
C o m p u t i n g L a b o r a t o r y

Functional Programming
Functional programs are distinctive in emphasising values
rather than variables, and in making functions first-class
data. Modern functional languages also offer fine control
over side-effects.

Haskell and Erlang
Functional languages differ considerably. Haskell is strongly
typed, evaluated lazily, and has layout-sensitive syntax.
Erlang is weakly typed, strict and layout-insensitive.

Haskell has a de jure standard, Haskell 98, and a de facto
standard implementation, Glasgow Haskell. Open-Source
Erlang has a controlled series of system releases.

Functional refactorings
Some refactorings have OO equivalents, e.g. generalisation

Generalise printList over
the print operation; this is
wrapped in a fun, containing
the side-effect.

Others address functional / concurrent aspects: e,g, convert
asynchronous to synchronous communications.
.

The tools - HaRe (Haskell) and Wrangler (Erlang) - include
structural, naming, data type and module refactorings.

Refactoring Functional Programs
Experience of building refactoring tools for Haskell and Erlang

We have built tools for refactoring programs written in
the functional languages Haskell and Erlang.

We report on the experience of tool building, contrast
the two tools, and these tools with their OO equivalents.

HaRe refactorer
embedded in
the gvim editor

Experience report
Cover the complete language of the standard … including
as much of the macro mechanism and pre-processor as
possible. De facto standards more relevant than de jure.

Integrate with IDEs, and make sure these are those used in
practice. If they are editors (emacs, gvim) also work with
tools: makefiles and test frameworks.

Preserve program appearance: layout and comments
crucial. Pretty printers do not always do this … and even a
ten line program can become unrecognisable.

Refactoring = Transformation + Condition: in practice it is
much more difficult to implement the condition (e.g. preserve
binding structure) than transform (e.g substitute names).

A refactoring will have many variants: e.g. operate on one /
all / some occurrences when generalising. How to present
these alternatives to the user?

Compensate or fail? If a condition fails, should the system
compensate for this and perform the refactoring, or fail, and
expect the user to make the compensation explicitly?

Infrastructure is needed to support the analysis … use
existing systems whenever possible.

User-defined refactorings: what is the right language?
Should it be an API, or a domain-specific language?

Implementing a refactoring system which will be used by
the practising programmer requires it to meet a variety of
non-functional usability constraints as well as presenting
choices and variants to the user.

Simon Thompson www.cs.kent.ac.uk/~sjt/
HaRe www.cs.kent.ac.uk/projects/refactor-fp/
Wrangler www.cs.kent.ac.uk/projects/forse/wrangler/doc/

-export([printList/1]).

printList([H|T]) ->
 io:format("~p\n",[H]),

 printList(T);
printList([]) -> true.

printList([1,2,3])

-export([printList/2]).

printList(F,[H|T]) ->
 F(H),

 printList(F, T);
printList(F,[]) -> true.

printList(

 fun(H) ->
 io:format("~p\n", [H])

 end,
 [1,2,3]).

pid! {self(),msg}

{Parent,msg} ->

 body

pid! {self(),msg},
receive {pid, ok}-> ok

{Parent,msg} ->

 Parent! {self(),ok},
 body

