] Simon Marlow and Simon Peyton Jones. The Glasgow Haskell Compiler.

http://www.haskell.org/ghc/, 2009.

[78] Conor McBride. Epigram: Practical programming with dependent types.

In Advanced Functional Programming, pages 130–170, 2005.

REFERENCES 284

[79] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising Behaviour Pre-

serving Program Transformations. In ICGT, volume 2505 of Lecture Notes

in Computer Science, pages 286–301. Springer, 2002.

[80] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Trans.

Softw. Eng., 30(2):126–139, 2004.

[81] Sun Microsystems. MySQL. http://www.mysql.com/, 2008.

[82] Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Def-

inition of Standard ML - Revised. The MIT Press, May 1997.

[83] Ivan Moore. Automatic Inheritance Hierarchy Restructuring and Method

Refactoring. In OOPSLA, pages 235–250, 1996.

[84] Alan Mycroft. The Theory and Practice of Transforming Call-by-need into

Call-by-value. In Symposium on Programming, volume 83 of Lecture Notes

in Computer Science, pages 269–281. Springer, 1980.

[85] Claudio Ochoa, Josep Silva, and Germán Vidal. Dynamic slicing based on

redex trails. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN sym-

posium on Partial evaluation and semantics-based program manipulation,

pages 123–134, New York, NY, USA, 2004. ACM Press.

[86] William F. Opdyke. Refactoring object-oriented frameworks. PhD thesis,

Champaign, IL, USA, 1992.

[87] Steve Oualine. Vim (Vi Improved). Sams, April 2001.

REFERENCES 285

[88] H. Partsch and R. Steinbruggen. Program Transformation Systems. ACM

Comput. Surv., 15(3):199–236, 1983.

[89] Helmut A. Partsch. Specification and transformation of programs: a formal

approach to software development. Springer-Verlag New York, Inc., New

York, NY, USA, 1990.

[90] Alberto Pettorossi. A Powerful Strategy for Deriving Efficient Programs

by Transformation. In LFP ’84: Proceedings of the 1984 ACM Symposium

on LISP and functional programming, pages 273–281, New York, NY, USA,

1984. ACM.

[91] Simon Peyton Jones. A Pretty Printing Library in Haskell, Version 3.0.

1997. http://research.microsoft.com/Users/simonpj/downloads/

prettyprinter/pretty.html .

[92] Simon Peyton Jones and Kevin Hammond. Haskell 98 Language and Li-

braries, the Revised Report. Cambridge University Press, December 2003.

[93] Simon Peyton Jones and John Hughes. Haskell 98: A Non-

strict, Purely Functional Language. Technical report, February 1999.

http://haskell.org/onlinereport/.

[94] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class

citizens in a non-strict functional language. In Proceedings of the 5th ACM

conference on Functional programming languages and computer architecture,

pages 636–666, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

REFERENCES 286

[95] The Refactor-fp Group. The Haskell Editing Survey. http://www.cs.

kent.ac.uk/projects/refactor-fp/surveys/haskell-editors-July-

2002.txt, 2004.

[96] The Refactor-fp Group. Refactoring Functional Programs. http://

www.cs.kent.ac.uk/projects/refactor-fp, 2008.

[97] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for

Smalltalk. Theor. Pract. Object Syst., 3(4):253–263, 1997.

[98] Donald Roberts. Practical Analysis for Refactoring. Technical report,

Champaign, IL, USA, 1999.

[99] N. Rodrigues and L. Barbosa. Component identification through program

slicing. In In Proc. of Formal Aspects of Component Software (FACS 2005).

Elsevier ENTCS, pages 291–304. Elsevier, 2005.

[100] Niklas Röjemo. Highlights from nhc—a space-efficient haskell compiler. In

FPCA ’95: Proceedings of the seventh international conference on Func-

tional programming languages and computer architecture, pages 282–292,

New York, NY, USA, 1995. ACM.

[101] C.H. Roy and R. Cordy. A survey on software clone detection research.

Technical report, School of Computing, Queen’s University at Kingston,

Canada, 2007.

REFERENCES 287

[102] Chris Ryder and Simon Thompson. Porting HaRe to the GHC API. Tech-

nical Report 8-05, Computing Laboratory, University of Kent, Canterbury,

Kent, UK, October 2005.

[103] Tim Sheard. Generic Unification via Two-level Types and Parameterized

Modules. volume 36, pages 86–97, New York, NY, USA, 2001. ACM.

[104] Josep Silva and Olaf Chitil. Combining algorithmic debugging and program

slicing. In PPDP ’06: Proceedings of the 8th ACM SIGPLAN symposium

on Principles and practice of declarative programming, pages 157–166, New

York, NY, USA, 2006. ACM Press.

[105] Harald Sondergaard and Peter Sestoft. Referential transparency, definiteness

and unfoldability. Acta Inf., 27(6):505–517, 1990.

[106] Akihiko Takano and Erik Meijer. Shortcut Deforestation in Calculational

Form. In FPCA ’95: Proceedings of the seventh international conference on

Functional programming languages and computer architecture, pages 306–

313, New York, NY, USA, 1995. ACM.

[107] Simon Thompson. Higher-order + Polymorphic = Reusable. Technical

report, University of Kent, Canterbury, Kent, UK, May 1997.

[108] Simon Thompson. Haskell: The Craft of Functional Programming. Addison-

Wesley, 2 edition, 1999.

[109] F. Tip. A survey of program slicing techniques. Report CS-R9438, Centrum

voor Wiskunde en Informatica (CWI), Amsterdam, 1994.

REFERENCES 288

[110] Frank Tip, Adam Kiezun, and Dirk Bäumer. Refactoring for generalization

using type constraints. SIGPLAN Not., 38(11):13–26, 2003.

[111] Lance Tokuda and Don S. Batory. Evolving object-oriented designs with

refactorings. In Automated Software Engineering, pages 174–, 1999.

[112] Mark Anders Tullsen. Path, a program transformation system for Haskell.

PhD thesis, Computer Science, Yale University, New Haven, CT, USA, 2002.

Director-Paul Hudak.

[113] David Ungar and Randall B. Smith. Self: the power of simplicity. In

Proceedings of OOPSLA, 1987.

[114] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. Jungl: a scripting

language for refactoring. In ICSE’06: Proceedings of the 28th International

Conference on Software Engineering, pages 172–181, New York, NY, USA,

2006. ACM Press.

[115] E Visser. Stratego: Strategies for Program Transformation. Technical re-

port, Universiteit Utrecht, 2003.

[116] Eelco Visser. HsOpt: An Optimizer for the Helium Com-

piler. Technical report, Universiteit Utrecht, 2003. http://www.

stratego-language.org/twiki/bin/view/Stratego/HsOpt.

[117] Eelco Visser. Hsx: A Framework for Haskell Transformation. Techni-

cal report, Universiteit Utrecht, 2003. http://www.statego-language.

org/twiki/bin/view/Stratego/HSX.

REFERENCES 289

[118] Martin Ward and Keith Bennett. Formal methods to aid the evolution

of software. International Journal of Software Engineering and Knowledge

Engineering, 5(1):25–47, 1995.

[119] M. Weiser. Program slicing. In Proceedings of the 5th International Con-

ference on Software Engineering, pages 439–449. IEEE Computer Society

Press, 1981.

[120] Mark David Weiser. Program slices: formal, psychological, and practical

investigations of an automatic program abstraction method. PhD thesis,

University of Michigan, Ann Arbor, MI, USA, 1979.

