
Higher-o rd er m a t c hin g f o r
p ro gra m t ra n s f o rm a t io n

refactoring

Ganesh Sittampalam

M A G
• Annotate source code with hints for

complex optimisations
• Maintain unoptimised, easy-to-read

code
• Compiler automatically applies

optimisation
– Displays calculation – or details of failure

R ef a c t o rin g
• Apply the same transformations

• Now at edit time not compile time

• Can work with optimised code

• Want the inverse transformation too

C a t -el im in a t io n
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

reverse xs = reverse’ xs []

reverse’ [] ys= ys

reverse’ (x:xs) ys= reverse’ xs (x:ys)

�

C a t -el im in a t io n
Specification:

reverse xs = reverse’ xs []

reverse’ xs ys = reverse xs ++ ys

Laws:

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

+ some definitions

C a n n ed rec u rs io n o n l is t s
foldr is the natural fold on lists

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

reverse xs = foldr (λt ts → ts ++ [t]) [] xs

L is t f u s io n
Suppose f (a ⊕ b) = a ⊗ f b ∀ a,b
Then:

f (a1 ⊕ (a2 ⊕ (a3 ⊕ ... (an ⊕ e))))
= a1 ⊗ f (a2 ⊕ (a3 ⊕ ... (an ⊕ e)))
= a1 ⊗ (a2 ⊗ f (a3 ⊕ ... (an ⊕ e)))
= ...
= a1 ⊗ (a2 ⊗ (a3 ⊗ ... (an ⊗ f e)))

F u s io n ru l e
f (foldr (⊕) e xs) = foldr (⊗) e’ xs

if

f strict

f e = e’

λ a b → f (a ⊕ b) = λ a b → a ⊗ f b

A p p l y in g f u s io n
f (foldr (⊕) e xs) = foldr (⊗) e’ xs
If f strict, f e = e’

λ a b → f (a ⊕ b) = λ a b → a ⊗ f b

reverse’ xs ys = reverse xs ++ ys

= foldr (λt ts → ts ++ [t]) [] ++ ys

• Pick subexpression

• Try to apply fusion

A p p l y in g f u s io n
f (foldr (⊕) e xs) = foldr (⊗) e’ xs
If f strict, f e = e’

λ a b → f (a ⊕ b) = λ a b → a ⊗ f b

reverse’ xs ys = reverse xs ++ ys

= foldr (λt ts → ts ++ [t]) [] ++ ys

• Pick subexpression

• Try to apply fusion

A p p l y in g f u s io n

foldr (λt ts → ts ++ [t]) [] ++

f := (++)
(⊕) := λt ts → ts ++ [t]
e := []

f (foldr (⊕) e xs) = foldr (⊗) e’ xs
If f strict, f e = e’

λ a b → f (a ⊕ b) = λ a b → a ⊗ f b

A p p l y in g f u s io n

foldr (λt ts → ts ++ [t]) [] ++

f := (++)
(⊕) := λt ts → ts ++ [t]
e := []

• Substitute into side conditions

f := (++)
(⊕) := λt ts → ts ++ [t]
e := []

f (foldr (⊕) e xs) = foldr (⊗) e’ xs
If f strict, f e = e’

λ a b → f (a ⊕ b) = λ a b → a ⊗ f b

A p p l y in g f u s io n
(++) [] = e’

λ a b → (++) (b ++ [a])
= λ a b → a ⊗ ((++) b)

• Rewrite exhaustively

• η-expand where needed

A p p l y in g f u s io n
λ ts → ts = e’

λ a b → (++) (b ++ [a])
= λ a b → a ⊗ ((++) b)

• Rewrite exhaustively

• η-expand where needed

A p p l y in g f u s io n
λ ts → ts = e’

λ a b ts → (b ++ [a]) ++ ts
= λ a b → a ⊗ ((++) b)

• Rewrite exhaustively

• η-expand where needed

A p p l y in g f u s io n
λ ts → ts = e’
λ a b → f (b ++ [a]) = λ a b → a ⊗ f b
λ ts → ts = e’

λ a b ts → b ++ (a:ts)
= λ a b → a ⊗ ((++) b)

A p p l y in g f u s io n
λ ts → ts = e’
λ a b → f (b ++ [a]) = λ a b → a ⊗ f b
λ ts → ts = e’

λ a b ts → b ++ (a:ts)
= λ a b → a ⊗ ((++) b)

e’ := λ ts → ts
(⊗) := λ t f ts → f (t:ts)

Higher-o rd er m a t c hin g
• Various algorithms

• All solve for φ in the equation

φP =T φ a substitution, P and T λ-terms
P contains free variables, T closed

• Vary in
– Restrictions on P

– Which solutions are returned
– More solutions � More restrictions

Fast reverse

reverse xs = reverse’ xs []
reverse’ xs ys =

foldr (λ t f ts → f (t:ts)) (λ ts → ts) xs ys

reverse xs = foldr (λ t ts → ts ++ [t]) [] xs

�

Fast reverse

reverse xs = reverse’ xs []
reverse’ xs ys =

foldr (λ t f ts → f (t:ts)) (λ ts → ts) xs ys

reverse xs = foldr (λ t ts → ts ++ [t]) [] xs

� �

W a rm f u s io n
xs = foldr (:) [] xs

reverse xs = reverse (foldr (:) [] xs)

• Can introduce folds by fusion

• Fusion transformations merge into one

O t her ex a m p l es
• Tree traversals

– Flattening a tree

– Alpha-beta pruning

• Tupling
– Fibonacci etc etc

• Some kinds of deforestation
• Fix-point fusion

C o n c l u s io n s et c
• Complex rewrite rules

� good specifications for refactoring
– Good for recursive programs
– Need HOM to solve

• More integration between browser +
compiler?

• More ideas of applications?
• Can we always invert things?

