Obfuscating Set Representations

Stephen Drape
Oxford University Computing Laboratory

with thanks to Jeff Sanders

What is obfuscation?

Obfuscation is a program transformation:

= Used to make a program "harder to
understand”

= Try to make reverse engineering harder
= Must preserve functionality
= Concerns about efficiency

Why is obfuscation needed?

Obfuscation is usually applied to
such as Java and C#.

When compiling these languages, an
Intermediate representation Is produced.

It IS possible to recover the original code
from this representation — obfuscation can
make this process harder.

Fresh Approach

Instead of obfuscating an imperative
program, we consider obfuscating
operations of a data-type — we can then
exploit properties of that data-type (see
later!).

We model the data-types and the
operations in Haskell.

Deriving and Proving

We want to obfuscate some set
operations.

Using functional programs, we can:
= Derive obfuscations

= Easily establish proofs of correctness

Both of these are difficult to do In
Imperative languages.

List splitting

Adapt "array splitting" — consider a particular
example "alternating split"

Write xs ~ (l,r), to denote xsis split into two
lists | and r — xsis data refined by (I,r),

[5,7,5,4,3,1,1] ~([5,5,3,1], [7,4,1]),

Invariant: |r| < || <|r]+1

Splitting Function

split([]) = (LD
split([p) = {pLI D,
split(pgxs) = (p:l,qr),

where (I, r), = split(xs

unsplit (L.[D. =[]
unsplit {pl.[D. = [p]
unsplit (p:l,q:r), =

p: g: unsplit({l,r),)

Derivations

split . op = sp op .
TS op op (zs)
Data
split split
Refinement
{I,r) PP op op ()
Sp_op = split . op

op

unsplit . sp op .

split

unspl it

split

List operations

p: (L, r).=<(p:r, 1),

(os Tatt l1:)4
lo|==]rg)

otherwise

ott Iy, Fg+t),

=
=

ott T Mo+t 1),

. and ++ distribute over spl i t

Unordered Lists without Duplicates

menber p xs = or(map (==p) X9

Insert p xs =1f nenber p xs then xs

el se p: xs

delete p xs = ys++ (I f null zs
t hen zs
el se tail z9)
where (ys, z5) = span (/=p) Xs

10

Deriving Delete

Deriving the delete operation for split lists
delete, p = split.delete p.unsplit

Let I =[lg ly,ees by ligsoead] T =110, Fppeenly]
and xs~ (l,r),

We have three cases
(&) pUl
(b)pOr

©)plOd,r),

11

Case (a) (pOI) 1

Suppose that |, = p

Let (ly,lz) =span (/=p) |
= ([Tgseees Bials [hs gy e s 1)

(ry,y2) =splitAt |ly| r
= ([Fos Fsenes Mgl [Fjoeees T])

12

Case (a) (pOI) 2

del ete, pd,r),
= {derivation equation}
split(delete p(unsplit d,r).))
={definition of unspl i1t}
split(delete p[lgroly,...])
={definition of del et e, |, =p}

SPli t ([lgy Foees Tial 4+ 1.])

13

Case (a) (pO) 3

spl it ([l roseees Mgl +4[1j5---])
={spl I t distributes over ++}
split([lg ro,-.]) ++spl it ([r;,...])
={definition of spl it}
ILITER P LR DX S (L P o) 1 | TP Y)
={earlier definitions}

dy, ry),++ (rz,tail 1z),

14

Case (a) (pOI)

dy, ry), ++ (rz,tal | 12),
={definition of ++, | ly| =| ry| }
dy++rz,ry++tal |l 12),

We cannot simplify this further,
but as lists are unordered:

(ly, ry), I1s equivalent to (ry, ly),

Case (a) (pO) 5

ry,lyy, ++ (rz,tal |l 12),
={definition of ++}

ry++rz,ly++tail 12),
={definitions}

(r,del etepl), .

16

Case (b) (pOr) 1

delete_, pd,r),

={l=(head l): (tail), I£[]}
delete, p{((headl): (tail I),r),
={definition of : }

delete, p((headl): (r,tail |))
={head | #p}

(head I): (delete, p (r, tail I))

17

Case (b) (pr) 2

(head I): (delete, p (r, tail I))

= {previous definition of del et e, }

(head I): (¢tail |, delete pr),)
={definition of : }

(head I): (deletepr),tail I), .

18

Finally

(c)pUlandpOr
delete, p(l,r),=(l,r), .
Final definition
del ete, p{l,r),
| nmenber pl = (r,del etepl),
| nmenber pr =
(head I): (delete pr), tail
| otherwise = (I, r),

).

19

Insert operation

I nsert _ pd,r),=
| f menber , pd,r),
t hen (I, r),
el se (p:r,),

We will now prove that

I nsert p=unsplit.(insert, p).split

20

Proof

Case for p [xs s trivial.

Otherwise, suppose that:
xs~ (I, ry,and p LI xs

unsplit(insert, p split(xs))
={xs~«l,).}
unsplit(insert, p(d,r)))

21

Proof

unsplit(insert, p({,r)))
={definition of | nsert _}

unsplit((p:r, 1))

={definition of : }
unsplit(p:d,r))

={property of : }
p:unsplit(«,r),)

22

Proof

p: unspl it (<, r),)
={xs~(l, r).}

P: XS

={definition of | nsert }
Il nsert p xs

23

Complexity

delete p xs = ys++ (if null zs
t hen zs
el se tail z9
where (ys, z5) = span (#p) Xs

delete, p(l,),
menber pl = (r,deletepl),

menber pr = ((head |): (delete pr), tail
ot herw se = (I, 1),

Both functions have linear complexity.

|),

24

Complexity

Insert pxs= 1f nenber p Xxs
t hen xs
el se p: xs

insert_ p <, r,= 1f menmber_ p {,r),
t henl,r),
el se (p:r,),

Again, these functions have linear complexity.

25

"Obfuscating Set Representations”

The paper looks at three representations:
= Unordered with duplicates
= Unordered without duplicates
= Strictly-increasing

Proofs and derivations of del et e and
| nsert are given for the other
representations.

Also, another split is considered.

26

Matrices 1

At the beginning, it was stated we
obfuscate data-types directly so that we
can exploit properties of the data-type.

Suppose that we want to split a matrix
and we want to develop a transpose
operation for the split matrix.

Suppose we flatten the matrix to an array
and then split this array.

27

Matrices 2

Using arrays means that we lose the
"shape" of the matrix and so we have
difficulty in constructing a transpose
operation.

Using matrices directly:
A BY (A" CT
C D - BT DT

28

Conclusions

We have seen that using data-types and
functional programming, we can

= derive obfuscations
= prove correctness

Our operations make little change to the
complexity

Have to keep spl I t secret

29

Future Work

Possible areas for future work

= Other obfuscations

= Other data-types (matrices, trees)
= Automation

= Obfuscation definition

30

31

