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Abstract. Refactoring is the process of redesigning existing code without chang-
ing its functionality. Refactoring has recently come to prominence in the OO
community. In this paper we explore the prospects for refactoring functional
programs.

Our paper centres on the case study of refactoring a 400 line Haskell program
written by one of our students. The case study illustrates the type and variety
of program manipulations involved in refactoring. Similarly to other program
transformations, refactorings are based on program equivalences, and thus ulti-
mately on language semantics. In the context of functional languages, refactor-
ings can be based on existing theory and program analyses. However, the use of
program transformations for program restructuring emphasises a different kind
of transformation from the more traditional derivation or optimisation: char-
acteristically, they often require wholesale changes to a collection of modules,
and although they are best controlled by programmers, their application may
require nontrivial semantic analyses.

The paper also explores the background to refactoring, provides a taxonomy
for describing refactorings and draws some conclusions about refactoring for
functional programs.

1. Introduction

Refactoring is ‘improving the design of existing code’ and as such, it has been practised
as long as programs have been written. Its key characteristic is the focus on structural
changes, strictly separated from changes in functionality.

In his 1978 (!) ACM Turing Award Lecture [5], Robert Floyd argued that serious
programmers should spend part of their working day examining and refining their own
methods: “After solving a challenging problem, | solve it again from scratch, retracing
only theinsight of the earlier solution. | repeat this until the solution is as clear and
direct as | can hope for. Then I look for a general rule for attacking similar problems,
thatwould have led me to approach the given problem in the most efficient way the first
time.”. Identifying “paradigms of programming” in this way — and developing support for
such paradigms — would improve programmer abilities, computer science teaching and
learning, and language designs.

In practice, industrial software development projects will not be restarted from
scratch when they have already reached their prime objective. Nevertheless, the idea of
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continuous design improvements finally became attractive and feasible because: (a) the
increasing pressure of maintaining the design quality of long-living “legacy software” in
spite of large numbers of modifications, and (b) the realisation that the necessary redesign
could be achieved in an incremental fashion, by emplopiogram transformations

Adapting program transformations originating in derivational (or transforma-
tional) program developmerit![3, 4] for languages with side-effects, Griswold introduced
the idea of automated program restructuring to aid software maintenance [7, 8]. The tech-
niques were extended to cover object-oriented language features, and have recently come
to prominence in the OO and extreme programming (XP) communitiés [6, 11] under the
name ofrefactoring(http://www.refactoring.com ).

Given that functional program transformations were investigated very early on, it
is somewhat surprising to see this particular use of program transformations almost ex-
clusively limited to OO languages. Functional programmers might quip that the problems
of inflexible program structures are more pressing in OO languages, triggering the need
for complex program manipulation techniques to compensate for shortcomings in the lan-
guages. OO programmers might retort that functional programs are largely academic in
nature and rarely reach the necessary complexity or longevity to expose this kind of prob-
lems. These positions are not obviously wrong or right, and we have started to investigate
refactoring in functional languages, both to answer this kind of question and to make
refactoring techniques and tools available to functional programmers.

The aims of the present paper are fourfold. We start by giving an introduction to
refactoring in general. Secondly, we introduce and investigate the concepts of functional
refactoring in the context of a small case study, refactoring a 400 line student program.
Thirdly, we present some preliminary conclusions and outline our approach towards im-
proving support for refactoring in functional languages. Finally, we give a brief overview
of the progress of our project thus far, as described in substantial detail in our|paper [10].

2. Refactoring

Refactorings are source-to-source program transformations that change program structure
and organisation, but not program functionality. They are the source-level realisation of
software re-design. Typically, they either precede changes of program functionality, by
adapting program structure for the intended changes, or they follow changes of program
functionality, cleaning up the structure of programs after a series of modifications. In
either case, changes in program structure and functionality are kept separate: the first are
complex, but should preserve functionality, so they need not introduce any bugs, whereas
the second do change functionality, making it more difficult to identify potential bugs
introduced in the process, but they can be kept free of structural complexities (by suitable
refactorings).

When does refactoring arise? To take an example, we might first program a sys-
tem using an algebraic data type, and then decide to change the way that the data are
represented. How should we proceed with this? One option is to modiiyatae type
directly, that is to achieve the modification in a single step: this will require us to make
substantial modifications to a program’s functionadityd structure simultaneously.

On the other hand, we might do the same in two stages. First we could transform
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the algebraic data type into an abstract data type (ADT), and only afterefaistoring

is done, would we modify the definition of the ADT. This two-stage transformation aims

to separate the structural changes (from algebraic to abstract data type) from the changes
in functionality. It also makes the program more amenable to further change, as ADT
representations can be modified with no cost to the data type user.

We refactor in other situations too. We might program ireaploratoryway: first
establishing the functionality we seek, and then refactoring into a more elegant form. Our
experience leads us to suspect that functional languages are particularly suited to this form
of programming, because their clean semantic basis makes wholesale transformations
more feasible than for a language in the C family, say.

Finally, we might refactor tainderstandcode written by someone else, and this
is the focus of the case study later in the paper, where we try to understand a non-trivial
student assessment written in Haskell.

3. The Nature of Refactoring

One of the simplest refactorings renames a function to reflect its use. We have already
discussed the rather more complex refactoring from an algebraic to an abstract data type.
These examples share two important characteristics of refactorings.

Diffuse Their effect is diffuse, in that they require changes throughout a module and
indeed throughout a system of modules. A change of function name needs to be
effected at each function call; a change fromtada type to an ADT will require
changes to all functions that directly manipulate the data by pattern matching, for
instance.

Bidirectional A change from a general name (e.d.) to a more specific one (e.g.

findMaxVolume ) might later be followed by a change to a more general name
(e.g.findMax ).
We have discussed the change from an algebraic data type to an ADT, but in other
situations it is perfectly reasonable to change an ADT into an algebraic type. One
motivation might be to use pattern matching, which leads to very concise programs
in an equational style.

4. Supporting Refactoring

We have seen that refactorings have a bureaucratic aspect: changes have to be made at
all sites that a function is called, for example. With current technology we would use

a text editor to assist in making the changes, and rely on a type checker to catch any
errors introduced in the refactoring. OO refactorers underline the importance of continual
(re)testing of code to ensure correctnéss [1].

It is important to document refactorings. Fowler’s catalogue of OO refactorings
[6] explains the general ideas, opportunities and traps. More importantly, it provides OO
refactorers with guidelines on how practical refactoring tasks can be achieved by series of
smaller refactorings, and it documents the mechanics of individual refactorings, helping
refactorers to ensure that they have taken all relevant aspects and potential problems into
account.



Moreover, it is entirely feasible to support these refactorings in a varietyod$
of increasing levels of sophistication; the experience of the OO community [16] in this
respect is broadly positive. A tool could allow users to do and undo refactorings of various
sorts; it could also check the applicability of certain transformations, such as renaming
or lifting. To enable complete rollback of partially executed refactorings if any of their
component steps fails, support for transactions is needed; to ensure that refactorings are
completed and that refactorers do not lose sight of their original goals, automatically
maintained todo-lists would be helpful.

For a functional programming language one could use reasoning to establish the
correctness of many classes of refactorings. One class of refactorings corresponds to the
rules in an operational semantics and thus these refactorings will be correct by definition.
In the absence of a formal semantics for Haskell one can gain substantial assurance from
the intuitive semantics of the language. In practice, refactorings will be larger, but one way
of validating these is to see them as composed of many smaller, validated refactorings.

Many refactorings have non-trivial syntactic, typing or static semantic precondi-
tions; one can expect tool support to play a role here. On the other hand, some larger-scale
refactorings rely upon the maintenance of complex whole-program invariants, and in the
absence of full theorem-proving support one must rely upon a combination of program-
mer intuition and extensive testing to validate instances of these refactorings.

5. A case study

The ideas in this paper stand or fall by how useful they prove to be in practice: to explore
this we now look at an illustrative example of refactoring. The particular example refac-
tors a Haskell program designed to implement semantic tableaux for propositional logic,
written by a second year undergraduate student at the University of Kent. The aim of the
refactoring here is twofold.

e Refactoring helps the refactorerwaderstandhe program by transforming it in-
crementally into a program which conforms to their idiomatic style rather than the
original programmer’s.

e Refactoring is used tgimplify the program and to make it more amenable to
change: in this case by extending it to deal with predicate logic, say.

5.1. Semantic Tableaux

A semantic tableau for a formula of propositional logic gives a systematic mechanism for
finding a valuation which makes the formula true. The tableau systematically decomposes
formulae according to their syntax.

In the case of implication, for instance, to satisfy the formul@ = ) it is
necessary fop to be true and) to be false: that is, bothh and—¢> must be satisfied. In
the example tableau in Figuré 1, stages 1 and 2 show this. On the other hand, to satisfy
¢ = 1 there are two alternatives: it is sufficient to satisfy eitheror ¢); hence the
branch in the tableau given by decomposing formula 3.

The branches of the tableau represent possible ways of satisfying the formula at
the top. Not all of them need be consistent, and indeed if none is then the formula at the



—((A=C)=( (AVB)=C)) 1 -> 2,3
(A=C) 3 -=> 6,7
— ((AVB) =C) 2 -> 4,5
(AVB) -> 8,9
—|C\
—A 6,7
A B 8,9
. ]

Figure 1. Semantic Tableau Example

top is unsatisfiable (and so its negation is valid). In Figure 1 the leftmost and rightmost
branches are inconsistent (as indicateapigut the middle branchy)) indicates that the
formula is satisfiable iA andC are false and is true.

5.2. The original program in a nutshell

The initial program is written in a concrete, first-order style. Thus, propositions are rep-
resented by an algebraic type, branches are given by lists of propositions and tableaux
by lists of lists. Functions are defined using explicit recursion, and few library functions
are useddnd is an exception); one function definition uses a list comprehension. The
program is a literate script that is 402 lines long, including comments.

The core of any tableau algorithm is an iteration in which rules are applied succes-
sively until no expandable formulas remain. There is a wide choice of implementations:
the program in question applies a single rule to each branch at each step. Moreover, the
rules are applied in a specified order, which is described in the program loy grfor
each branch under consideration this value is calculated and then passed to the iteration
function to indicate the rule to be applied.

The full sequence of refactorings is availablétp://www.cs.kent.ac.
uk/projects/refactor-fp/ ; it is instructive to compare different versions using
the vdiff tool: further details of this can be founchdtp://www.cs.kent.ac.uk/
development/kst/descriptions/vdift.htmi

5.3. The refactoring sequence

The example was refactored in a series of steps, which we list now in exactly the form
that they were performed. Upon reflection they might have been performed differently, or
in a different order. Discussion of this and other observations follow in the next section.
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Stage 1

The program uses lists of Propositiond?fop , an algebraic data type — to represent
branches, and the tableau itself is represented by a list of lists. At this stage the two types
are named:

type Branch = [Prop]
type Tableau = [Branch]

The purpose of this is twofold: it makes the script easier to read, avoiding potential con-
fusion betweeriProp] and[[Prop]] ; more significantly it is a first step in making it
possible to change the representation of branches and tableaux.

Stage 2

A number of functions are renamed to reflect their purpose better. For instance,
removeBranch is renamedemoveDuplicateBranches andremove becomes
removeDuplicatesInBranches ; the former function removes duplicate branches
and the latter removes duplicate propositianthin branches.

Stage 3

The file is transformed from a literate script — in which program text is explicitly flagged —
into a standard script where comments are indicated explicitly. This is done because trivial
errors were being introduced on the erroneous assumption that the file was a standard
script.

Stage 4

In the original system almost all functions over lists are defined using explicit recursion.
At this stage a number of these are replaced by calls to appropriate higher-order functions
from the prelude or libraries. For instance,

displayBranch :: Branch -> String
displayBranch [] = []
displayBranch (x:xs) = (show x) ++ "\n"
++ displayBranch xs
is replaced by
displayBranch = concat . map (++"\n") . map show
This refactoring makes the program more abstract: pattern matching over a concrete type
is replaced by calls to functions likmap whose analogues might appear in the interface
of any collection type.

Stage 5

Not all functions can immediately be replaced by calls to library functions. An example is
removeDuplicateProps of type Branch -> Branch  which removes duplicate



propositions from a branch. It uses the auxiliary function

findProp :: Prop -> Branch -> Prop
findProp z [] = FALSE
findProp z (x:xs)

| z == x = X

| otherwise = findProp z xs

to check whether a propositior,(say) is contained in a branch or not: if it is, thens
returned,; if not, the propositioRALSE s the result.

How is this function used within the calling function
removeDuplicateProps ? Its result is tested against in a guard: x ==
findProp x xs ,sofindProp is effectively only used to return a Boolean value in-
dicating whether or not is an element oks . Thus it is possible to redefif@dProp
to return aBool :

findProp :: Prop -> Branch -> Bool
findProp z [] = False
findProp z (x:xs)

| z == x = True

| otherwise = findProp z xs

and to replace the guard by the expresgindProp Xx Xs

This redefinition is correct only in certain circumstances.

¢ We make theclosed worldassumption that we know all the calling sites of the
function, and can modify them. findProp  were in the interface of a module
then a type change like this would be problematic.

e It is assumed that will never be the propositioffrALSE, as otherwise the be-
haviour of the old and new definitions will be different. Such an invariant might,
for example, be justified by reference to the original specification of the problem,
or could perhaps be inferred from the behaviour of the remainder of the program.

Stage 5.1

It is now clear thatfindProp is simply a redefinition ofelem; similarly,

the function removeDuplicateProps should be an instance afub. These
refactorings are also made to the function which removes duplicate branches,
removeDuplicateBranches , Since it is defined in an analogous way.

Stage 5.2

However, testing the result of this second replacement reveals a problem. With the stan-
dard definition ohub duplicate branches (with their elements ordered differently) appear
in the test result. The reason for this is that the program uses an alternative definition of
nub that selects th&ast occurrences of duplicated elements rather than first occurrences
as doeswub. The variant definitionpubVar , is added to the file.



At this stage, it becomes apparent that the program is sensitive to the data repre-
sentation and control flow in a way that could not be expected from the problem specifi-
cation.

Stage 6

The definition ofnubVar is moved into a separate module, which is then imported into
the program itself.

Stage 7

This is a housekeeping stage.

e More functions are renamed, includif@gp andbar (really?!).

e The function looseEmptyLists , which removes empty lists from a
Tableau , is identified as an instance blter and then its single call is in-
lined.

e An auxiliary function is moved into ehere clause.

This tidies up the script for the next major stage.

Stage 8

There are nine different tableau rules for classical propositional logic: two rules for each
of the binary connectives, one each for the un-negated and negated case; there is also a
rule to eliminate double negations. The implementation defines three functions for each
rule. For instance:

splitNotNot :: Branch -> Tableau
splitNotNot ps = combine (removeNotNot ps)
(solveNotNot ps)

removeNotNot :: Branch -> Branch
removeNotNot [] = []

removeNotNot (NOT (NOT  )):ps) = ps
removeNotNot (p:ps) = p : removeNotNot ps

solveNotNot :: Branch -> Tableau
solveNotNot [] = [[]]

solveNotNot (NOT (NOT p)): ) = [Ipl]
solveNotNot (  _:ps) = solveNotNot ps

This design is undesirable for various reasons: a substantial amount of code is repeated
(e.g. the definition of theplit  functions), and it also makes it difficult to modify the
code, by adding, for instance, the rules for a new connective.

The goal of this stage of refactoring is to produce three functphis , remove
andsolve which work for all connectives. The refactoring performed here somewhat



modifies the algorithm: other less radical refactorings would avoid that. In the original
system, the rules are applied in a fixed order of priority; in the new version within each
branch the first decomposable proposition is identified and the corresponding rule is ap-
plied to it. The effect of this is to compute the same results, but in a different order. It is

a matter of debate whether this should be seen as a refactoring, or goes beyond what is
legitimate. We discuss this further in Sectjgn 6.

How does the redefinition proceed? Examining the code above, it is clear that
split  should be defined toombine the results osolve andremove . A general
solve is defined by selecting from each of tBelveXXX functions the line which
embodies the rule (as emphasisedatveNotNot  above) and making this one of the
cases in the general function. The geneeahove function deletes the first decompos-
able element from the branch.

Stage 8.1

The redefinition of the control flow of the algorithm changes the behaviour of the tableau
mechanism. The algorithm produces duplicate branches (with different orderings) and
to avoid thismap sort is added to the top-level composition of functions to sort each
branch (using the derived order &mnop ), prior to duplicate removal.

Stage 9

Many of the difficulties in the earlier refactorings have come from the use of lists (and
lists of lists) to represent branches and tableaux. At this stage the type representations
were modified to

type Branch = Set Prop
type Tableau = Set Branch

Function definitions have then to be modified. This is helped by earlier stages (especially
4,5,7,8) which have replaced many explicit pattern matches over lists by calls to combi-
nations of library functions. These calls can be replaced by the corresponding functions
over an implementation of sets.

The function controlling rule application uses a primitive recursion, and a corre-
sponding function

primRecSet :: (a -> Set a -> b -> b)
> b ->Seta->b

needs to be added to tiset library. Of course, one needs to apply such fold-like func-
tions with care: to ensure a sensible result they must only be applied to functions that are
commutative, associative and idempotent.

Aspects of the algorithms work element-by-element, and at some points in the
code, theflatten  function is used to transform a set into a list gnidk is used to
select an element from the set.



Stage 9.1

The overall effect of this refactoring is a drastic simplification. There is no need to include
functions which reorder lists, or remove duplicates from them, since the equa$igt of

Is order-insensitive and sets do not contain repetitions. It is therefore much easier to see
the essence of the algorithm rather than to have it entangled with functionality designed
to maintain implicit invariants on data representations.

Further stages

The refactoring int@et suggests further steps. It would be possible to remove references
to flatten andpick if at each stageall possible rules are applied to a branch, rather
than applying them one at a time.

6. Lessons learned

In this section, we reflect on our experience of refactoring the tableau program. We begin
by making some specific observations and then draw some more general conclusions.

e The granularity of the different stages is quite different: some are simple, others
complex. In particular, Stage 5 comprises a number of separate steps. Whilst
these steps could have been presented as separate refactorings, they represent —
from point of view of the user — one logical step in the transformation of the
program.

e The order of refactorings is somewhat arbitrary: in retrospect it would have made
more sense to move from literates to standardhs scripts at the start of the
refactoring process.

¢ In the actual refactoring sequence, an error was introduced at stage 4, and only
discovered at stage 5. This raises a number of issues.

— Just because a change is type correct, it doesn’t mean that it is completely
correct. We shouldn’t therefore rely only on type checking to validate
steps, but also perform tests on completion of each stage.

— On the other hand, type checking is really very useful: it is completely
automatic and has almost no cost to the programmer in comparison with
testing.

Beyond these points, which are specific to the example, one can draw some more
general conclusions about the refactoring process.

e Refactoring is an exploratory process. As you refactor you discover more about
the program. At the first stage you have a general idea about what is going on in
the program, by forming an abstract model of the system. As you refactor you
discover that features of the program that you had initially overlooked — subtle
details of control flow or data representation, say — are in fact central to the pro-
gram’s behaviour. This allows you to build a more accurate model of the system
as refactoring proceeds.



e One can take the modelling insight further: the abstract model can become a goal
for the refactoring sequence. In the case study it became clear that the list rep-
resentation of tableaux was problematic, but a more abstract view of the system
again became valid after the final refactoring which replaced lists by sets through-
out, and thus removed the program’s explicit dependence on lower-level represen-
tation aspects.

e One might strengthen the point about exploration to say that it is almost impossible
to understand a program passively, and that refactoring — like walkthroughs and
code reviews — provides a deeper insight into the workings of a program than can
a mere reading or execution.

e The case study also brings to our attention the question of what properties of the
system are to be preserved. A hard-line view of refactoring would suggest that
one should preserve every property, but in fact a weaker equivalence might be
permissible. The refactoring sequence presented here takes this higher-level view,
but we have also done an alternative sequence that does not assume knowledge
about invariants and has to keep closer to the original algorithm.

The problem is well known to those working with legacy systems. In integrating a
legacy system with other systems it is important to preserve only those properties
that are essential to its behaviour, and to neglect those which are merely accidental:
those which are an artifact of a previous implementation discipline. Unfortunately,
these differences are often undocumented, and some users of the system may have
started to rely on accidental properties.

More formally, a weaker equivalence might preserve observational behaviour only
over restricted subsets of inputs. In turn, such inputs might themselves be charac-
terised as those which have a certain invariant property, such as being balanced or
search trees, rather than abritrary binary trees. Crucially any such weaker equiva-
lence is dependent upon thentextin which the program or program fragment is
used.

¢ Inany non-trivial refactoring sequence, we need to have version control: providing
undo, revert, redo and so on. Indeed, one model would build a list of transforma-
tions by analogy with a list of tactics in an LCF-style theorem prover like Isabelle
[13].

The advantage of tactics is that they are more abstract than specific syntactic trans-
formations, and so stand more of a chance of being reusable. Such tactics can also
provide a basis for user-defined refactorings.

e Machine support for refactoring is highly desirable. In the case study we were
able to use the search/replace and undo/redo functions of an editor as well as the
type checking provided by a Haskell system. However, the editor’s textual search
and replace had to be used with care. It is easy to envisage support for some of
the refactorings, such as renamings, and indeed function redefinitions, by more
semantics- and refactoring-aware tools and it is also possible to see this being
integrated with editors and type checkers. Other refactorings provide more of a
challenge: for example when replacing lists with sets the program goes through a
long period of being in an inconsistent state, where some functions operate over
converted data and others not.

A final observation from the experience of the case study, and indeed from prior OO
experience: it is crucial to document refactorings in detail, so that they can be (re-)used



with confidence, both by their author and others. This we turn to in the next section.

7. Documenting Refactorings

Our first draft catalogue of functional refactorings employed a simple format, giving for
each refactoring a number, a descriptive name, code examples for both sides of the refac-
toring, with comments on the pros and cons of the two variants. Any other potentially
useful information went into a free-text comment for the refactoring as a whole. The sole
purpose of the catalogue was to serve as printed documentation.

This format turned out to be insuffient, both from a maintenance point of view,
as we expect the catalogue to evolve continuously, and as a basis for theory and tool de-
velopment, forcing us to reconsider the format before the development of the catalogue
could continue. The new format is more fine-grained and aims to separate information
according to expected uses. For instance, conditions for the applicability of refactorings
will later need to be formalised to prove that refactorings are functionality preserving (and
in what sense); these condition will also serve as the basis for program analyses in refac-
toring tools. Keeping such information separate from the optional free-form comments
forces them to be documented.

Figure[2 gives an example refactoring in the new format. Names of refactorings
have evolved intalescriptive phraseswhich are also the main form of references to
refactorings. Numbers have been dropped completely, where necessloyt aameor
label is used for internal references. Exampleseftthand codeandright-hand code
together withcommentn their pros and cons are still used, catering for the role of a
refactoring catalogue in the documentation of program design patterns.

New sections include a section oross-referencedoth internal, to related refac-
torings in our catalogue, and external, e.g., to related refactorings in Fowler’s catalogue.
Next, the refactoring is classified as eitlpeimitive or ascomposeaf other refactorings,
and furtherclassifiersn the form of keywords allow foflexible categorisationef refac-
torings (e.g., type-level or language-level refactorings). Language dependencies will be
documented either by explicit references to applicable languages (Haskell, ML, etc.) or
by listing of the language features involved (lazy/strict, type classes, functors, ...). Note
that refactorings may introduce or eliminate specific language features, so that language
dependencies may differ for both sides of a refactoring.

Crucial for the development of theory and tool support is the documentation of
pre-, post- and side-conditionwhich determine the applicability of refactorings and the
kind of program equivalengareserved. Currently, these sections guide human refactorers
around pitfalls and alert them of potential problems. Later, they will serve as the starting
point both for proofs of such equivalences and for program analyses and program trans-
formations in refactoring tools. The description will also need to include clerical details
such asversion information date of addition to the catalogue, etc. which are probably
best left to a version management tool.

The purpose of the catalogue has thus begun to shift from simple textual doc-
umentation towards a knowledge base from which, e.g., the primitive, Haskell-specific
refactorings can be extracted more easily, and from which several forms of documenta-
tion can be derived, including hyperlinked PDF documents. The main focus will still be



Lifting definition / Demoting definition

fxy=..(hxyz..
hxyz=..
Lifting definition —=

Lifting h to the top-level makes it accessible to the other
functions in the module containirfg, and prepares for ex-
port of h from that module. Enables reuse of auxiliary defi-
nitions.

Pre-Conditions
h is not already defined in outer scope (if necessaryRese

namingfirst); h does not depend on definitions or parameters
local tof (if necessary, us€lose Definitiorfirst).

Cleanup/Follow-Ons

Examples
An example is wher acts as a wrapper fdr, computing

the parameters fdr from its own parameters, bbtmay be
sensibly called with other wrapper functions, or on its own.

Potential Problems

In the special case df not having any parameters, the demoted form leads to re-evaluation, whereas the lifted form leads to earlier

fxy=..(hxyz ..
where
hxyz=..
== Demoting definition

Demotingh to a local definition block clears up the names-
pace (of the module containirfgandh, and of the whole
system). Useful for auxiliary definitions that are only used
in a single context.

Pre-Conditions

h is not used elsewhere in outer scope.

Cleanup/Follow-Ons

In a more local scope, it is often possible to choose a more
concise name for the auxiliary definitiolRénaming, or

to gain implicit access to local definitions and parameters
(Open Definitio.

Examples

An example is wheré takes extra parameters, ands sim-

ply a wrapper forh that supplies the initial values of these
parameters. A concrete example is given by a search func-
tion which takes a list of already-visited nodes as arguments;
at the top level this will be called with an empty list. An-
other justificication is in creatingircular data structures: a
where -definedh such ash = x:h will create a circular
representation of the infinite list of, for each call of .

evaluation in strict languages and to a potential space leak in lazy languages. In languages with implicit export (e.gxpampty
list in Haskell), the potential for scoping conflicts affecting lifting or demoting is aggravated.

Comments

Lifting and demoting of definitions is also possible between adjacent levels of nested definition blocks, but too deeply nested definition

blocks tend to reduce program readability.

Primitive/Composed

This is a primitive refactoring.

Classification

Classifiers: language-level, scope-related.
Language features involved: local definitiotet ( or where ).

References

Cf. Fowler'sMove Field/MethodPush Down Field/MethqdPull Up Field/Method Together withClose DefinitionLifting definition
is often applied as part of-lifting [B], and has subtle interactions with the treatment of polymorphic recurision [18].

Figure 2: An example entry from the catalogue of refactorings



on human readability, but the refined taxonomy prepares for the more formal specification
of refactorings that will be necessary for building functional refactoring tools.

8. Related work

There is a long history of program transformation for functional programs, with early
work in the field being described in [12]. Representative of this is the program derivation
work of Burstall and Darlingtori |3], whose transformations work over source-level pro-
grams to build more efficient versions of algorithms for sequential or parallel machines.
In the extreme case, a hon-executable specification is transformed into an executable pro-
gram. Later work in this vein is exemplified by the relational approach of Bird and de
Moor [2].

Program transformations are also used automatically within compilers, acting ei-
ther on source level programs or their intermediate language representations: an example
of this approach is discussed In [14].

Refactoring is different from both program derivation and optimisation. These
‘vertical’ transformations tend to be localised in addressing a program’s control or data
flow. The kind of program structure considered for refactoring is often non-localised and
related to the overall program design and knowledge representation, i.e., to large-scale
declarative aspects rather than smaller-scale operational ones.

OO refactoring was first addressed by Griswold [7, 8] and Opdyke [11]. An ap-
proachable exposition of refactoring in OO together with a catalogue of refactorings is
given by Fowler in[[6]. The catalogue is kept up to datsvatw.refactoring.com ,
which also has links to tools and other resources. The most widely-known tool for OO
refactoring is the Refactoring Browser for Smalltalk [16], but tools for other OO lan-
guages are under development.

9. Project progress so far

Our paper![10], written in conjunction with our colleague Huiging Li, outlines in detail
the progress that we have made in implementing a Haskell Refactoring Tool in Haskell.

Our aim in building the tool was to support refactoring for working Haskell pro-
grammers, and it was therefore imperative to fit the tool into the environment(s) of choice
for existing Haskell programmers, namely Emacs and Vim. Our tool integrates with both
of these editors, and presents users with a menu of refactorings whose point of application
Is indicated by cursor position.

The refactorings currently implemented are: renaming a definition or variable; du-
plicating a definition; deleting a definition; promoting or demoting a definition to a larger
(resp. smaller) scope; adding or removing an argument to a function definition; generalis-
ing a definition (by abstracting over a particular sub-expression); inlining a definition and
introducing a (constant) definition.

The tool is implemented in Haskell, and leverages existing work from the Haskell
community. We currently use the parser and type checker written by the Programatica
[15] project team; this enables the tool to be syntax-, (static) semantics- and type-aware.
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In particular, the tool supports checking of the (many) pre-conditions on the applications
of even elementary refactorings. Thus the tool has the potential to preserve program
correctness.

Much of the code needed to traverse and transform the Haskell data types that
represent Haskell programs is routine ‘boilerplate’ code, which it is tedious and error-
prone to write by hand. The Strafunski library [17] allows us to avoid these pitfalls, and
to write the code that implements the refactorings in a high-level, comprehensible way.

Refactorings are source level program transformations. It is therefore crucial that
our transformations preserve as much as possible dbtheof the Haskell programs as
well as the content of the programs. We therefore have to preserve layout and comments,
and this requires substantial effort in preserving and transforming source code location
and comment information inside the Haskell abstract syntax trees. We report on the details
of this in [10].

10. Conclusions and Future Work

In this paper we have shown how the ideas of refactoring, which have in the last few years
become prominent in the OO community, are equally important in functional program-
ming. Indeed, the ‘code then revise’ style of programming is perhaps the approach most
naturally adopted by many functional programmers.

The paper used the case study in Sedtion 5 to illustrate the idea of refactoring in a
functional context, and Sectiph 6 drew a number of both specific and general conclusions
from this which we do not reiterate here. Secfibn 7 discussed the documentation of refac-
torings, and it is instructive to observe that the example of lifting/demotion given there
shows how even the simplest of refactorings can have subtle constraints on its application.

Our work to date has concentrated on building refactoring support for Haskell; our
next steps include revising and extending the draft catalogue [19] and extending our tool
to support a wider range of refactorings — particularly those which address data types —
and the refactoring process, including versioning, undo/redo support and the compaosition
of refactorings.
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