
Chasing Bottoms?under CoveraPatrik Jansson � s.halmers.seFebruary 9, 2004Refatoring Workshop, Kent University, UK� The urrent status of the researh programme \Cover |Combining Veri�ation Methods in Software Development."� Some details from work in progress \Chasing Bottoms | a CaseStudy in Program Veri�ation in the Presene of Partial andIn�nite Values" (with Nils Anders Danielsson)aFunded by the Swedish Foundation for Strategi Researh

1

Patrik Jansson | urrent ativities\... where type theory meets funtional programming ..."� PolyProof: Generi Funtional Programs and Proofs{ Generi programming meets dependent types{ Prototyping Generi Programming using Template Haskell� Cover: Combining Veri�ation Methods in Software Development{ Translating gh Core to Agda{ A ase study on veri�ation with partial & inf. values� Diretor of Studies for Undergraduate Studies � s.halmers.se{ Bologna proess: Chalmers students will from 2004 take a3{year BS + 2{year MS
2

A puzzleWhih of these Haskell funtion de�nitions are equal?f1 True x = xf2 True = \x -> xf3 = \True x -> xf4 = \True -> \x -> x
3

Cover | ombining veri�ation methodsGrant: 1M euro spread over 3 years� QuikChek (spei�ations as exeutable test ases in Haskell)� Alfa/Agda (formal proofs in dependent type theory)� Model Cheking (Propositional and First Order Logi Proving)\Cover sta�": 4.5 full time positionsProf.: J. Hughes, T. Coquand, P. Dybjer, M. Sheeran 50%Ass. Prof.: M. Benke, K. Claessen, P. Jansson 100%PostDo: Andreas Abel, Gr�egoire Hamon 200%PhD stud.: Q. Haiyan, N.-A. Danielsson, . . . 100%

4

QuikChekSpei�ations as exeutable test ases in HaskellKoen Claessen and John Hughes� a property language (embedded in Haskell)� ombinators for test data generators� a lever implementation performing the testsimport Debug.QuikChekprop_assoiative :: Float -> Float -> Float -> Boolprop_assoiative x y z = x+(y+z) == (x+y)+z
5

QuikChek | an exampleimport Debug.QuikChekprop_assoiative :: Float -> Float -> Float -> Boolprop_assoiative x y z = x+(y+z) == (x+y)+zMain> test prop_assoiativeFalsifiable, after 2 tests:-0.33333333.02.0

6

Alfa/Adga/CayenneConstrutive logi: propositions as typesproofs as values� Agda is a dependently typed language (and its proof engine)� Alfa (by T. Hallgren) is an advaned GUI for Agda� Cayenne (by L. Augustsson) is almost Agda (and a ompiler)All implemented � s.halmers.se
7

Cover work on Agda� portability, salability, standardisation (Jansson, Benke)� proof searh / automation / tatis (Benke)� extensions: (Coquand){ reords (�rst lass modules),{ impliit alulus (Haskell-onnetion){ datatype generi (Benke, Dybjer, Jansson)
8

Testing and Proving in Dependent Type TheoryQiao Haiyan (PhD de 2003, advisor: Peter Dybjer)� a \mini-Cover" tool implemented as an Agda-plugin� QuikChek-like testing inside Agda� experiments with ombining testing/model heking/provingConlusion: Test �rst, to avoid trying to prove Falsity.

9

Simpler logis | more automationKoen Claessen and Mary Sheeran� Propositional Logi� First Order LogiCover onnetion:� Generate �rst order axioms from the Haskell program� Can �nd automati proofs of "non-reursive" properties� Indution must be done on the meta-level
10

Translating Haskell to AgdaUsing Agda to prove properties of Haskell programs: we must larifythe onnetion between the languages. Two paths:� hs2alfa: in the Programatia projet (Thomas Hallgren){ Using pfe gives full ontrol over the language implementation� ghCore2Agda: in the Cover projet (Patrik Jansson){ Using gh means all programs ould be handledBoth are inomplete and work in progress.Experiments (ase studies) ould indiate whih way to go here.

11

Chasing Bottoms | veri�ation and partial valuesAll Haskell types are pointed | for eah type a there is a leastde�ned element ?a (\bottom at a").Most Haskell types are atually lifted | there is a distint \extra"bottom element. Examples:?(a;b) 6= (?a;?b)?a!b 6= �x! ?bUnfortunate impliations: \laws" don't hold� surjetive pairing� �-expansion

12

The puzzle solvedWhih of these Haskell funtion de�nitions are equal?f1, f2, f3, f4 :: Bool -> Int -> Intf1 True x = xf2 True = \x -> xf3 = \True x -> x -- same as f1f4 = \True -> \x -> x -- same as f2Haskell report has ase translation rules from (a), (b), up to (s)!f1 ? = \x -> ?f2 ? = ?

13

Test your bottoms!Problem: many rewrites of Haskell programs are notbottom-preserving | how an we know when we got it right?� isBottom :: a -> Bool is de�nable using unsafe ghextensions� we de�ne QuikChek test data generators to inlude ?� using isBottom we de�ne (an approximate) \semanti equality"

14

Conlusions� Haskell semantis is triky� We need approximate semantis. Perhaps: ? = \x-> ?? = (?;?)� Refatoring may bene�t from testing (sanity hek)� Proof may bene�t from refatoring (hains of equalities)

15

