Chasing Bottoms under Cover

Patrik Jansson @ cs.chalmers.se

February 9, 2004
Refactoring Workshop, Kent University, UK

- The current status of the research programme “Cover — Combining Verification Methods in Software Development.”

- Some details from work in progress “Chasing Bottoms — a Case Study in Program Verification in the Presence of Partial and Infinite Values” (with Nils Anders Danielsson)

^aFunded by the Swedish Foundation for Strategic Research
Patrik Jansson — current activities

“... where type theory meets functional programming ...”

- PolyProof: Generic Functional Programs and Proofs
 - Generic programming meets dependent types
 - Prototyping Generic Programming using Template Haskell
- Cover: Combining Verification Methods in Software Development
 - Translating ghc Core to Agda
 - A case study on verification with partial & inf. values
- Director of Studies for Undergraduate Studies @ cs.chalmers.se
 - Bologna process: Chalmers students will from 2004 take a 3-year BSc + 2-year MSc
A puzzle

Which of these Haskell function definitions are equal?

\begin{align*}
 f1 & : \text{True} \quad x = x \\
 f2 & : \text{True} = \lambda x \to x \\
 f3 & = \lambda \text{True} \quad x \to x \\
 f4 & = \lambda \text{True} \to \lambda x \to x
\end{align*}
Cover — combining verification methods

Grant: 1M euro spread over 3 years

- QuickCheck (specifications as executable test cases in Haskell)
- Alfa/Agda (formal proofs in dependent type theory)
- Model Checking (Propositional and First Order Logic Proving)

“Cover staff”: 4.5 full time positions

Prof.: J. Hughes, T. Coquand, P. Dybjer, M. Sheeran 50%
Ass. Prof.: M. Benke, K. Claessen, P. Jansson 100%
PostDoc: Andreas Abel, Grégoire Hamon 200%
PhD stud.: Q. Haiyan, N.-A. Danielsson, … 100%
QuickCheck

Specifications as executable test cases in Haskell

Koen Claessen and John Hughes

- a property language (embedded in Haskell)
- combinators for test data generators
- a clever implementation performing the tests

```
import Debug.QuickCheck
prop_associative :: Float -> Float -> Float -> Bool
prop_associative x y z = x+(y+z) == (x+y)+z
```
QuickCheck — an example

import Debug.QuickCheck
prop_associative :: Float -> Float -> Float -> Bool
prop_associative x y z = x+(y+z) == (x+y)+z

Main> test prop_associative
Falsifiable, after 2 tests:
-0.3333333
3.0
2.0
Alfa/Adga/Cayenne

Constructive logic: propositions as types
proofs as values

- Agda is a dependently typed language (and its proof engine)
- Alfa (by T. Hallgren) is an advanced GUI for Agda
- Cayenne (by L. Augustsson) is almost Agda (and a compiler)

All implemented @ cs.chalmers.se
Cover work on Agda

• portability, scalability, standardisation (Jansson, Benke)
• proof search / automation / tactics (Benke)
• extensions: (Coquand)
 – records (first class modules),
 – implicit calculus (Haskell-connection)
 – datatype generic (Benke, Dybjer, Jansson)
Testing and Proving in Dependent Type Theory

Qiao Haiyan (PhD dec 2003, advisor: Peter Dybjer)

- a “mini-Cover” tool implemented as an Agda-plugin
- QuickCheck-like testing inside Agda
- experiments with combining testing/model checking/proving

Conclusion: Test first, to avoid trying to prove Falsity.
Simpler logics — more automation

Koen Claessen and Mary Sheeran

- Propositional Logic
- First Order Logic

Cover connection:

- Generate first order axioms from the Haskell program
- Can find automatic proofs of ”non-recursive” properties
- Induction must be done on the meta-level
Translating Haskell to Agda

Using Agda to prove properties of Haskell programs: we must clarify the connection between the languages. Two paths:

- **hs2alpha**: in the Programatica project (Thomas Hallgren)
 - Using pfe gives full control over the language implementation

- **ghcCore2Agda**: in the Cover project (Patrik Jansson)
 - Using ghc means all programs could be handled

Both are incomplete and work in progress.

Experiments (case studies) could indicate which way to go here.
Chasing Bottoms — verification and partial values

All Haskell types are pointed — for each type a there is a least defined element \bot_a (“bottom at a”).

Most Haskell types are actually lifted — there is a distinct “extra” bottom element. Examples:

$$\bot_{(a, b)} \neq (\bot_a, \bot_b)$$
$$\bot_{a \to b} \neq \lambda x . \bot_b$$

Unfortunate implications: “laws” don’t hold

- surjective pairing
- η-expansion
The puzzle solved

Which of these Haskell function definitions are equal?

\[f_1, f_2, f_3, f_4 : \text{Bool} \rightarrow \text{Int} \rightarrow \text{Int} \]
\[f_1 \quad \text{True} \quad x = x \]
\[f_2 \quad \text{True} = \ \\lambda x \rightarrow x \]
\[f_3 = \lambda \text{True} \quad x \rightarrow x \quad \text{-- same as } f_1 \]
\[f_4 = \lambda \text{True} \rightarrow \lambda x \rightarrow x \quad \text{-- same as } f_2 \]

Haskell report has case translation rules from (a), (b), up to (s)!

\[f_1 \perp = \lambda x \rightarrow \perp \]
\[f_2 \perp = \perp \]
Test your bottoms!

Problem: many rewrites of Haskell programs are not bottom-preserving — how can we know when we got it right?

- `isBottom :: a -> Bool` is definable using unsafe ghc extensions
- we define QuickCheck test data generators to include ⊥
- using `isBottom` we define (an approximate) “semantic equality”
Conclusions

- Haskell semantics is tricky
- We need approximate semantics. Perhaps: $\perp = \lambda x \to \perp$

 $\perp = (\perp, \perp)$
- Refactoring may benefit from testing (sanity check)
- Proof may benefit from refactoring (chains of equalities)