
Chasing Bottoms?under CoveraPatrik Jansson � 
s.
halmers.seFebruary 9, 2004Refa
toring Workshop, Kent University, UK� The 
urrent status of the resear
h programme \Cover |Combining Veri�
ation Methods in Software Development."� Some details from work in progress \Chasing Bottoms | a CaseStudy in Program Veri�
ation in the Presen
e of Partial andIn�nite Values" (with Nils Anders Danielsson)aFunded by the Swedish Foundation for Strategi
 Resear
h

1



Patrik Jansson | 
urrent a
tivities\... where type theory meets fun
tional programming ..."� PolyProof: Generi
 Fun
tional Programs and Proofs{ Generi
 programming meets dependent types{ Prototyping Generi
 Programming using Template Haskell� Cover: Combining Veri�
ation Methods in Software Development{ Translating gh
 Core to Agda{ A 
ase study on veri�
ation with partial & inf. values� Dire
tor of Studies for Undergraduate Studies � 
s.
halmers.se{ Bologna pro
ess: Chalmers students will from 2004 take a3{year BS
 + 2{year MS

2



A puzzleWhi
h of these Haskell fun
tion de�nitions are equal?f1 True x = xf2 True = \x -> xf3 = \True x -> xf4 = \True -> \x -> x
3



Cover | 
ombining veri�
ation methodsGrant: 1M euro spread over 3 years� Qui
kChe
k (spe
i�
ations as exe
utable test 
ases in Haskell)� Alfa/Agda (formal proofs in dependent type theory)� Model Che
king (Propositional and First Order Logi
 Proving)\Cover sta�": 4.5 full time positionsProf.: J. Hughes, T. Coquand, P. Dybjer, M. Sheeran 50%Ass. Prof.: M. Benke, K. Claessen, P. Jansson 100%PostDo
: Andreas Abel, Gr�egoire Hamon 200%PhD stud.: Q. Haiyan, N.-A. Danielsson, . . . 100%

4



Qui
kChe
kSpe
i�
ations as exe
utable test 
ases in HaskellKoen Claessen and John Hughes� a property language (embedded in Haskell)� 
ombinators for test data generators� a 
lever implementation performing the testsimport Debug.Qui
kChe
kprop_asso
iative :: Float -> Float -> Float -> Boolprop_asso
iative x y z = x+(y+z) == (x+y)+z
5



Qui
kChe
k | an exampleimport Debug.Qui
kChe
kprop_asso
iative :: Float -> Float -> Float -> Boolprop_asso
iative x y z = x+(y+z) == (x+y)+zMain> test prop_asso
iativeFalsifiable, after 2 tests:-0.33333333.02.0

6



Alfa/Adga/CayenneConstru
tive logi
: propositions as typesproofs as values� Agda is a dependently typed language (and its proof engine)� Alfa (by T. Hallgren) is an advan
ed GUI for Agda� Cayenne (by L. Augustsson) is almost Agda (and a 
ompiler)All implemented � 
s.
halmers.se
7



Cover work on Agda� portability, s
alability, standardisation (Jansson, Benke)� proof sear
h / automation / ta
ti
s (Benke)� extensions: (Coquand){ re
ords (�rst 
lass modules),{ impli
it 
al
ulus (Haskell-
onne
tion){ datatype generi
 (Benke, Dybjer, Jansson)
8



Testing and Proving in Dependent Type TheoryQiao Haiyan (PhD de
 2003, advisor: Peter Dybjer)� a \mini-Cover" tool implemented as an Agda-plugin� Qui
kChe
k-like testing inside Agda� experiments with 
ombining testing/model 
he
king/provingCon
lusion: Test �rst, to avoid trying to prove Falsity.

9



Simpler logi
s | more automationKoen Claessen and Mary Sheeran� Propositional Logi
� First Order Logi
Cover 
onne
tion:� Generate �rst order axioms from the Haskell program� Can �nd automati
 proofs of "non-re
ursive" properties� Indu
tion must be done on the meta-level
10



Translating Haskell to AgdaUsing Agda to prove properties of Haskell programs: we must 
larifythe 
onne
tion between the languages. Two paths:� hs2alfa: in the Programati
a proje
t (Thomas Hallgren){ Using pfe gives full 
ontrol over the language implementation� gh
Core2Agda: in the Cover proje
t (Patrik Jansson){ Using gh
 means all programs 
ould be handledBoth are in
omplete and work in progress.Experiments (
ase studies) 
ould indi
ate whi
h way to go here.

11



Chasing Bottoms | veri�
ation and partial valuesAll Haskell types are pointed | for ea
h type a there is a leastde�ned element ?a (\bottom at a").Most Haskell types are a
tually lifted | there is a distin
t \extra"bottom element. Examples:?(a;b) 6= (?a;?b)?a!b 6= �x! ?bUnfortunate impli
ations: \laws" don't hold� surje
tive pairing� �-expansion

12



The puzzle solvedWhi
h of these Haskell fun
tion de�nitions are equal?f1, f2, f3, f4 :: Bool -> Int -> Intf1 True x = xf2 True = \x -> xf3 = \True x -> x -- same as f1f4 = \True -> \x -> x -- same as f2Haskell report has 
ase translation rules from (a), (b), up to (s)!f1 ? = \x -> ?f2 ? = ?

13



Test your bottoms!Problem: many rewrites of Haskell programs are notbottom-preserving | how 
an we know when we got it right?� isBottom :: a -> Bool is de�nable using unsafe gh
extensions� we de�ne Qui
kChe
k test data generators to in
lude ?� using isBottom we de�ne (an approximate) \semanti
 equality"

14



Con
lusions� Haskell semanti
s is tri
ky� We need approximate semanti
s. Perhaps: ? = \x-> ?? = (?;?)� Refa
toring may bene�t from testing (sanity 
he
k)� Proof may bene�t from refa
toring (
hains of equalities)

15


