
1

HaRe
The Haskell Refactorer

Huiqing Li
Claus Reinke

Simon Thompson

Computing Lab, University of Kent
www.cs.kent.ac.uk/projects/refactor-fp/

2

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe

• Current Work

• Future Work

3

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe

• Current Work

• Future Work

4

Refactoring

• What? Changing the structure of existing code …
… without changing its meaning.

• Essential part of the functional programming process.

• Where? Development, maintenance, …
-- to make the code easier to understand and modify
-- to improve code reuse, quality and productivity.

• Not just programming … also proof, presentation, …

5

A Simple Example

module Main where

pow = 2

f [] = 0
f (h:t) = h^pow + f t

main = print $ f [1..4]

• The original code

• Refactoring 1: rename f to sumSquares to make the
purpose of the function clearer.

6

A Simple Example (cont.)

• Code after renaming

• Refactoring 2: demote the definition of pow to make
its scope narrower.

module Main where

pow = 2

sumSquares [] = 0
sumSquares (h:t) = h^pow + sumSquares t

main = print $ sumSquares [1..4]

2

7

A Simple Example (cont.)

module Main where

sumSquares [] = 0
sumSquares (h:t) = h^pow + sumSquares t
where
pow = 2

main = print $ sumSquares [1..4]

• Code after demoting

8

Refactoring vs Program Optimisation

• Refactoring
-- source-to-source

-- functionality-preserving

-- improve the design of
a program

-- diffuse and bureaucratic

-- bi-directional

• Program optimisation
-- source-to-source

-- functionality-preserving

-- improve the efficiency of
a program

-- focused

-- unidirectional

9

How to apply refactoring?

• By hand
Tedious, error-prone, depends on extensive testing

• With machine support
Reliable

Low cost: easy to make large changes.

Just as easy to un-make large changes.

Exploratory

10

Refactoring Functional Programs

• 3-year EPSRC-funded project
Explore the prospects of refactoring functional programs

Catalogue useful refactorings

Look into the difference between OO and FP refactoring

A real life refactoring tool for Haskell programming

A formal way to specify refactorings

A set of formal proofs that verify the implemented refactorings are
functionality-preserving

• Mid-project, the second HaRe release: module-aware.

11

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe

• Current Work

• Future Work

12

HaRe – The Haskell Refactorer

-- A prototype tool for refactoring Haskell programs

-- Driving concerns: usability and solid basis for extensions.

-- Implemented in Haskell, using Strafunski and Programatica.

-- Full Haskell 98 coverage

-- Integrated with the two program editors: Emacs and Vim

-- Preserves both comments and layout style of the source

3

13

Refactorings in HaRe: Move Definition

e.g. demote/promote the definition of f

module Main where

f [] = 0
f (h:t) = h^2 + f t

main = print $ f [1..4]

module Main where

main = print $ f [1..4]

where

f [] = 0

f (h:t) = h^2 + f t

<=>

• Move a definition
--Demote a definition: move a definition down in the scope
hierarchy to make its scope narrower.
--Promote a definition: move a definition up in the scope hierarchy
to widen its scope.

14

Refactorings in HaRe: Generalise

module Main where

f [] = 0
f (h:t) = h^2 + f t

main = f [1..4]

=>

e.g. generalise definition f on sub-expression 0 with new parameter
name n.

module Main where

f n [] = n
f n (h:t) = h^2 + f n t

main = f 0 [1..4]

• Generalise a definition
-- select a sub-expression of the rhs of the definition and introduce
that sub-expression as a new argument to the function at each of
its call sites.

15

Refactorings in HaRe … others

• Renaming
• Introduce a new definition
• Inline a definition
• Duplicate a definition
• Delete a definition
• Add or Remove an argument
• Move a definition to another module (not yet released)

16

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe

• Current Work

• Future Work

17

Demo

module Demo(sumSquares) where

sq x = x ^ 2

sumSquares [] = 0
sumSquares (x:xs) = sq x + sumSquares xs

anotherFun = sumSquares [1..4]

18

Generalise Definition

module Demo(sumSquares) where

sq x = x ^ 2

sumSquares [] = 0
sumSquares (x:xs) = sq x + sumSquares xs

anotherFun = sumSquares [1..4]

4

19

Generalise Definition

module Demo(sumSquares) where

sq x = x ^ 2

sumSquares [] = 0
sumSquares (x:xs) = sq x + sumSquares xs

anotherFun = sumSquares [1..4]

name of new parameter?

20

Generalise Definition

module Demo(sumSquares) where

sq x = x ^ 2

sumSquares [] = 0
sumSquares (x:xs) = sq x + sumSquares xs

anotherFun = sumSquares [1..4]

name of new parameter? f

21

Generalise Definition

module Demo(sumSquares, sumSquares_gen) where

sq x = x ^ 2

sumSquares f [] = 0
sumSquares f (x:xs) = f x + sumSquares f xs

sumSquares_gen = sq

anotherFun = sumSquares sq [1..4]

22

Generalise Definition

module Main where

import Demo

main = print $ sumSquares [1..10]

23

Generalise Definition

module Main where

import Demo

main = print $ sumSquares sumSquares_gen [1..10]

24

Demo end

5

25

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe

• Current Work

• Future Work

26

The Implementation of HaRe

• An example: Promote the definition of sq to top level.
-- This is an example

module Main where

sumSquares x y = sq x + sq y

where sq :: Int->Int
sq x = x ^ pow

pow = 2 :: Int

main = sumSquares 10 20

27

The Implementation of HaRe

Step 1 : Identify the definition to be promoted.

• An example: Promote the definition of sq to top level.
-- This is an example

module Main where

sumSquares x y = sq x + sq y

where sq :: Int->Int
sq x = x ^ pow

pow = 2 :: Int

main = sumSquares 10 20

28

The Implementation of HaRe

Step 2: Is sq already defined at top level in this or other importing
modules? Is sq imported from other modules?

• An example: Promote the definition of sq to top level.
-- This is an example

module Main where

sumSquares x y = sq x + sq y

where sq :: Int->Int
sq x = x ^ pow

pow = 2 :: Int

main = sumSquares 10 20

29

The Implementation of HaRe

Step 3: does sq use any identifiers locally defined in sumSquares?

• An example: Promote the definition of sq to top level.
-- This is an example

module Main where

sumSquares x y = sq x + sq y

where sq :: Int->Int
sq x = x ^ pow

pow = 2 :: Int

main = sumSquares 10 20

30

The Implementation of HaRe

Step 4: If the answer to Step 3 is yes, then add parameters to sq
and change type signature if necessary.

• An example: Promote the definition of sq to top level.
-- This is an example

module Main where

sumSquares x y = sq pow x + sq pow y

where sq :: Int->Int->Int
sq pow x = x ^ pow

pow = 2 :: Int

main = sumSquares 10 20

6

31

The Implementation of HaRe

Step 5: Move sq to top level.

• An example: Promote the definition of sq to top level.
-- This is an example

module Main where

sumSquares x y = sq pow x + sq pow y

where pow = 2 :: Int

sq :: Int->Int->Int
sq pow x = x ^ pow

main = sumSquares 10 20

32

The Implementation of HaRe

Information
gathering

Pre-condition
checking

Program
rendering

Program
transformation

• Basic steps

33

The Implementation of HaRe

Information
gathering

Pre-condition
checking

Program
rendering

Program
transformation

• Basic steps

34

The Implementation of HaRe

• Information required … present in Programatica.

-- Abstract Syntax Tree (AST): for finding syntax phrases, e.g.
the definition of sq. (need parser & lexer)

-- Static semantics: for the scope of identifiers.

-- Type information: for type-aware refactorings.
(need type-checker)

-- Module information: for module-aware refactorings.
(need module analysis system)

35

The Implementation of HaRe

Information
gathering

Pre-condition
checking

Program
rendering

Program
transformation

• Basic steps

36

The Implementation of HaRe

-- Our initial experience
-- A large amount of boilerplate code for each refactoring
-- Tiresome to write and error prone.

-- Why?
-- The large size of the Haskell grammar: about 20 data types

and 110 data constructors
-- Both program analysis and transformation involve traversing

the syntax tree frequently.

• Pre-condition checking and program transformation

7

37

The Implementation of HaRe

• Example: code for renaming an identifier
instance Rename HsExp where
rename oldName newName (Exp (HsId id))

= Exp (HsId (rename oldName newName id))
rename oldName newName (Exp (HsLit x)) = Exp(HsLit x)
rename oldName newName (Exp (HsInfixApp e1 op e2))

= Exp (HsInfixApp (rename oldName newName e1)
(rename oldName newName op)

(rename oldName newName e2))
rename oldName newName (Exp (HsApp f e))

= Exp (HsApp (rename oldName newName f)
(rename oldName newName e))

rename oldName newName (Exp(HsNegApp e))
= Exp (HsNegApp (rename oldName newName e))

rename oldName newName (Exp(HsLambda ps e))
=Exp (HsLambda (rename oldName newName ps)

(rename oldName newName e))

. . . (about 200 lines) 38

• Strafunski

-- A Haskell library developed for supporting generic programming
in application areas that involve term traversal over large ASTs.

-- Allow users to write generic function that can traverse into
terms with ad hoc behaviour at particular points.

-- Offers a strategy combinator library StrategyLib and a
pre-processor based on DrIFT.

The Implementation of HaRe

• DrIFT

39

• Example: renaming an identifier using Strafunski

rename:: (Term t)=>PName->HsName->t->Maybe t
rename oldName newName = applyTP worker
where
worker = full_tdTP (idTP ‘adhocTP‘ idSite)

idSite :: PName -> Maybe PName
idSite v@(PN name orig)

| v == oldName = return (PN newName orig)
idSite pn = return pn

The Implementation of HaRe

40

The Implementation of HaRe

Information
gathering

Pre-condition
checking

Program
rendering

Program
transformation

• Basic steps

41

-- A real-life useful refactoring tool should preserve program
layout and comments.

but,

-- layout information and comments are not preserved in AST

-- the layout produced by pretty-printer may not be satisfactory
and comments are still missing

• Program rendering

The Implementation of HaRe

42

• Program rendering -- example

The Implementation of HaRe

-- This is an example

module Main where

sumSquares x y = sq x + sq y

where sq :: Int->Int
sq x = x ^ pow

pow = 2 :: Int

main = print $ sumSquares 10 20

-- program source before promoting definition sq to top level.

8

43

• Program rendering -- example

The Implementation of HaRe

module Main where
sumSquares x y

= sq pow x + sq pow y where pow = 2 :: Int

sq :: Int->Int->Int
sq pow x = x ^ pow

main = print $ sumSquares 10 20

-- program source from pretty printer after promoting .

44

• Program rendering -- example

The Implementation of HaRe

-- program source using our approach after promoting .

-- This is an example

module Main where

sumSquares x y = sq pow x + sq pow y

where pow = 2 :: Int

sq :: Int->Int->Int
sq pow x = x ^ pow

main = print $ sumSquares 10 20

45

-- make use of the white space & comments in the token stream
(the lexer output)

-- the refactorer takes two views of the program: the token stream
and the AST

-- the modification in the AST guides the modification of the
token stream.

-- after a refactoring, the program source is extracted from the
token stream instead of from the AST

-- use heuristics for associating comments and semantics entities.

• Program rendering -- our approach

The Implementation of HaRe

46

• The current implementation architecture

The Implementation of HaRe

PS: program source ; TS: token stream;
AAST: annotated abstract syntax tree; MI: module information ;

Programatica
(lexer, parser,
type checker,

module analysis)

TS

AAST
+ MI

PS TS

analysis and
transformation

using
Strafunski

AAST

extract
program

from token
stream

PS

47

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe

• Current Work

• Future Work

48

-- A refactoring may have effects in several modules

-- Effects and constraints can be subtle, choices have to be made.

-- A refactoring succeeds only if it succeeds on all affected
modules in the project.

-- Built on top of Programatica’s module analysis system

-- Information needed: module graph, entities imported by a
module, entities exported by a module

-- What if the module is used by modules outside the
project? Notify the user or create a wrapper?

Making refactorings module-aware

9

49

Making refactorings module-aware
• Example: move a top-level definition f from module A to B.

-- Conditions:
-- Is f defined at the top-level of B?
-- Are the free variables in f accessible within module B?
-- Will the move require recursive modules?

-- The transformation:
-- Remove the definition of f from module A.
-- Add the definition to module B.
-- Modify the import/export in module A, B and the client

modules of A and B if necessary.
-- Change the uses of A.f to B.f or f in all affected modules.
-- Resolve ambiguity.

50

Outline

• Introduction

• HaRe: The Haskell Refactorer

• Demo

• The Implementation of HaRe
• Current Work

• Future Work

51

-- Other kinds of refactorings: type-aware, data-oriented,
data abstraction, interface, structural, …

-- ‘Not quite refactorings’ and transformations …

-- An API for adding refactorings/transformations.

-- Composite refactorings and tactics, plans, strategies …

-- More complex interactions between the refactorer and the user

-- HaRe user trials: gurus, programmers, students, …

-- Semantic-aware editing, a Haskell IDE

Future work … possible collaboration

