Chasing Bottoms
under Cover?

Patrik Jansson @ cs.chalmers.se

February 9, 2004
Refactoring Workshop, Kent University, UK

e The current status of the research programme “Cover —

Combining Verification Methods in Software Development.”

e Some details from work in progress “Chasing Bottoms — a Case
Study in Program Verification in the Presence of Partial and
Infinite Values” (with Nils Anders Danielsson)

aFunded by the Swedish Foundation for Strategic Research

Patrik Jansson — current activities

44

. where type theory meets functional programming ...”

e PolyProof: Generic Functional Programs and Proofs

— Generic programming meets dependent types

— Prototyping Generic Programming using Template Haskell

e Cover: Combining Verification Methods in Software Development
— Translating ghc Core to Agda

— A case study on verification with partial & inf. values

e Director of Studies for Undergraduate Studies @ cs.chalmers.se

— Bologna process: Chalmers students will from 2004 take a
3—year BSc + 2—year MSc

A puzzle

Which of these Haskell function definitions are equal?

f1 True X =
2 True \x ->
£f3 = \True x ->
f4 = \True \x ->

Cover — combining verification methods

Grant: 1M euro spread over 3 years
e QuickCheck (specifications as executable test cases in Haskell)
o Alfa/Agda (formal proofs in dependent type theory)
e Model Checking (Propositional and First Order Logic Proving)
“Cover staftf”: 4.5 full time positions

Prof.: J. Hughes, T. Coquand, P. Dybjer, M. Sheeran 50%
Ass. Prof.: M. Benke, K. Claessen, P. Jansson 100%
PostDoc: Andreas Abel, Grégoire Hamon 200%
PhD stud.: Q. Haiyan, N.-A. Danielsson, ... 100%

QuickCheck

Specifications as executable test cases in Haskell

Koen Claessen and John Hughes
e a property language (embedded in Haskell)
e combinators for test data generators
e a clever implementation performing the tests

import Debug.QuickCheck
prop_associative :: Float -> Float -> Float -> Bool

prop_associative x y z = x+(y+z) == (x+y)+z

QuickCheck — an example

import Debug.QuickCheck
prop_associative :: Float -> Float -> Float -> Bool

prop_associative x y z = x+(y+z) == (x+y)+z

Main> test prop_associative
Falsifiable, after 2 tests:
-0.3333333

3.0

2.0

Alfa/Adga/Cayenne

Constructive logic: propositions as types

proofs as values

e Agda is a dependently typed language (and its proof engine)

e Alfa (by T. Hallgren) is an advanced GUI for Agda
e Cayenne (by L. Augustsson) is almost Agda (and a compiler)

All implemented @ cs.chalmers.se

Cover work on Agda

e portability, scalability, standardisation (Jansson, Benke)
e proof search / automation / tactics (Benke)

e extensions: (Coquand)
— records (first class modules),
— implicit calculus (Haskell-connection)

— datatype generic (Benke, Dybjer, Jansson)

Testing and Proving in Dependent Type Theory

Qiao Haiyan (PhD dec 2003, advisor: Peter Dybjer)
e a “mini-Cover” tool implemented as an Agda-plugin
e (QuickCheck-like testing inside Agda
e experiments with combining testing/model checking/proving

Conclusion: Test first, to avoid trying to prove Falsity.

Simpler logics — more automation

Koen Claessen and Mary Sheeran
e Propositional Logic
e First Order Logic
Cover connection:
e Generate first order axioms from the Haskell program
e Can find automatic proofs of "non-recursive” properties

e Induction must be done on the meta-level

10

Translating Haskell to Agda

Using Agda to prove properties of Haskell programs: we must clarify

the connection between the languages. Two paths:

e hs2alfa: in the Programatica project (Thomas Hallgren)

— Using pfe gives full control over the language implementation

e ghcCore2Agda: in the Cover project (Patrik Jansson)

— Using ghc means all programs could be handled

Both are incomplete and work in progress.

Experiments (case studies) could indicate which way to go here.

11

Chasing Bottoms — verification and partial values

All Haskell types are pointed — for each type a there is a least
defined element 1, (“bottom at a”).

Most Haskell types are actually lifted — there is a distinct “extra”

bottom element. Examples:

Liap) # (La, Ls)
Lassp 7£ AT — Ly

Unfortunate implications: “laws” don’t hold
e surjective pairing

® 7)-expansion

12

The puzzle solved

Which of these Haskell function definitions are equal?

f1, f2, £3, f4 :: Bool -> Int -> Int
fi True X = X
f2 True = \x ->

X
£f3 = \True X -> X —— same as f1
f4 = \True -> \x > x

—-— same as f2
Haskell report has case translation rules from (a), (b), up to (s)!

f1 1 =\x -> L
f2 1 = 1

13

Test your bottoms!

Problem: many rewrites of Haskell programs are not

bottom-preserving — how can we know when we got it right?

e isBottom :: a -> Bool is definable using unsafe ghc

extensions
e we define QuickCheck test data generators to include _L

e using isBottom we define (an approximate) “semantic equality”

14

Conclusions

e Haskell semantics is tricky

e We need approximate semantics. Perhaps: 1 =

1 =
e Refactoring may benefit from testing (sanity check)

e Proof may benefit from refactoring (chains of equalities)

15

