Higher-order matching for program transformation refactoring

Ganesh Sittampalam

MAG

- Annotate source code with hints for complex optimisations
- Maintain unoptimised, easy-to-read code
- Compiler automatically applies
 optimisation
 - Displays calculation or details of failure

Refactoring

- Apply the same transformations
- Now at *edit* time not *compile* time
- Can work with optimised code
- Want the inverse transformation too

Cat-elimination

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

→

reverse xs = reverse' xs []

reverse'[] ys= ys

reverse' (x:xs) ys= reverse' xs (x:ys)

Cat-elimination

Specification:

reverse xs = reverse' xs []

reverse' xs ys = reverse xs ++ ys

Laws:

(*x*s ++ *y*s) ++ *z*s = *x*s ++ (*y*s ++ *z*s)

+ some definitions

Canned recursion on lists

foldr is the natural fold on lists

foldr f e [] = e foldr f e (x:xs) = f x (foldr f e xs)

reverse $xs = foldr (\lambda t ts \rightarrow ts ++ [t]) [] xs$

List fusion

Suppose $f(a \oplus b) = a \otimes f b \forall a, b$ Then:

 $f(a_1 \oplus (a_2 \oplus (a_3 \oplus \dots (a_n \oplus e))))$ = $a_1 \otimes f(a_2 \oplus (a_3 \oplus \dots (a_n \oplus e)))$ = $a_1 \otimes (a_2 \otimes f(a_3 \oplus \dots (a_n \oplus e)))$ = ...

 $=a_1\otimes (a_2\otimes (a_3\otimes \dots (a_n\otimes fe)))$

Fusion rule

 $f(foldr(\oplus) e xs) = foldr(\otimes) e' xs$

if

f strict f e = e' $\lambda a b \rightarrow f(a \oplus b) = \lambda a b \rightarrow a \otimes f b$

 $f(foldr (\oplus) e xs) = foldr (\otimes) e' xs$ If f strict, f e = e' $\lambda a b \rightarrow f (a \oplus b) = \lambda a b \rightarrow a \otimes f b$

reverse' xs ys = reverse xs ++ ys

= foldr ($\lambda t \ ts \rightarrow ts ++ [t]$) [] ++ ys

- Pick subexpression
- Try to apply fusion

 $f(foldr (\oplus) e xs) = foldr (\otimes) e' xs$ If f strict, f e = e' $\lambda a b \rightarrow f (a \oplus b) = \lambda a b \rightarrow a \otimes f b$

reverse' xs ys = reverse xs ++ ys

= foldr ($\lambda t \ ts \rightarrow ts ++ [t]$) [] ++ ys

- Pick subexpression
- Try to apply fusion

 $f(foldr (\oplus) e xs) = foldr (\otimes) e' xs$ If f strict, f e = e' $\lambda a b \rightarrow f (a \oplus b) = \lambda a b \rightarrow a \otimes f b$

foldr ($\lambda t \ ts \rightarrow ts ++ [t]$) [] ++

$$f := (++)$$

(\oplus) := $\lambda t \ ts \rightarrow ts ++ [t]$
 $e := []$

 $f(foldr (\oplus) e xs) = foldr (\otimes) e' xs$ If f strict, f e = e' $\lambda a b \rightarrow f (a \oplus b) = \lambda a b \rightarrow a \otimes f b$

foldr ($\lambda t \ ts \rightarrow ts ++ [t]$) [] ++

$$f := (++)$$

(\oplus) := $\lambda t \ ts \rightarrow ts ++ [t]$
 $e := []$

• Substitute into side conditions

(++) [] =
$$e'$$

 $\lambda a b \rightarrow (++) (b ++ [a])$
 $= \lambda a b \rightarrow a \otimes ((++) b)$

- Rewrite exhaustively
- η -expand where needed

$$\lambda ts \rightarrow ts = e'$$

 $\lambda a b \rightarrow (++) (b ++ [a])$
 $= \lambda a b \rightarrow a \otimes ((++) b)$

- Rewrite exhaustively
- η -expand where needed

$$\lambda ts \rightarrow ts = e'$$

 $\lambda a b ts \rightarrow (b ++ [a]) ++ ts$
 $= \lambda a b \rightarrow a \otimes ((++) b)$

- Rewrite exhaustively
- η -expand where needed

$$\lambda ts \rightarrow ts = e'$$

 $\lambda a b ts \rightarrow b ++ (a:ts)$
 $= \lambda a b \rightarrow a \otimes ((++) b)$

$$\lambda ts \rightarrow ts = e'$$

 $\lambda a b ts \rightarrow b ++ (a:ts)$
 $= \lambda a b \rightarrow a \otimes ((++) b)$

$$\begin{array}{ll} e' & := \lambda \ ts \to ts \\ (\otimes) & := \lambda \ tf \ ts \to f(t.ts) \end{array}$$

Higher-order matching

- Various algorithms
- All solve for $\boldsymbol{\varphi}$ in the equation

 ϕ a substitution, *P* and *T* λ -terms

P contains free variables, T closed

- Vary in
 - Restrictions on P
 - Which solutions are returned

Fast reverse

reverse $xs = foldr (\lambda t ts \rightarrow ts ++ [t]) [] xs$

\rightarrow

reverse xs = reverse' xs [] reverse' xs ys =foldr (λ t f ts \rightarrow f (t.ts)) (λ ts \rightarrow ts) xs ys

Fast reverse

reverse $xs = foldr (\lambda t ts \rightarrow ts ++ [t]) [] xs$

$\leftarrow \rightarrow$

reverse xs = reverse' xs [] reverse' xs ys =foldr (λ t f ts \rightarrow f (t.ts)) (λ ts \rightarrow ts) xs ys

Warm fusion

xs = foldr(:) [] xs

- Can introduce folds by fusion
- Fusion transformations merge into one

Other examples

- Tree traversals
 - Flattening a tree
 - Alpha-beta pruning
- Tupling
 - Fibonacci etc etc
- Some kinds of deforestation
- Fix-point fusion

Conclusions etc

- Complex rewrite rules
 - ➔ good specifications for refactoring
 - Good for recursive programs
 - Need HOM to solve
- More integration between browser + compiler?
- More ideas of applications?
- Can we always invert things?