
 1

Reasoning with Diagrams: Track Record
This is a collaborative proposal between the Universities of
Brighton and Kent. The team is ideally positioned to carry
out the proposed programme of research, offering a
combination of skills in diagrammatic reasoning, visual
modelling, logic and automated reasoning, and tools for
diagram manipulation and visualisation. The principal
investigators have worked together for six years and have
collaborated on the EPSRC projects Formal Underpinnings
of Object Technology (GR/K67304, 1995-1999) and
Precise Visual Patterns for the Evolutionary Migration of
Legacy Systems to Reusable Components (GR/M02606,
1998-2001). Formal Underpinnings investigated the
conceptual basis of object-oriented modelling notations and
initial steps were made towards the formal semantics for
various aspects of UML. The project received an Alpha 4
grade. Precise Visual Patterns is an ongoing collaboration
with EDP plc and applies visual modelling notations to the
problem of legacy system migration.

University of Brighton, School of Computing and
Mathematical Sciences (UB)
The team at the University of Brighton are all members of
the visual modelling research group in the School of
Computing and Mathematical Sciences. The principal
investigator at this site, Dr John Howse is Reader in
Mathematics and leads the group. His research focuses on
the development, formalisation and application, particularly
in object-oriented software development, of precise visual
modelling notations. He has taught courses to industry and
presented conference tutorials in visual modelling.

Howse is supported by Dr John Taylor and Dr Jean
Flower. Taylor is Head of the School and a topologist. For
the last three years, Howse and Taylor have collaborated in
the field of diagrammatic reasoning, extending the work of,
among others, Shin [67] and Hammer [51], in formalising
and developing sound and complete inference systems for
diagrammatic notations [16,23,24,25,26,27]. They have
also worked with Shin on ontological relationships between
abstract and concrete syntax in diagrammatic systems [22].
One of the aims of this project is to extend these results to
object-oriented constraint languages. Flower is an
algebraic topologist by training. She was appointed to a
Senior Lecturer post after obtaining an MSc with
distinction in Software Engineering from UB. Her MSc
project [9] focussed on the task of creating a concrete
representation of any given abstract diagram. It used
concepts from topology and graph theory to build a new
algorithm for creating concrete diagrams. The models were
implemented in Java. This work has been extended in
collaboration with Howse [10].

The UB named researcher is Fernando Molina. His
PhD thesis [33] has recently been accepted, subject to
minor amendments. He worked, under the supervision of
Howse and Taylor, on developing sound and complete
diagrammatic reasoning systems for extended Venn-Peirce
systems, and already has five refereed publications
[23,24,25,26,27].

University of Kent, Computing Laboratory (UKC)
The team at the University of Kent are drawn from two
research groups in the Computing Laboratory: software and
systems engineering and theoretical computer science. The

principal investigator at this site, Dr Stuart Kent is a
Senior Lecturer and leads the software and systems
engineering group. His current research focuses on the
development and application of precise, visual modelling
notations in systems development [28,29,19,31,32]. Much
of this work has been supported by the EPSRC
[GR/M02606]. He is the inventor of constraint diagrams
[28] and, with Howse, constraint trees [31]. Kent is a
recognised expert in the UML. He is closely involved with
the current effort to revise UML to version 2.0. This has
been informed by earlier work [7,5], and is being supported
financially by Rational Software. Combined with his
experience as a consultant to industry, and recent award of
a Royal Society Industry Fellowship (to work with IBM on
modelling e-business systems), this makes him well placed
to transfer results of the proposed work to industry,
including the ongoing UML standardisation effort and
OMG initiatives on model driven development. Kent is on
the programme committee for various international
conferences, including the International Conference on
UML and the IEEE symposium on Visual Languages and
Formal Methods. He was conference chair for
«UML»’2000 [8].

Kent is supported by Dr Peter Rodgers and Prof
Simon Thompson, to provide expertise in developing tools
to support diagrammatic systems and in automated
reasoning, respectively. Rodgers is a Lecturer and member
of the theory group. His current research involves
developing and analysing visual tools for editing, laying
out and rewriting diagrams. His most recent work includes
the graph drawing by graph rewriting system supported by
a recent EPSRC grant (GR/M23564) [38,37], which builds
on his background in diagram tools, including the
production of experimental diagrammatic visualisation
systems for natural language processing [11] and novel
visual languages for querying graph databases [36].
Rodgers has related research in the area of novel genetic
algorithm based graph layout techniques [21]. Thompson
is Professor of Logic and Computation and leads the theory
group. His work has included logical modelling of
functional programming languages and machine assisted
verification of functional programs [39,20]. An interest in
applying formal methods has led to the application of
temporal logic to the modelling of multimedia systems
[3,40] and the use of semantic tableaux as decision
procedures for these logics [4]. Current EPSRC funding
[GR/M37851] supports his work on integration of
computer algebra systems and reasoning tools [34,41].

The UKC named researcher is David Akehurst. His
PhD thesis has been recently accepted, subject to minor
corrections, and he is now employed on a limited contract
as a research fellow by the University. An aspect of
Akehurst's PhD [1] involved the definition of visual
languages using an OO meta-modelling approach [2], and
the partially-automated development of editors for those
languages from such a definition.

The UKC team will also benefit from the expertise of
Steve Cook who is a Visiting Professor at UKC. Cook is a
Distinguished Engineer in IBM and a member of the IBM
Academy of Technology, a group of 300 of IBM's top
technical leaders from around the world who are working
in research, hardware and software development,

 2

manufacturing, applications, and services. Cook co-
developed the Syntropy OO method [6]. He has been
involved in the development of the Unified Modeling
Language (UML) since its creation (he was responsible for
the inclusion of OCL), and represents IBM in the
development of new versions of that and related standards.
Cook will bring an industrial perspective to the proposed
research, and will help disseminate results within IBM and
in industry forums, such as the OMG.

Selected Publications
The following list contains selected publications from the
project team; a further list of general references can be
found at the end of the case for support.

1. Akehurst D (2001) Model Translation: A UML-based
specification technique and active implementation approach;
Ph.D Thesis, Dept of Computer Science, University of Kent.

2. Akehurst D, (2000) An OO visual language definition
approach supporting multiple views (extended abstract), in
Proc. IEEE Symposium on Visual Languages (VL2000),
Seattle, IEEE Computer Society Press.

3. Bowman H, Cameron H, King P, Thompson S (2000)
Specification and Prototyping of Structured Multimedia
Documents Using Interval Temporal Logic, in Advances in
Temporal Logic, H Barringer et. al., eds, Kluwer Academic
Publishers.

4. Bowman H, Thompson S (1998) A tableau method for
interval temporal logic with projection, in TABLEAUX'98,
International Conference on Analytic Tableaux and Related
Methods, LNAI 1397, pages 108-123. Springer-Verlag.

5. Clark T, Evans A, Kent S, Brodsky S, Cook S (2000) A
Feasibility Study in Rearchitecting UML as a Family of
Languages using a Precise OO Meta-Modeling Approach,
Version 1.0. September 2000, available from www.puml.org.

6. Cook S and Daniels J (1994) Designing Object Systems: OO
modelling with Syntropy, Prentice Hall.

7. Evans A and Kent S (1999) Core Meta-Modelling Semantics
of UML: The pUML Approach. In Procs UML'99. IEE Press.

8. Evans A, Kent S, Selic B (eds.) (2000) Proceedings of
«UML»’2000, LNCS 1939, Springer Verlag.

9. Flower J (2000) Generating Constraint Diagrams, MSc
dissertation, University of Brighton.

10. Flower J, Howse J (2001) Generating Euler Diagrams,
submitted to Graph Drawing 2001.

11. Gaizauskas R, Rodgers P, Humphreys (2001) Visual Tools
for Natural Language Processing, To appear in The Journal
of Visual Languages and Computing, 38 pages.

12. Gil J, Howse J, Kent S (1999) Constraint Diagrams: a step
beyond UML, Proc. TOOLS USA 1999, IEEE Computer
Society Press, 453-463.

13. Gil J, Howse J, Kent S (1999) Formalising Spider
Diagrams, Proc. IEEE Symp on Visual Languages (VL99),
IEEE Press, 130-137.

14. Gil J, Howse J, Kent S (2000) Advanced Visual Modelling:
Beyond UML, tutorial presented at ICSE’2000, TOOLS
Europe 2000, ECOOP’2000, and VL 2000.

15. Gil J, Howse J, Kent S (2001) Towards a Formalization of
Constraint Diagrams, submitted to Visual languages and
Formal Methods (VLFM) 2001.

16. Gil J, Howse J, Kent S, Taylor J (2000) Projections in
Venn-Euler diagrams, Proc. IEEE Symposium on Visual
Languages (VL2000), Seattle, IEEE Computer Society Press,
119-126.

17. Gil J, Howse J, Tulchinsky E (2000) Positive semantics of
projections in Venn-Euler diagrams, Proc. Diagrams 2000,
Edinburgh, LNAI 1889, Springer-Verlag, 7-25.

18. Gil J, Howse J, Tulchinsky E (2001) Positive semantics of
projections, accepted for the Journal of Visual Languages
and Computing. To appear.

19. Gil J, Kent S (1998) Three Dimensional Software
Modelling. In Proceedings of ICSE98. IEEE Press.

20. Hill S, Thompson S (1995) Miranda in Isabelle. In
Lawrence C. Paulson, editor, Proceedings of the first Isabelle
Users Workshop, No. 397 in University Of Cambridge
Computer Laboratory Technical Reports Series, pages 122-
135.

21. Hobbs M, Rodgers P (1998) Representing space: A hybrid
genetic algorithm for aesthetic graph layout, FEA’98:
Frontiers in Evolutionary Algorithms, Appears in Proc.
JCIS’98 volume 2, pages 415-418.

22. Howse J, Molina F, Shin S-J, Taylor J (2001) Type-syntax
and Token-syntax in Diagrammatic Systems, submitted to
Formal Ontology and Information Systems FOIS 2001.

23. Howse J, Molina F, Taylor J (2000) A sound and complete
diagrammatic reasoning system, Proc. Artificial Intelligence
and Soft Computing (ASC 2000), Banff, 402-408.

24. Howse J, Molina F, Taylor J (2000) On the completeness
and expressiveness of spider diagram systems, Proc.
Diagrams 2000, LNAI 1889, Springer-Verlag, 26-41.

25. Howse J, Molina F, Taylor J (2000) SD2: A sound and
complete diagrammatic reasoning system, Proc. IEEE Symp
on Visual Languages (VL2000), IEEE Press, 127-136.

26. Howse J, Molina F, Taylor J, Kent S (1999) Reasoning
with Spider Diagrams, Proc. IEEE Symposium on Visual
Languages 1999 (VL99), IEEE Press, 138-147.

27. Howse J, Molina F, Taylor J, Kent S, Gil J (2001) Spider
Diagrams: A Diagrammatic Reasoning System, accepted for
the Journal of Visual Languages and Computing. To appear.

28. Kent S (1997) Constraint Diagrams, Procs OOPSLA 97.
29. Kent S, Gil J (1998) Visualising Action Contracts in OO

Modelling. In IEE Proceedings: Software, 2-3 in 145, 70-78.
30. Kent S, Howse J (1999) Mixing Visual and Textual

Constraint Languages, Proceedings of UML99.
31. Kent S, Howse J (2001) Constraint Trees, in Clark A.,

Warmer J. (eds.) Advances in Object Modelling with OCL,
Spinger Verlag (to appear)

32. Lauder A, Kent S (1998) Precise Visual Specification of
Design Patterms. In Procs ECOOP98, 114-134. Springer.

33. Molina F (2001) Reasoning with Extended Venn-Peirce
diagrammatic Systems. PhD thesis, University of Brighton.

34. Poll E, Thompson S (2000) Integrating Computer Algebra
and Reasoning through the Type System of Aldor, in H
Kirchner and C Ringeissen, editors, Frontiers of Combining
Systems: Frocos 2000, LNCS 1794, 136-150. Springer.

35. Rodgers P (1998) A Graph Rewriting Programming
Language for Graph Drawing, VL98: Proc. of the 14th IEEE
Symposium on Visual Languages, IEEE Computer Society.

36. Rodgers P, King P (1997) A Graph Rewriting Visual
Language for Database Programming, The Journal of Visual
Languages and Computing, 8(6) pp. 641-674.

37. Rodgers P, Vidal N (1999) Pragmatic graph rewriting
modifications, VL99: 1999 IEEE Symposium on Visual
Languages, pp. 206-207. IEEE Computer Society.

38. Rodgers P, Vidal N (2000) Graph Algorithm Animation
with Grrr, Agtive99: Applications of Graph Transformations
with Industrial Relevance, LNCS 1779 pp. 379-394.
Springer.

39. Thompson S (1995) A Logic for Miranda, Revisited, Formal
Aspects of Computing, (7), March 1995.

40. Thompson S (2000) Constructive Interval Temporal Logic
in Alf, in Advances in Temporal Logic, H Barringer et. al.,
eds, Kluwer Academic Publishers.

41. Thompson S (2000) Logic and dependent types in the Aldor
Computer Algebra System, in Procs Calculemus 2000, M
Kerber and M Kohlhase eds, A.K. Peters (to appear).

3

Reasoning with Diagrams: Proposed Research
1. Introduction
The problem that this research proposal addresses is how to
reason with a combination of diagrammatic and textual
constraint notations, in the context of modelling software
intensive systems. Declarative, constraint-based languages
are becoming increasingly important, as organizations
struggle to define high level models capturing policy
constraints and business rules. Furthermore, the preferred
approach in industry to defining modelling languages is to
use a meta-modelling approach. This has come to mean that
definitions are expressed as object models using a
combination of class diagrams and constraints, the latter to
express well-formedness conditions. Examples of languages
defined in this way include the Unified Modelling Language
(UML) [60] and emerging e-business languages [46]. Meta-
modelling will increase in importance, as domain specific
modelling languages proliferate (see e.g. all the work on
UML profiles at the OMG [69]).

Experience suggests that practitioners find constraints
hard to read, write and analyse, and this can lead to
incompleteness and inconsistency of models. Opinion is
divided on why this might be. It certainly seems that
different people prefer different styles of notation
(mathematical, textual, visual) depending on their
background. The mathematical style of notation typically
used in formal methods has sometimes been blamed for
their limited uptake in industry, who, it is said (see e.g.
[71]), tend to prefer visual and/or programming style
notations. Certainly, we agree with Parnas [62] that more
attention needs to be paid to notation. Another reason could
be the limited availability of useable tools for analysing
models with constraints. Making an analysis tool useable is
not just a matter of ensuring it is well tested and providing a
friendly GUI. There are other factors at play. For tools to be
accepted they must work in harmony with notations in
widespread use, such as the UML. In particular, it must not
be necessary to learn a completely different language, such
as an underlying mathematical notation, to work with the
analysis tool; feedback should be provided through the
notations that the modeller is using.

The focus of the proposed research is a set of textual
and diagrammatic notations for expressing constraints on
object models. The main body of the programme will focus
on notations suitable for expressing static constraints. There
is a final objective to consider the feasibility of extending
the framework to notations for expressing dynamic
constraints. We will apply techniques drawn from the
diagrammatic reasoning and tableau communities to
develop sound and complete systems for reasoning with the
notations in isolation and in combination. The two
significant challenges here are to develop rules that work
directly through the diagrammatic notations, not by
translation to some underlying textual notation (see e.g.
[25,22] for why these are different); and to develop
techniques that support reasoning with the notations in
combination. We will also develop a family of prototype
tools based on the reasoning systems developed; here effort
will be focussed on ensuring that reasoning is directed
through the notations that the modeller is using, and that
feedback is also provided through these notations. The work
will be evaluated both analytically and through industry
case studies and user trials.

The work is timely for two reasons. Constraint
notations are becoming increasingly important in modelling
software systems, and in defining the modelling languages
themselves (meta-modelling); there is growing interest in
model driven approaches to software development. The
interest in model driven approaches is exemplified by the
OMG’s recent adoption of Model Driven Architecture
(MDA) [68] as its strategic technical framework. This
proposes to drive systems development from platform-
independent UML-like visual models. To succeed, it will
require modelling languages to be precise and supported by
powerful analysis techniques and tools; but not at the cost of
rendering those languages inaccessible and unintuitive to
practitioners.

The proposed team is ideally positioned to carry out the
work. The investigators have a strong track record in the
main areas of expertise required: diagrammatic reasoning,
visual modelling, logic and automated reasoning, tools for
diagram manipulation and visualisation. The named RA’s
have recently completed their PhD theses in areas directly
relevant to the proposal. Through Cook and Kent at UKC,
the team has unrivalled access to practitioners in industry,
that will both inform the research and allow the results to be
disseminated quickly and effectively.

2. Scientific and Technological Background
Diagrammatic reasoning
Diagrams have always been used informally in the context
of software modelling Although some notations, such as
statecharts and petri nets have received more formal
treatment, this tends to be focussed on the use of diagrams
to define and visualise operational behaviour. Work on
reasoning about diagrams expressing logical constraints has
emerged from renewed interest in diagrams for expressing
set-theoretic properties. In 1994, Shin [67] demonstrated
that diagrammatic reasoning systems could be provided
with the logical status of sentential systems. She presented
formal systems of Venn-Peirce diagrams which admit
purely diagrammatic reasoning and she proved these
systems to be both sound and complete. We extended this
work to spider diagrams [13,27], which are a subset of the
constraint diagram notation, and an extension of the Venn-
Peirce systems investigated by Shin. Spider diagrams are
given model-theoretic interpretations, defining semantic
functions that interpret diagrammatic elements as sets or set
elements. Sound and complete diagrammatic inference rules
have been developed for several systems of spider diagrams
[23,24,25,26].

The proposed research will extend this work to
constraint diagrams [28,15], which, using arrow notation,
extend spider diagrams to show relations between sets and
their elements. They also include symbols for universal and
existential quantification over elements of sets. These
extensions are required for the resulting notation to be
useable for practical modelling purposes. For example,
constraints written in the context of object-oriented models
make frequent use of navigation expressions [71]. Arrow
notation in constraint diagrams is used to visualise
navigation expressions [28]. The proposed research will
discover whether the techniques used to reason about
diagrams expressing only set-theoretic properties can be

4

adapted to more expressive notations such as constraint
diagrams.

Semantic tableaux and model checking
There are at least two ways of exploring the meaning of a
model: reason about the consequences, using some set of
reasoning rules, such as the diagrammatic reasoning rules
introduced above; and by exploring examples (instances)
and counter-examples. The latter involves both checking
supplied examples against a model, and generating
examples. Checking is relatively simple to effect. A
mechanism for generating examples is semantic tableaux.
When using tableaux to check the validity of a formula, one
can read off a counter-example in the case of failure [59]. A
tableau can also be used to construct examples which do
satisfy the model. Our programme will develop tableau
systems alongside the diagrammatic reasoning rules to
support analysis by example.

Another approach to example generation is model
checking [44]. This technique has been successfully applied
to an object modelling language [55], although its use has
required some limits on what can be expressed in the
language. Our programme will explore the applicability of
using such techniques with the mix of notations being
considered, focusing, in particular, on the practical
implications of limiting expressiveness and requirement that
feedback of any analysis should be provided through the
notations being used.

Reasoning & visualisation tools
The programme will develop prototype tools based on the
two styles of reasoning system. Tools to support the first
style of reasoning fall into two broad categories: those
which assist a user to build a proof [49,53] using the
designated rules and those which construct proofs
automatically [61,72]. We will consider both. A variety of
tools founded on semantic tableaux are available as both
stand-alone systems and as components of larger reasoning
packages [45]. Tools to support model checking are also
available and have been used to analyse object models [55].

Most work on automated reasoning tools has focused
on mathematical, text-based notations. The focus in this
project on diagrammatic notations brings with it
complications that are not evident in a pure text-based
approach. Specifically, we believe that analysis tools will be
of most practical value if they can be manipulated through
the notations employed by the modeller. Feedback of results
must also be delivered through those notations. This means
that account must be taken of issues such as diagram
visualisation, including layout, and editing.

There are various diagram editing frameworks
available, for example Graphlet [52]. They each offer
various combinations of facilities and flexibility. Recent
work in UML diagram layout such as [63,66] has particular
relevance to this proposal, as does the work in displaying set
based information and Venn diagrams, such as [50,56].

Generic frameworks will not by themselves provide a
complete solution in supporting diagrammatic reasoning.
They will have to be tailored to take account of the specifics
of the languages being used, including rules on what
constitutes a well formed expression. For example, (bad)
experience of drawing constraint diagrams in generic tools
has led to the development of a specialised editor [48]
which has inbuilt knowledge of the notation. It will also be
important to support an incremental approach to

parsing/production [47,1], so that incremental changes to
either a concrete expression or its abstract representation
can be reflected in the other dynamically.

Industry modelling notations
The inspiration for constraint diagrams emerged from a
desire to express, in a visual way, constraints on object-
oriented models that hitherto could not be expressed visually
using existing notations such as those found in the UML.
They have been designed to work in combination with UML
notations.

As well as providing a treatment of constraint diagrams
as a modelling notation in their own right, our programme
will use them to provide a bridge between the work on
diagrammatic reasoning and notations used in industry for
software modelling. Specifically, we will focus on the
relationship between constraint diagrams and various UML
notations currently used to express constraints on object
models. The Object Constraint Language (OCL) [71,60] is a
textual notation that is part of the UML standard [60]. It is
intended to be a precise language mainly for the expression
of invariants and pre/post conditions. Some work has been
done on the formalisation of OCL, for example [64], and
there are now both commercial [42] and research tools [65,
54] to support it. [42] treats OCL as a query language onto a
database, [65] checks examples (object diagrams) to see if
they satisfy OCL constraints, [54] type checks OCL and
generates code for checking constraints in Java as part of the
testing process.

There are some issues concerned with the definition of
OCL that are being addressed as part of the revision of
UML to version 2 [70]. This should take account of the
many issues raised in attempts to formalize the language,
and provide better integration with UML.

All of this work assumes the current concrete notation,
which claims to be more accessible to practitioners than the
mathematical symbols typically employed in formal
methods. There is only hearsay evidence that the OCL
syntax is more accessible. Many experienced constraint
writers have complained that it is unnecessarily asymmetric
and verbose. Apart from [65] and [42], little work has been
done on the analysis of models involving OCL constraints.
These tools only support checking of manually produced
examples against such models.

OCL constraints are written in context of a UML class
diagram [60], which provides both a vocabulary (classes
and associations) and constraints on the cardinality of links
that any object may have through a particular kind of
association. An object diagram shows a particular
configuration of objects at a particular point in time. A
UML collaboration (which should not be confused with a
collaboration diagram) on the other hand, attempts to
specify additional constraints on possible configurations of
objects that can not be specified by a class diagram. It does
this by introducing the notion of roles. UML collaborations
are intended to support the specification of object
interactions by providing a structural description of the
participants involved in that interaction. The use of
collaborations to visualise aspects of OCL constraints is
discussed in [43].

Constraint trees
Experience of using constraint diagrams, object diagrams
and collaborations suggests that there are some constraints
that are expressed much more concisely and intuitively

5

using them. However, it has also highlighted properties that
are, at best, awkward to express, without further textual
annotation [30] This has led to ideas on how to use the
visual notations in combination with textual languages and
each other using constraint trees [14,31]. Constraint trees
provide a modular framework in which to combine
constraint notations. The nodes of a constraint tree can be
logical assertions, in any notation, or logical connectives.
This allows the notation to be scaleable. Constraint trees
allow an ordering to be applied to the nodes; this is
important in resolving some problems in constraint
diagrams involving the ordering of quantifiers and issues of
circularity. [31] shows how object diagrams can be used to
visually express some aspects of a constraint, by using
constraint trees to embed object diagrams in OCL
constraints. It also explains how constraint trees provide a
scaleable mechanism for organising a constraint space, by
collapsing and expanding nodes.

The programme will use constraint trees as a vehicle for
developing systems that support reasoning using a
combination of diagrammatic and textual constraint
notations.

Dynamic constraints
Although the main part of the programme focuses on
notations for expressing static constraints, a final objective
is to investigate the feasibility of adapting the reasoning
framework to notations for expressing dynamic constraints.
Again, the notations will involve a combination of standard
UML notations (state and interaction diagrams) with more
advanced proposals. For example, [29,19] show how
constraint diagrams can be incorporated into 3D languages
to express constraints on dynamic behaviour. [29] explains
how a pair of constraint diagrams may provide the top and
bottom faces of a contract box, which can be used to
express the pre/post conditions on an operation or action.
[19] shows how these boxes may be stacked up to specify
algorithms and complete traces of behaviour. [19] also
shows how UML state and sequence diagrams can be
regarded as providing a filtered perspective on the richer 3D
models.

We are also aware of related ongoing work in the
recently funded EPSRC project [GR/R16891] at Edinburgh
(Bradfield and Stevens). One aim of this project is to
provide temporal and concurrent extensions to OCL, within
the style of the current OCL syntax. We will communicate
with this team to investigate the feasibility of whether/how
the proposed extensions could be combined with notations
for visualising dynamic constraints, and supported by
reasoning systems such as those described in this proposal.

3. Programme
Aim & objectives
The aim of the research programme is to develop a
framework to support reasoning with a combination of
diagrammatic and textual constraint notations, suitable for
use by practitioners. The specific objectives are:
(i) To develop sound and complete systems of rules for

individual diagrammatic and textual constraint
notations.

(ii) To develop a framework to support reasoning about
constraints expressed using a combination of notations.

(iii) To prototype a family of tools to support reasoning
with a combination of notations.

(iv) To establish the feasibility of extending the formal
framework and tools to handle dynamic constraints.

The individual notations that will be considered are: OCL,
UML class diagrams, UML Object diagrams, UML
collaborations and constraint diagrams. OCL is the textual
constraint language that is part of UML. OCL expressions
appear in the context of a class diagram. A class diagram
can also be used to impose cardinality constraints on
associations. Object diagrams and collaborations can be
used to notate prototypical examples, providing a limited,
though diagrammatic, alternative to some aspects of OCL.
Constraint diagrams visualise a significant subset of OCL
and provide a direct link to ongoing work in the
diagrammatic reasoning community. In addition, the
programme will consider constraint trees to provide a
vehicle for combining and interchanging the other notations.

Evaluation
The programme will be evaluated by the degree to which
the main three objectives (i)-(iii) have been met. In addition,
separate work items are included in the work plan to
evaluate the usability of the notations, reasoning systems
and tools. The fourth objective will be addressed depending
on the success in tackling objectives (i)-(iii) and on the
results of the usability evaluation.

Work plan
The research is split into a number of work items for each
objective. There are two further work items to evaluate the
usability of the framework that will be developed. In the
descriptions below, our approach to tackling each work item
is outlined. It assumed that there will be an element of
dissemination (writing papers, attending conferences etc.)
involved with each work item. A separate section discusses
the relative timing of work items and allocation of staff
resources.

(i) To develop sound and complete systems of rules for
individual diagrammatic and textual constraint
notations.

a) Formalise individual notations. We will continue with
the approach adopted to formalise spider and
constraint diagrams [13][15], but taking more care to
distinguish between concrete and abstract syntax
(respectively token and type syntax in [22]).
Semantics will be provided by a mapping from
abstract syntax to a semantics domain that is common
to all notations. We will also define concrete
diagrammatic and textual representations for
semantics domain elements. This will allow examples
to be presented concretely. We will define OCL in a
similar way, noting that its concrete syntax is textual.
Our formalisation of OCL will be based on recent
work in this area [64].

b) Develop reasoning rules for individual notations. We
will use similar techniques developed for spider
diagrams to develop systems of rules for each of the
diagrammatic notations. We will prove soundness, and
completeness where possible. It is unlikely we will be
able to develop complete systems for object diagrams
and collaborations, which are notations suitable only
for visualising certain aspects of constraints. We do
not expect significant problems in defining a set of

6

rules for OCL, which will be similar to the rules for
FOPL.

c) Develop tableau rules for individual notations. We
will adapt existing tableau systems for FOPL to OCL.
Developing tableau systems for diagrammatic
notations will be more challenging, as we would like
the rules to work directly through the diagrams, not by
translation to some underlying textual notation.

(ii) To develop a framework to support reasoning about
constraints expressed using a combination of
notations.

a) Formalise constraint trees. A similar approach to (i-a)
will be adopted. A definition of concrete and abstract
syntax will be required, which allows expressions
from each of the individual notations to be plugged in.

b) Develop reasoning rules for constraint trees. A similar
approach to (i-b) will be adopted. The challenge will
be to define reasoning rules that allow notations nodes
in a constraint tree to be expanded and collapsed, and
that allow constraints expressed in one notation to be
transformed into another.

c) Develop tableau rules for constraint trees. As (ii-b),
though, of course, following the approach of (i-c).

(iii) To prototype a family of tools to support reasoning
with a combination of notations.

a) Develop viewers and editors for individual notations,
and the semantics domain. We will encode the
definitions of the concrete and abstract syntax for each
notation, and implement the mapping between them
using a dynamic, incremental approach. Visualisation
and interaction with the concrete syntax will be
implemented using an appropriate diagram editing
framework. We will also encode an abstract
representation of the semantics domain for the
notations, a concrete notation for that domain, and the
mapping between the two. A viewer/editor for the
semantics domain is required to support exploration
by example (ii).

b) Develop tools to support reasoning with each
individual notation. This will involve 3 tasks:
implement the systems of rules developed in (i-b), for
each notation; tie this system to the viewers and
editors in (iii-a); adapt approaches to heuristics and
tactics [57,58] to automate aspects of the reasoning
process.

c) Develop example exploration tools for each individual
notation. We will provide an encoding of the formal
definition of each notation to support checking of
user-provided examples against constraints written in
each of the notations. Examples will be input through
editors for the semantics domain developed in (iii-a).
We will implement the tableau systems developed in
(i-c), which can then be used as a basis for exploring
how to automate aspects of example generation. We
will define and implement a mapping of each notation
to a form suitable for input to a model-checker, being
careful to deliver feedback via the viewers (iii-a).

d) Develop viewers and editors for constraint trees. This
will follow a similar approach to (iii-a), noting that the
tools will need to support the ability to visualise and
editing of the contents of nodes using one of the
individual notations.

e) Develop tools to support reasoning with constraint
trees. This will follow a similar approach to (iii-b), but
using the rules defined in (ii-b). It should be possible
to implement heuristics/tactics over notation
interchange rules that effect automatic translation
between different notations within a node.

f) Develop example exploration tools for constraint
trees. This will follow a similar approach to (iii-c), but
using the tableau rules defined in (ii-c).

(iv) To establish the feasibility of extending the formal
framework and tools to handle dynamic constraints.

a) Define fragments of dynamic constraint notations. We
will select from those notations mentioned in the
background, being careful to choose some of the more
risky notations to identify potential problems.

b) Define reasoning and tableau rules for these
fragments.

c) Trial the implementation of editors, viewers and
reasoning tools for these fragments.

(v) Evaluation
a) Analytical evaluation. We will use techniques inspired

by [73] to provide an analytical evaluation of the
framework produced by the project. These require the
analyst to make measurements and, sometimes,
judgements against a set of benchmarks designed to
assess factors such as understandability and
scalability. Some of the techniques are applicable to a
notation on its own, and some to a notation embedded
in a tooled environment. We expect that we will need
to adapt and extend these benchmarks for evaluating
our reasoning framework.

b) Case studies and user trials. We will use examples and
case studies sourced through our industry contacts to
try out the framework as it develops. In particular, we
expect to use meta-modelling examples (e.g. UML 2),
and examples taken from models for specifying
aspects of e-business systems. The latter relates to
work to be undertaken by Kent on his industry
fellowship in collaboration with IBM. It is beyond the
scope and resources of the proposed project to conduct
a full user-trial. However, efforts will be made to
obtain feedback from practitioners and students on the
usability of the framework.

Resource and Time Management
The diagrammatic workplan indicates the period over which
each work item is expected to run and gives some indication
of which work items will be resourced by which teams. The
work items have been carefully ordered as follows:
• The work items are staggered, where, discounting the

evaluation work items which will be ongoing for most
of the project, no site will be putting significant
resource into more than three concurrent items.

• Although not shown, it is assumed that work items will
tail off as new items start up.

• The ordering of work items observes the logical
dependency between items. Items overlap to enable
cross-fertilisation between related tasks (e.g. work on
reasoning tools overlaps with the definition of
reasoning rules).

• Work on reasoning rules can begin from the start, as
appropriate definitions of some notations, which do not
yet have complete reasoning systems, already exist. For

7

example, constraint diagrams are at least partially
defined [15].

• Work on tools can begin from the start of the project, as
some notations are already defined sufficiently for
visualisation and editing tools to be constructed [(iii-
a)]. It will also be necessary to get together resources
such as a diagram editing framework.

Staff will be allocated to work items, balancing the
particular skills they bring to the project, the amount of time
they can spend, and the need to communicate results
between the two university teams. One possible allocation is
given in the table below.

(i-a) UB team (Howse), Kent (UKC)
(i-b) UB team (Taylor)
(i-c) Thompson (UKC), Molina, Howse (UB)
(ii-a) UB team (Howse), Kent (UKC)
(ii-b) UB team (Taylor)
(ii-c) Thompson (UKC), Molina, Howse (UB)
(iii-a) Akehurst, Rodgers (UKC), Flower (UB)
(iii-b) Akehurst, Kent, Rodgers (UKC), Molina (UB)
(iii-c) Akehurst, Kent, Thompson (UKC)
(iii-d) Akehurst, Rodgers (UKC), Flower (UB)
(iii-e) Akehurst, Kent, Rodgers (UKC), Molina (UB)
(iii-f) Akehurst, Kent, Thompson (UKC)
(iv-a) UB team (Howse), Kent (UKC)
(iv-b) UB team (Howse), Thompson (UKC)
(iv-c) UKC team (Kent), Flower, Molina (UB)
(v-a) Flower, Molina (UB)
(v-b) Akehurst, Kent, Cook (UKC)

Here, Thompson’s and Rodger’s efforts are focussed in
areas where they can contribute most effectively,
tableau/automated reasoning and diagram viewers/editors,
respectively. As the architect of some of the notations, Kent
is also involved in their formalization. As someone with
expertise in visualising constraint diagrams, Flower will
contribute to the viewer/editor work. Some work items
involve members from each team, thereby facilitating the
transfer of ideas. Individuals in the UB team are more
interchangeable than those in the UKC team; therefore the
UB team has been allocated to some work items without
further distinction. The person leading each work item is
shown in bold. In most cases, this person comes from the
team providing most of the resource. There is one
exception: Thompson leads the work on developing tableau
rules, as he has most expertise in this area; however, UB, in
particular Molina the RA, will put in most effort.

The two principal investigators, who have worked
together successfully before, will lead the project at the two
sites, and overall project management will be the
responsibility of Dr Howse, who has undertaken this role on
two previous EPSRC grants Formal Underpinnings of
Object Technology (GR/K67304, 1995-1999, also a two-site
project) and Developing and using formal models of
inheritance (GR/H16629, 1992-1995). Both projects
received the grade good for management and use of
resources.

Although Cook is not formally part of the team (he is a
visiting professor at UKC), he will contribute to the
industrial evaluation of the work through his position in
IBM. We aim to continue our collaboration with Dr Yossi
Gil from the Technion, Israel, who has worked with us on

constraint diagrams and on the development of 3D
notations.

4. Relevance to Beneficiaries
There are four main communities who will benefit from the
research:
• The Modelling community (including the UML and

Meta-Modelling communities). The project will provide
a framework for OO modelling using a mixture of
visual and textual constraint notations. This will be
supported by prototype reasoning and visualisation
tools. The results will push forward current thinking in
this community on what it is possible to express
visually, and in the kinds of (meta-)modelling tools it is
possible to construct. Our experience with this
community is that theory is more likely to be
understood and adopted if supported by tools.

• Diagrammatic Reasoning community. The project will
demonstrate whether and how the mathematical
techniques employed by this community scale up to
modelling notations required in practice.

• Automated Analysis and Reasoning communities. The
project will show whether and how reasoning tools can
be driven through diagrammatic notations, in isolation
or in combination with each other and with textual
notations.

• Users and developers of software intensive systems. By
using real examples provided by our industrial contacts,
we will be able to show the potential benefits and
limitations of our techniques and tools in dealing with
models of industrial-scale software intensive systems.
In the medium term, successful exploitation of the
results of the project will lead to more accurate and
complete models of software systems, and, through
meta-modelling, of standards such as UML. This
should lead to systems that are more reliable and fit for
purpose, which can be developed more rapidly through
a model driven approach.

5. Dissemination and Exploitation
The usual channels will be used for academic publication
including the conferences, Diagrams, VLFM, CADE,
TABLEAUX, TPHOLs, LICS, ETAPS, OOPSLA, ECOOP,
UML, TOOLS, ICSE, BMC; and journals, Journal of Visual
Languages and Computing, BCTCS, FACS, LMS Journal of
Mathematics & Computation, Journal of Logic and
Computation, Theoretical Computer Science, IEEE TSE.

It is our intention is to make the prototype tools freely
available under an appropriate license. This is standard
academic practice, and is being adopted in some industry
quarters (e.g. IBM’s alphaworks site). We will also provide
demonstrations at conferences and to our industrial contacts.

The work will be disseminated to the open standards
community in modelling languages, through Cook and
Kent’s close involvement with standardization and revision
of UML. Kent’s industry fellowship and Cook’s position in
IBM will provide additional routes for the dissemination of
the work to industry.

The ideas behind the tools should be exploitable, but
only as part of a larger venture in developing better
commercial tools to support modelling. Such a venture
could be in partnership with one of our industrial contacts
such as Rational or IBM. Exploitation need not be hindered

8

by making the research prototypes freely available; we will
seek advice about any patent issues that might arise before
taking this step.

6. Justification of Resources
Research Staff
One RA at each site. Molina’s (UB) background in
developing a sound and complete reasoning system for
spider diagrams is ideal for this project. Akehurst’s (UKC)
background in tool building, modelling and meta-modelling
is also well-suited.

Support
Support for the project will be provided by 10% of an
administrator at UKC, 20% of an administrator at UB (an
additional 10% as this is where overall management of the
project will be), and 10% of a technician at each site. A
charge for computing infrastructure for each RA has also
been included.

Travel
We expect the project to be successful, and therefore to
generate a significant number of papers. The travel budget
reflects this. The cost of conference trips has been averaged
out: worldwide trips usually cost more than £1500, and
European trips a little less. A modest budget has been
requested to support travel between the two sites, and with
other sites (e.g. Edinburgh, York, KCL) in the UK. We have
requested funds for two trips (1 per site) between the UK
and Israel to support collaboration with Dr Gil. We have
costed these trips at the same rate as conferences.

Equipment & Consumables
• A laptop, with accompanying docking station and

peripherals, for the RA at each site. Toshiba is standard
issue at both sites. We consider laptops to be standard
equipment for postdoc researchers, as their productivity
benefits amply justify their relatively low cost. A
docking station avoids the need to also purchase a
separate desktop machine.

• A contribution to the cost of laptops for the
investigators, at rate of 1/3rd laptop (with accompanying
peripherals) per investigator. It is now standard practice
to partially fund equipment for investigators from
research grants.

• Software and computing supplies at rate of £1500 per
machine, to include upgrades over the course of the
project, and £500 for books at each site.

• Computing infrastructure charge of £1500 per year per
research assistant. As usual, costs of computing
infrastructure for investigators is met by the institution
concerned.

7. References
42. Boldsoft (2001) The Model Run tool, available from

www.boldsoft.com.
43. Bottoni P, Koch M, Parisi-Presicce F, Taentzer G (2001) A

Visualization of OCL using Collaborations, submitted to
UML’2001.

44. Clarke E, Gumberg O, Peled D (1999) Model Checking, MIT
Press.

45. D'Agostino M (Editor) (1999) Handbook of Tableau
Methods, Kluwer Academic Publishers.

46. Edifecs (2001) E-business Collaboration Modeling
Metamodel, available from
http://www.edifecs.com/professional_services_docs.jsp

47. Ghezzi C, Mandrioli D (1980) Augmenting Parsers to Support
Incrementality; Journal of the ACM, Volume 27 Issue 3; July.

48. Gil J, Sorkin Y (2001) The Constraint Diagrams Editor,
http://www.cs.technion.ac.il/Labs/ssdl/research/cdeditor/

49. Gordon M, Melham T (1993) Introduction to Hol: A Theorem
Proving Environment for Higher Order Logic, Cambridge
University Press.

50. Graham M, Kennedy J, Hand C (2000) A Comparison of Set-
Based and Graph-Based Visualisations of Overlapping
Classification Hierarchies. Proc. Advanced Visual Interfaces
(AVI) 2000. ACM Press.

51. Hammer, E.M. (1995) Logic and Visual Information, CSLI
Publications.

52. Himslot M (1997) The Graphlet System, Proc. Graph
Drawing (GD) 96, LNCS 1190, Springer-Verlag.

53. HOL on the web.
http://www.cl.cam.ac.uk/Research/HVG/HOL/

54. Hussman H, Demuth B, Finger F (2000) Modular architecture
for a toolset supporting OCL. In [8].

55. Jackson D, Schechter I, Shlyakhter I (2000) Alcoa: the Alloy
Constraint Analyzer. In Proc. International Conference on
Software Engineering, Limerick, Ireland, June 2000.

56. Johnson D and Pollack H (1987) Hypergraph Planarity and
the Complexity of Drawing Venn Diagrams, Journal of Graph
Theory, 11.

57. Jones C, Jones K, Lindsay P, Moore R (1991) Mural: A
Formal Development Support System, Springer Verlag.

58. MacKenzie D. (1995) Automation of Proof: A Historical and
Sociological Exploration, Annals of the History of
Computing, Fall.

59. Negri S, von Plato J (1998) From Kripke Models to Algebraic
Counter-valuations, in TABLEAUX'98, Herrie de Swart (ed.),
Lecture Notes in Computer Science 1397, Springer Verlag.

60. Object Management Group (1999) OMG Unified Modeling
Language Specification, Version 1.3., available from
www.omg.org, June.

61. OTTER on the web. http://www-unix.mcs.anl.gov/AR/otter/
62. Parnas D (1996) Mathematical methods: What we need and

don’t need. In An invitation to Formal Methods, pages 16-30,
IEEE Computer, Vol 29 No 4, April.

63. Purchase H, Allder J, Carrington D (2000) User Preference of
Graph Layout Aesthetics: A UML Study, Proc. Graph
Drawing (GD), 2000 LNCS 1984, Springer-Verlag.

64. Richters M, Gogolla M (1998) On formalizing the UML
object constraint language OCL. In Proc. 17th Int. Conf. on
Conceptual Modeling (ER’98), LNCS 1507, Springer-Verlag.

65. Richters M, Gogolla M (2000) Validating UML models and
OCL constraints. In [8].

66. Seemann J (1997) Extending the Sugiyama Algorithm for
Drawing UML Class Diagrams: Towards Automatic Layout
of Object-Oriented Software Diagrams Proc. Graph Drawing
(GD) ‘97, LNCS 1353, Springer-Verlag.

67. Shin, S-J (1994) The Logical Status of Diagrams. CUP.
68. The OMG (2001) Executive Overview: Model Driven

Architecture. Available from http://www.omg.org/mda/
69. The OMG (2001) Work in progress,

http://www.omg.org/schedule/
70. The OMG (2001) UML 2.0 OCL Request for Proposals,

available from http://www.omg.org/uml
71. Warmer J, Kleppe A. (1999) The Object Constraint

Language: Precise Modeling with UML. Addison-Wesley.
72. Wos L with Pieper G (2000) A Fascinating Country in the

World of Computing: Your Guide to Automated Reasoning,
World Scientific.

73. Yang S, Burnett M, Dekoven E, Zloof M (1997)
Representation Design Benchmarks: A Design-Time Aid for
VPL Navigable Static Representations. In Journal of Visual
Languages and Computing 8, 563-599, Academic Press.

9

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

Q
1

Q
2

Q
3

Q
4

(i-a)
Form

alise individual notations

(i-b)
D

evelop reasoning rules for
individual notations

(i-c)
D

evelop tableau rules for individual
notations

(ii-a)
Form

alise constraint trees

(ii-b)
D

evelop reasoning rules for
constraint trees

(ii-c)
D

evelop tableau rules for constraint
trees

(iii-a)
D

evelop view
ers and editors for

individual notations
(iii-b)

D
evelop tools to support reasoning

w
ith individual notations

(iii-c)
D

evelop exam
ple exploration tools

for individual notations
(iii-d)

D
evelop view

ers and editors for
constraint trees

(iii-e)
D

evelop tools to support reasoning
w

ith constraint trees
(iii-f)

D
evelop exam

ple exploration tools
for constraint trees

(iv-a)
D

efine fragm
ents of dynam

ic
constraint notations

(iv-b)
D

efine reasoning rules for these
fragm

ents
(iv-c)

Trial the im
plem

entation of tools

(v-a)
A

nalytical evaluation
(v-b)

C
ase studies and user trials

Year 1
Year 2

Year 3

m
ostly resourced from

 U
B

m

ostly resourced from
 U

K
C

