
Interactive functional programs:

a method and a formal semantics

Simon Thompson

Computing Laboratory,

University of Kent at Canterbury, U.K.

October 2, 2003

Abstract

In this paper we present a model of interactive programs in a purely

functional style. We exploit lazy evaluation in the modelling of streams

as lazy lists. We show how programs may be constructed in an ad hoc

way, and then present a small set of interactions and combinators which

form the basis for a disciplined approach to writing such programs.

One of the difficulties of the ad hoc approach is that the way in which

input and output are interleaved by the functions can be unpredictable.

In the second half of the paper we use traces, i.e. partial histories of

behaviour, to explain the interleaving of input and output, and give a

formal explanation of our combinators. We argue that this justifies our

claim that the combinators have the intuitively expected behaviour, and

finally contrast our approach with another.

1 Introduction

This paper explains an approach to describing interactive processes in the lazy
functional programming language Miranda1[7].

Functional programming is based on expression evaluation, where expres-
sions will, in general, contain applications of system- and user-defined functions.
Lazy evaluation is a particular strategy for expression evaluation (as there is a
choice of the way in which we perform the process) which means that

• The values of arguments to functions are only evaluated when they are
needed.

• Moreover, if an argument is a composite data object, like a list, the object
is only evaluated to the extent that is needed by the function applied to

1Miranda is a trademark of Research Software Ltd.

1

it. One of the simplest examples of this is the head function (hd) on lists,
which necessitates the evaluation of only the first item in the argument
list.

The paper consists of two parts. In the first we develop our model of interactive
programs in the lazy Miranda system. Since the lazy evaluation strategy is
somewhat subtle, we were prompted to try to understand it using formal means
— the result is the second half of this paper.

In the first part, after an introductory discussion of lazy evaluation, we
introduce the type of interactions and present a number of examples. These
are developed in an ad hoc way, which may lead to unexpected interleaving
behaviour. We then present a small collection of primitives from which we can
build interactions in a disciplined way. We aim to avoid the unexpected by using
these primitives alone — despite that we still find there are subtle points which
need to be elucidated. This is the purpose of the second part of the paper.

In the second half we aim to give a foundation to the development of inter-
active processes under the lazy streams approach. We concentrate on a slightly
simplified type, which omits the state information included in the first half, since
the crucial interleaving properties of interactions can be studied more easily in
the simpler setting.

After giving a summary of our notation, we introduce, informally at first,
the idea of a trace. Traces describe the possible histories of a process (more
information about the use of traces to describe processes can be found in [3].)
One of the basic ideas in the first part was that of an ‘incomplete’ or ‘partial’
interaction — such interactions are the building blocks from which we build full
interactive processes. These are re-introduced in section 9 which is followed by
a discussion of lazy evaluation and our first attempt at a formal definition of
traces. As should be clear, we have tried to motivate the eventual definition of
traces by re-tracing our steps towards its final formulation. Section 11 contains a
note on the precise nature of print-driven evaluation; in section 12 we introduce
the formal definitions of weak pretraces and weak traces, following in section 13
with a number of examples.

To underline the fact that we are dealing with deterministic processes, we
prove a theorem in section 14 that all the processes described by our model are

deterministic. The proof is constructive, and shows, incidentally, how we derive
the (weak) trace set of a particular process.

Weak traces and pretraces contain sufficient information to describe the
behaviour of processes in isolation. Given that we combine processes to build
more complex ones, this may not be sufficient, and indeed we show that we have
to incorporate more information about termination into our description. This
is the aim of section 15, which supplies the definition of pretraces, traces and
terminal traces. We revisit our examples in the following section.

A fundamental process combinator is sq, which is intended to perform se-

quential composition of processes. In section 17 we describe how the trace sets

2

of two processes are combined sequentially. The subtlety of lazy evaluation
which we mentioned above manifests itself here — we see how termination and
laziness interact to given an interesting effect when processes are combined: the
laziness of reading allows some writing to “overtake” reading. Our definition of
sequential composition is justified in section 18 where we prove that sq imple-
ments sequential composition as described. This means that we can predict the
behaviour of interactive processes when placed in a (sequential) environment,
allowing us to write robust and reliable interactive programs in Miranda.
In the final section we draw some conclusions about the anomalies we found,
and the methodology which we recommended, and argue that it does indeed
lead to reliable programming. We also contrast our approach with that of the
FP/FL school, and finally make some acknowledgements.

We should stress that the trace method adopted here will be applicable
to any process (i.e. stream or lazy-list processing program) and not only to
interactive processes.

Part I

2 Lazy Evaluation

A feature of a number of modern functional programming languages such as
Miranda is that they embody lazy evaluation. By this we mean that arguments
are passed to functions unevaluated. If we look at the function const (from the
Miranda standard environment) defined thus

const a b = a

then the application
const (16 + 1) f

will return the result without the expression f being evaluated.

An argument is only evaluated if its valued is required by the func-
tion.

Suppose we say
dconst a b = a + a

and evaluate
dconst (16 + 1) b

we get the result 34. In deriving this we may have made no gain, as in evaluating

a + a

3

we may have replaced a single evaluation of 16+1 by two such. A näıve approach
to demand-driven evaluation might do this — under lazy evaluation we ensure
that the result of evaluating an argument is shared by all its instances.

A more subtle manifestation of lazy evaluation arises when we consider com-
posite arguments. Once we begin to evaluate a numerical argument, for instance,
we evaluate it completely. On the other hand, a composite argument may only
be evaluated partially. The simplest example is given by the function

hd (a : x) = a

which returns the first, or head, item a of a list (a : x). If we pass

nums 17

to hd when the function nums is defined by

nums n = n : nums (n + 1)

in order for the application to return the result 17 we only require the fact that
nums 17 evaluates partially to

17 : nums 18

By the effect illustrated above, lazy evaluation has an effect on the membership
of various of the data types of the language, such as lists. In the example above
we see that the infinite list nums 17 receives exactly the same treatment as a
finite list such as

[17, 18, . . . , 23]

In fact, in order for hd l to return 17 all that we need to know about l is that its
first member is 17 — the rest, or tail, of the list may be undefined. We usually
write ⊥ for the undefined list (indeed we write it for the undefined object of any
type). Using this notation we see that

hd (17 : ⊥) = 17

so partial lists, which have undefined final segments, are legitimate lists in our
lazy scheme of things.

Input and output are often thought of as streams. Given the discussion
above we can see that streams can be identified with lazy lists.

• The operation of testing whether a stream contains an item corresponds to
pattern matching the list with the pattern (a : x). In case this is successful,
the item will be bound to a and the remainder of the stream to x.

4

• On the other hand, given an item b, the stream

b : y

is a stream whose first element is b and whose remainder consists of y. We
can thus view the list construction operation “:” as an output operation,
placing an item onto a stream.

What is the effect of evaluating an expression such as

nums 17

or
nums′ 17 100

when
nums′ n m = [] , n > m

= n : nums′ (n + 1) m , otherwise

Output will be produced in an incremental fashion: first the first element of the
list will be evaluated and printed, then the second and so on. Portions of the
output will be printed before the evaluation is complete. In particular, if the
result being printed is a function application, the need to print will drive the
evaluation of the arguments to the function. As we hinted above, lazy evaluation
can be seen as a species of demand-driven dataflow. We discuss this latter fact
in the context of interactive programming in section 10 below.

3 A type of interactions

An interactive program is designed to read from a stream of input, and to write
to a stream of output. As we have already observed, we can view streams as
lists, so if we say

input == [char]

output == [char]

then the type of functions
input → output

forms a simple model of interactive processes. For instance, a process which will
double space its input can be written thus:

double−space (a : x) = a : double−space x , a ∼= newline

= a : a : double−space x , otherwise

double−space [] = []

and a process which simply copies (or echoes) its input is written

echo y = y

5

The equations we have just supplied describe how the output stream depends
upon the input stream. In an interactive context we are likely to be interested
not only in the input/output relation but also in the way that the two streams
are interleaved temporally, for example on a terminal screen. Recall that our
lists are lazy, and our discussion of the way in which lists are printed. We
mentioned in that account that output will begin to be produced as soon as is
possible, and that further output will be generated similarly, contingent upon
the presence of sufficient input. In printing the result of

echo stdin

(stdin denotes standard input), a character can be echoed as soon as it is typed
at the terminal, since an item will be placed on the output stream as soon as
it appears on the input stream. (Users of ‘real’ systems will perhaps observe
something different, as most terminals will buffer their input into lines before
transmitting it to a host. In such a situation echoing will happen as promptly
as possible, i. e. line by line.)

In most cases laziness has the effect which we would intend. Nonetheless, it
can have some unpredicted effects. We return to this in section 6.

Before we continue we should emphasise that our model is sufficiently pow-
erful to capture processes which have an internal state. A particular item on the
output stream will depend on the whole of the input stream which has thus far
been read, and so will depend on the whole history of the input to the process.
Just to give a brief example, we can write a program which either single or
double spaces its input, where $ is used to toggle between the two modes. The
function, which we call option−on, starts off in double spacing mode.

option−on (a : x) = option−off x , a =′ $′

= a : a : option−on x , a = newline

= a : option−on x , otherwise

option−off (a : x) = option−on x , a =′ $′

= a : option−off x , otherwise

4 Partial Interactions

An interactive process in isolation is specified by a function of type

input → output

which describes the form of the output in terms of the input. However in
general we wish to combine simple interactions into composite ones. If we think
of following one interaction by another, we need to be able to pass the portion
of the input stream unexamined by the first on to the second. Such partial

interactions must therefore return the unconsumed portion of the input stream

6

as a part of their results. These partial interactions will therefore be of type

input → (input, output)

Consider the example of an interaction which reads a line of input and outputs
its length.

line−len :: input → (input, output)

line−len in

= (rest, out)
where

out = show (#line)
(line, rest) = get−line [] in

get−line front (a : x)
= get−line (front ++ [a]) x , a ∼= newline

= (front, x) , otherwise

get−line is used to get the first line from the input stream. It returns a result
consisting of the line paired with the remainder of the input, rest. The first
parameter of get− line is used to accumulate the partial line, and show is a
function converting a number to a printable form.

We need to make one further refinement to the model. As we are now
contemplating building interactions from simpler components, we may want to
pass (state) information from one interaction to another. In general we think
of an interaction as being supplied with a value, of type ∗ say, on its initiation
and returning a value of a possibly different type, ∗∗ say, on termination. This
gives a general type of partial interactions

interact ∗ ∗∗ == (input, ∗) → (input, ∗∗, output)

To summarise

• Interactions are modelled by a function type, parametrised on two type
variables ∗, ∗∗.

• The domain type is (input, ∗) — items of this type are pairs consisting of

– input streams and

– initial state values.

• The range type is (input, ∗∗, output) — items from which are triples, con-
sisting of

– the portion of the input stream unexamined by the interaction,

– the final state value, and

– the output produced during the interaction.

7

There are natural examples of interactions for which ∗ and ∗∗ are different. For
instance, if get−number is meant to get a number from the input stream then
its natural type would be

interact () num

() is the one element type, whose single member is (), the empty tuple — its
use here signifies that no prior state information is required by the process.

To give an example of an interaction this type, we might consider modifying
line−len so that it will print an accumulated total number of characters after
each line, as well as the length of the line itself.

line−len−deluxe :: interact num num

line−len−deluxe (in, tot)
= (rest, newtot, out)

where

(line, rest) = get−line [] in

len = # line

newtot = tot + len

out = show len ++ show newtot

The state information passed in by the interaction is modified by the addition
of the current line length.

5 Combining Interactions

Up to this point we have considered ‘primitive’ interactions, built in an ad hoc

way. In this section we look at some functions which enable us to combine
interactions in a disciplined way, with the consequence that their interactive
behaviour will be more predictable.

First we introduce a number of basic interactions and then we present some
combining forms or combinators which build complex interactions from simpler
ones.

5.1 Basic Interactions

First, to read single characters we have

get−char :: interact ∗ char

get−char ((a : x), st) = (x, a, [])

and to write single characters,

put−char :: char → interact ∗ ∗

put−char ch (in, st) = (in, st, [ch])

8

We can also perform ‘internal’ actions, applying a function to the state value:

apply :: (∗ → ∗∗) → interact ∗ ∗∗

apply f (in, st) = (in, f st, [])

These are three atomic operations from which we can build all our interactions
using the combinators which follow. That these are sufficient should be clear
from the fact that they give the atomic operations on input, output and internal
state, respectively.

5.2 Sequential Composition

The type of the sequential composition operator sq is

interact ∗ ∗∗ → interact ∗∗ ∗∗∗ → interact ∗ ∗∗∗

sq first second should have the effect of performing first and then second, so

sq first second (in, st)
= (rest, final, out−first ++ out−second)

where

(rem−first, inter, out−first) = first (in, st)
(rest, final, out−second) = second (rem−first, inter)

first is applied to (in, st) resulting in output out−first, new state inter and
with rem−first the remainder of the input. The latter, paired with inter, is
passed to second, with result

(rest, final, out−second)

The input remaining after the composite action is rest, the final state value
is final and the overall output produced is the concatenation of the output
produced by the individual processes,

out−first ++ out−second

and so we return the triple of these values as the result of the combination. We
explore the precise interleaving behaviour of this combinator in the second part
of this paper.

5.3 Alternation and Repetition

To choose between two alternative interactions, according to a condition on the
initial state, we use the alt combinator, which is of type

cond ∗ → interact ∗ ∗∗ → interact ∗ ∗∗ → interact ∗ ∗∗

9

alt condit inter1 inter2 (in, st) = inter1 (in, st) , condit st

= inter2 (in, st) , otherwise

cond ∗ == ∗ → bool is the type of predicates or conditions over the type ∗.
The effect of alt is to evaluate the condition on the input state, condit st, and
according to the truth or falsity of the result choose to invoke the first or second
interaction.
The trivial interaction

skip :: interact ∗ ∗
does nothing

skip (in, st) = (in, st, [])

(Observe that we could have used apply to define skip since it is given by
apply id). Using sq, alt, skip and recursion we can give a high level definition
of iteration:

while :: cond ∗ → interact ∗ ∗ → interact ∗ ∗

which we define by

while condit inter

= loop

where

loop = alt condit (inter $sq loop) skip

‘Depending on the condition, we either perform inter and re-enter the loop or we
skip, i.e. do nothing to the state and terminate forthwith.’ Note, incidentally,
that we have prefixed sq by $ to make it an infix operator. Using while we can
define a repeat loop:

repeat :: cond ∗ → interact ∗ ∗ → interact ∗ ∗

repeat condit inter

= inter $sq (while not−condit inter)

where

not−condit = (∼).condit

∼ is the boolean negation function, so that not−condit is the converse of the
condit condition.

5.4 Using the combinators

In this section we give an example of a full interaction, that is an interaction of
type

input → output

10

which is built from partial interactions using the combinators. The program
inputs lines of text repeatedly, until a total of at least one thousand characters
has been input,at which point it halts. After each line of input the length of
the line and the total number of characters seen thus far is printed. Define the
numerical condition

sufficient n = (n >= 1000)

now if

rep−inter :: interact num num

rep−inter = repeat sufficient line−len−deluxe

we can define our full interaction,

full−inter :: input → output

by

full−inter in

= out

where

(rest, final, out) = rep−inter (in, 0)

It should be obvious why we have chosen the starting value for the state to be
zero, since no characters have been read on initiation of the process.

6 Two Cautionary Examples

We mentioned that interaction functions that we define may not always behave
as we expect. The two examples we present here illustrate two different ways
in which that can happen.

6.1 Pattern Matching

Pattern matching can delay output. We might write a function which prompts
for an item of input and then echoes it thus:

try (a : x) = ”Prompt : ” ++ [a]

Unfortunately, the prompt will only be printed after the item has been input.
This is because the evaluator can only begin to produce output once that match
with the pattern (a : x) has succeeded, and that means precisely that the item
has entered the input stream. We can achieve the desired effect by writing

again x = ”Prompt : ” ++ [hd x]

The prompt will appear before any input has been entered, as nothing needs to
be known about the argument (x) for that portion of the output to be printed.

11

6.2 Lazy Reading

Consider the process
while (const T rue) get

where
get :: interact ∗ ∗

is defined by
get (in, st) = (tl in, st, ”Prompt : ”)

What is the effect? We first envisage that it repeats the interaction get indefi-
nitely, and the effect of get is to prompt for an item input and then to read it.
In fact we see that the prompt is printed indefinitely, and at no stage does input
take place. As we explained above, output is driven by the need to print, and
the output from this interaction can be derived without any information about
the input stream, with the consequent effect that no input is read.

The second example, of lazy reading, causes a major headache. We shall see
presently precisely how writes can overtake reads, and in the conclusion to
the paper we argue that this will not happen under the disciplined approach
advocated here.

7 Miscellany and Conclusions

We have shown how interactive programs can be written in a disciplined way in
a functional system. Central to this enterprise are

• streams, implemented here as lazy lists, but available in other languages
as objects distinct from lists, and

• higher order functions. The type interact ∗ ∗∗ of interactions is a function
type, and so our interaction combinators are inescapably higher order.

We need not be limited to sequential combinators in our definitions. We can, for
example, think of resetting a state to its initial value after an interaction, which
means that, for instance, we can perform a “commutative” or “pseudo-parallel”
composition of processes. Such combinations of processes can be useful when
we write input routines for structured objects.

We can view the type interact ∗ ∗∗ in a slightly different way. We can
see the type as one of functions which read input and produce output: these
pseudo-functions are from type ∗ to ∗∗, and they return as part of their results
the input stream after their application, together with the output produced.
This gives us another perspective on the combinators defined above.

Observe also that not every member of the type interact ∗ ∗∗ is a natural
representative of an interaction. All the interactions f we have seen have the
property that if

f (in, st) = (rest, st′, out)

12

then rest will be a final segment of in (i.e. will result from removing an initial
portion from in).

This seems to be the place to make a polemical point. Much has recently
been made of the notion of ‘multi-paradigm programming’; this work can be seen
as an antidote to this. We have seen that the functional paradigm will allow us
to model another paradigm (the imperative) in a straightforward way, without
sacrificing the elegant formal properties of the functional domain. A näıve
combination of the two sacrifices the power and elegance which each possesses
individually.

In the next part of the paper we explore a formal trace semantics for inter-
actions, in order to resolve any difficulties we may have had with interleaving.

Part II

8 Notation

Here we introduce notation we shall use in the remainder of the document. The
reader may wish to skip the section on first reading and refer back to it if and
when it is necessary. tr, tr′, . . . will range over sequences, that is finite lists which
are terminated by [] and not by ⊥. We say

tr ⊆ tr′

if tr is an initial segment of tr′, i.e.

#tr ≤ #tr′

(# gives the length of a list) and

∀n ≤ #tr . tr!n = tr′!n

We write
tr ⊂ tr′

if and only if tr ⊆ tr′ and tr 6= tr′.
Most of our sequences will consist of objects of three kinds. These will be

input objects, tagged with r (for read), output objects, tagged with w (for write)
and the object

√
, which we use to indicate termination — we shall explain this

further in the body of the paper. We write

tr ⊂c tr′

if and only if tr ⊂ tr′ and the element which follows the initial segment tr in
tr′ is not an output object (tagged with w) — we call these initial segments
complete because they are complete with respect to writing.

13

Often we wish to look at the input or output portions of the sequences
separately. We write

tr ⌈ in

tr ⌈ out

for these restrictions. For example, if

tr = [r2, r3, w5,
√

, r7]

then
tr ⌈ in = [2, 3, 7]

tr ⌈ out = [5]

We use a number of standard list functions in the sequel. Each non-bottom list
is of the form [] or (a : x) for some head element a and tail list x. We write our
definitions using pattern matching over these cases:

hd (a : x) = a

tl (a : x) = x

hd [] = ⊥
tl [] = ⊥

Finally, note that we use ++ as list (or sequence) concatenation, so

[3, 4] ++ [5, 6] = [3, 4, 5, 6]

9 Traces

Our aim in this document is to describe the semantics of interactive programs
by means of traces of their behaviour. These traces will be sequences of actions
which can be of three kinds

r a is a read, or input, action — the item a is read from the input stream

w a is a write, or output, action — the item a is written to the output stream

√
is an (invisible) action which signals that the process has completed its output

— we shall say some more about this below, including an discussion of
why we need such an action in our descriptions.

We say that a sequence tr is a trace of a process P if and only if the sequence
of actions in tr is a possible behaviour of the process P . For example, a process
which

• prompts for an item by writing a prompt,

14

• reads an item from the input stream and

• echoes the item read

will have
[w prompt, r a, w a]

as one of its traces. In fact, if the process terminates after echoing the item
read, the full set of traces will be

[]

[w prompt]

[w prompt, r a]

[w prompt, r a, w a]

[w prompt, r a, w a,
√

]

Further details of a calculus of processes and their associated trace semantics
can be found in [3]. We shall use the set of traces of a process as the means
by which we specify a process and our aim in this paper will be to describe
Miranda processes by means of their trace sets. There is an associated problem
of describing these sets of traces, one solution to which may be provided by
temporal logic, [4]. This is not something which we address here.

How do we model interactive programs in Miranda? As we saw above, we
consider the programs to be mappings between the streams of input and output.
We model a complete interaction as a function

input → output

where input and output are lists of items. The interaction we specified above is
described by the function

example1 x = [prompt, hd x]

Note that
[w prompt, r a, w a,

√
] ⌈ out = [prompt, a]

and
[w prompt, r a, w a,

√
] ⌈ in = [a]

and that the portion of the input read, from a list (a : x) will be [a], so that the
trace

[w prompt, r a, w a,
√

]

is an interleaving of the input consumed and output written by the function
example1 (together with the termination information given by

√
). We discuss

the formal means by which we find the traces of functional interactions below.

15

In the first part we saw that in general we need to consider partial interac-
tions, i.e. objects of type

interact == input → (input, output)

which return unconsumed input as a part of their result. Our model of the
example interaction above is now

example2 x = (tl x, [prompt, hd x])

where we see that the tail of the list x, tl x is the remainder of the input stream,
passed to a succeeding interaction, if any.

In the first part we also added state information to the model; we do not do
that here, as our purpose is to concentrate on input/output behaviour.

Recall that we combine two interactions sequentially thus:

sq : : interact → interact → interact

sq inter1 inter2 in = (rest, out1 ++ out2)

where

(betw, out1) = inter1 in

(rest, out2) = inter2 betw

How do we explain this? The output of the combined process is the second com-
ponent of the pair, and is the concatenation of the outputs out1, out2 produced
respectively by the processes inter1 when supplied with input in and inter2

when supplied with input betw (for between), the input remaining after the first
interaction. We shall give a formal justification for this explanation later.

10 Lazy Evaluation Revisited

An expression written in the Miranda language has its evaluation driven by the
need to write or produce the result — evaluation is demand driven, and function
arguments are only evaluated if and when they need to be. Such a scheme is
called lazy evaluation. When arguments and results are structured, in particular
when they are lists, laziness means that

• The component parts of lists are written as soon as they are available, so
we can see writing is eager, in a sense.

• The component parts of an argument list are only read as they are needed.

Consider the example of example1 from section 9. The first item of the output
list, prompt, can be written without any examination of the input list x. On

16

the other hand, the second item is the head of the input list, and so this item
needs to be read before writing can proceed further. Once it is read it can be
output, with no further examination of the input list.

This analysis justifies our claim that

[w prompt, r a, w a]

is a trace of the function example1. How could we show this in a rigorous way?
We do this by means of the denotational semantics of our language, [2, 6]. In
particular we analyse the behaviour of our function on partial lists — lists which
are terminated by the bottom element ⊥. ⊥ represents the state of our knowing

nothing about a value, so that the partial list

[2, 3] ++ ⊥

represents a list about which we know nothing except its first two elements.
What is the semantics of example1? Recall the definition of hd (from section

8) and note that
hd ⊥ = ⊥

(This should be an obvious truth — we can deduce it from the monotonicity of
the semantic interpretation, which we shall discuss further below.) Now,

example1 ⊥ = [prompt, hd ⊥]

= [prompt] ++ ⊥

example1([a] ++ ⊥) = [prompt, hd ([a] ++ ⊥)]

= [prompt, a]

We see, in the two cases, that the input sequences [], [a] give rise to the output
sequences [prompt], [prompt, a]. (We shall have something more to say about
these functions in section 11). If we write ; instead of ‘gives rise to’, we can
make our first attempt at defining traces:
Definition attempt 1: We say that tr is a trace of f if for each initial

segment tr′ of tr,
f tr′ ⌈ in ; tr′ ⌈ out

This definition contains the essence of the definition we shall end up with in
section 12. Our definition states that

f tr ⌈ in ; tr ⌈ out

and that moreover this holds for every initial segment of tr. Clearly we need
this second condition, since any merge tr1 of the sequences tr ⌈ in, tr ⌈ out will
satisfy

tr1 ⌈ out = tr ⌈ out

tr1 ⌈ in = tr ⌈ in

17

It is not hard to see that asking for the property to hold of every initial segment
tr′ of tr means that we are asking for a particular interleaving of the sequences
— that embodied by tr. This is reflected in our definition and theorem on
determinacy in section 14. In section 12 we refine our attempted definition, but
first we say something about approximation and monotonicity. The ordering on
the domain of interpretation, ⊑, is an ordering of increasing information. For
example, for every x,

⊥ ⊑ x

and for two finite sequences s, t,

s ⊆ t

if and only if
s ++ ⊥ ⊑ t ++ ⊥

The interpretation of this equivalence is revealing. Extending the defined por-
tion of a stream, from s to t, gives more information about the stream. Con-
versely, more information about partial streams terminated by ⊥ is given by
extending the defined portion, that is by providing more input items.

We say that a function is monotone if for all x, y,

x ⊑ y ⇒ f x ⊑ f y

in words, if we give more information about the argument, we can only get more
information about the result.

We should note that for finite sequences s,t s ⊑ t if and only if s = t. This
is because the lists are definite — they cannot be further extended as they are
fully defined. Note however that

s ++ ⊥ ⊑ s

for every s.
The reader should have no difficulty now in seeing that the only possible

value for hd ⊥ (and indeed for tl ⊥) must be ⊥.

11 A note on printing

In our discussion in the previous section, we stated that

example1 ⊥ = [prompt, hd ⊥]

= [prompt] ++ ⊥

the second equality is not in fact true! We shall see here that as far as the
printing device, or evaluator, is concerned they are equivalent.

18

How does the printer print values, when those values are lists? The list
is printed one item at a time, starting from the head. If at any point one
of the items of the list is not (so far) defined, then no further output will be
produced. We can write this as a Miranda function print. For the rest of the
paper we shall assume that our functional interactions produce output which
is “printable” directly; we can ensure this by composing them with print if we
wish. The function print is defined in [5], which also contains an example of two
denotationally unequal functions whose printable behaviour will be equivalent.

12 Weak pretraces and traces

We made our first attempt at a definition of the trace of a complete interac-
tion on page 17. In this section we refine the definition in the light of our
example,example3, which we saw in the previous section, and also adapt it to
partial interactions, i.e. objects of type interact.

We saw in the earlier section that the example has the same printing be-
haviour as example1, which we already know has traces

[]

[w prompt]

[w prompt, r a]

[w prompt, r a, w a]

Do each of these sequences have the property that

example3 sq ⌈ in ; sq ⌈ out ?

We work through them in turn.

example3 ([] ++ ⊥) = [prompt] ++ ⊥
example3 ([a] ++ ⊥) = [prompt, a]

Interpreting these, we have that

example3 [] ; [prompt]

example3 [a] ; [prompt, a]

so that we have
example3 tr′ ⌈ in ; tr′ ⌈ out

only for the sequences [w prompt] and [w prompt, r a, w a], and not for the
other two initial segments of [w prompt, r a, w a], that is [] and [w prompt, r a].
Why should this be? Remember that lazy evaluation is used to implement the

19

language, and as we observed in section 10, this means that writing is eager.
The input portion of the trace

[w prompt, r a]

is sufficient to provoke the writing of the item a. This fact is not registered
by the initial segment [w prompt, r a], as it is not “complete” with respect to
writing. We say that a proper initial segment tr′ of tr is complete,

tr′ ⊂c tr

if and only if tr′ ⊂ tr and the element following tr′ in tr is not a w element.
As we see in the example above, we can only expect the property

f tr′ ⌈ in ; tr′ ⌈ out

for complete initial segments of a potential trace.
If we consider the process described by example3 as a partial interaction,

we should record the input consumed by the interaction. We saw in section 9
that we could do this by returning the remainder of the input as one component
of the result, the other being the (partial) output. The natural way that we
modify the example function is

example3 x = (tl x , [prompt] ++ out x)

where

out (a : z) = a

This registers the fact that the interaction consumes only the first item of the
input stream. Now, we define the relation “gives rise to” thus:

Definition:
f insq 7→ outsq

if and only if
f (insq ++ ⊥)

is equal to
(⊥, outsq ++ ⊥)

or
(⊥, outsq)

or in the case that outsq is ⊥,
⊥

In each of these cases, we register the fact that the portion of input presented,
insq, is read fully by requiring that the remainder of the input returned is ⊥ —
if an item in insq had not been read then it would form part of the sequence
returned.

20

Definition of weak trace and pretrace
tr is a weak pretrace of f if and only if f tr⌈ in 7→ tr⌈ out and for every complete

initial segment tr′ of tr

f tr′ ⌈ in 7→ tr′ ⌈ out

tr is a weak trace of f if and only if it is an initial segment of a weak pretrace
of f .

(Aside If we look at our previous definition of example3 and of traces we
shall see that

f insq ; [a]

for any insq which begins with a — no account is taken by this definition that
the input is not read beyond the first item.)

We shall examine the definition of weak traces and give the full definition of
traces in section 15. First we examine some examples in detail.

13 The weak traces of some examples

In this section we look at a number of example interactions, describing their
weak traces and pretraces.

Example 1

write in = (in, [message])

We want to find the sequences insq and outsq such that

write insq 7→ outsq

Note first that
write x = ⊥

for no x. Now,
write x = (⊥, y)

if and only if x = ⊥ and y = [message], so

write [] 7→ [message]

This means that [w message] is a candidate weak pretrace, if all its complete
initial segments have the same property. [] is the only proper initial segment,
and this is not complete, so the condition is satisfied vacuously. The set of weak
traces will be

{[], [w message]}

Example 2

read (a : x) = (x, [])

21

This example has the weak pretraces

{[], [r a]}
which are exactly the weak traces too.

Example 3

echo (a : x) = (x, [a])

Has the set of weak traces

{[], [r a], [r a, w a]}
We begin to see the subtlety of the analysis in the contrast between the

following examples.

Example 4

promptin1 (a : x) = (x, [prompt])

promptin1 y = ⊥
if y = ⊥ or [], implying that

promptin1 [] 7→ []

making [] a weak pretrace. Similarly

promptin1 [a] 7→ [prompt]

and as above, the possible pretraces are

tr1 = [r a, w prompt]

tr2 = [w prompt, r a]

tr1 is a weak pretrace, since its only complete initial segment is []. tr2 fails to
be — this is a surprise, as we might expect the prompt to precede the input
of the item. The delay is caused by the fact that the right hand side is only
produced after a successful pattern match, and this can only take place after an
input item is present. We should contrast this with the next example.

Example 5

promptin2 y = (tl y, [prompt])

Has the weak trace set

{[], [w prompt], [w prompt, r a]}
it is worth contrasting this with the previous example — here we see the effect of
the removal of pattern matching, which we first came across in section 6 above.

We shall see in section 15 that the set of weak traces is insufficient to describe
the behaviour of one of these interactions when embedded in a context. First we
look at a result on the determinacy of our functional interactions.

22

14 Determinacy

Using the functional approach, we write interactive processes as functions

input → (input, output)

Functions associate their results with their arguments in a deterministic way –
this carries over to our functional processes, a result which we formulate and
prove in this section.

Theorem 1 (Determinacy) For all sequences insq, outsq if

f insq 7→ outsq

there is a unique weak pretrace tr of f with tr ⌈ in = insq and tr ⌈ out = outsq.

In other words, if an input sequence insq gives rise to an output sequence
outsq, then there is a unique interleaving tr of the two which forms a behaviour
of the process — the order in which the actions of input and output take place
is determinate.
Proof:
The full proof is contained in [5]. It is a constructive proof — we build a weak
pretrace by induction and then show that it is unique. The uniqueness depends
upon the fact that we use functions to model our interactions. 2

15 Traces

We have seen how the behaviour of an interaction in isolation can be described
by the collection of weak traces. In this section we look at an example which
exposes the limits of this approach, and then introduce the full definition of
traces, which extend the descriptive information available.

We start with our example.

read1 (a : x) = (x, [])

read2 y = (tl y, [])

Both these processes read a single item from the input stream, and produce no
output. Examining the formal details we see that

read1 ⊥ = ⊥
read1 (a : ⊥) = (⊥, [])

read2 ⊥ = (⊥, [])

read2 (a : ⊥) = (⊥, [])

23

which means that each has the set of traces

{[], [r a]}

How do the two interactions differ? If we interpret

read2 ⊥ = (⊥, [])

we can see that the process produces no output, and the moreover termination

of output happens before any input is read. Indeed if we follow the interaction
by a process which writes,

write y = (y, [message])

then the message will be output before any input is read. On the other hand, if
we follow read1 with write, reading precedes writing. We justify these assertions
by examining the compositions

rw1 = sq read1 write

rw2 = sq read2 write

where we use sq as defined in section 9 to compose the processes.

rw2 ⊥ = (rest, out1 ++ out2)

where

(betw, out1) = read2 ⊥
(rest, out2) = write betw

Now,

(betw, out1) = (⊥, [])

(rest, out2) = (⊥, [message])

so
rw2 ⊥ = (⊥, [message])

which implies that
rw2 [] 7→ [message]

which means that writing precedes reading in this case.
On the other hand,

rw1 ⊥ = (rest, out1 ++ out2)

where

(betw, out1) = read1 ⊥
(rest, out2) = write betw

24

Now, read1 ⊥ = ⊥ so out1 = ⊥ and therefore

rw1 ⊥ = (⊥,⊥)

rw1 [] 7→ []

which shows that writing does not precede reading in this case.
The moral of this example is that our traces should contain some information

about the point at which termination of output takes place (if indeed it does).
Given a trace tr, output can only terminate after all the w actions have taken
place, but it can happen at any point after that. We use the symbol

√
to

indicate the fact that output has (just) terminated. Intuitively, our traces for
read1 and read2 will be

{[], [r a,
√

]}
{[], [

√
], [
√

, r a]}
respectively, showing how the two processes differ. We now show how the ticks
are added to the weak traces, and also introduce the notion of a terminal trace.

We now make the definition of a pretrace, on which the definition of trace
is based. First we establish some notation. We write

f insq ↓ outsq

when f(insq ++⊥) = (⊥, outsq). This is the situation in which f insq 7→ outsq

and the output has terminated. This is signalled by the fact that the output
sequence is definite and not terminated by ⊥. Now, we also say that a sequence
is completed if

√
is a member of it — the choice of terminology should be

obvious, as the presence of a tick is intended to mark the point at which output
termination takes place. Now, because of this, we say

Definition
A sequence tr is a pretrace of f if and only if

1. tr is a weak pretrace,

2. If tr is completed then f tr ⌈ in ↓ tr ⌈ out and

f tr′ ⌈ in ↓ tr′ ⌈ out

for all completed complete initial segments tr′ of tr.

3. For all initial segments tr′ of tr, if f tr′ ⌈ in ↓ tr′ ⌈ out then tr′ is either a
completed initial segment of tr, or is immediately followed by

√
in tr.

Definition
A sequence tr is a trace of f if and only if it is an initial segment of a pretrace
of f .

25

The preceding definitions succeed in capturing sufficient information about
the termination of the output of a process, as we shall see from the examples in
the next section. There is another phenomenon dual to output termination —
can we find out the point after which the remainder of the input can be passed
to a succeeding process? This information is contained in the terminal traces,
which we define now:
Definition
A sequence tr is a terminal trace of f if and only if

1. tr is a completed pretrace of f ,

2. For all lists x,
f((tr ⌈ in) ++ x) = (x, (tr ⌈ out))

The second condition means that whatever follows the input portion of tr in
the input stream is actually passed to a succeeding process. This has the con-
sequence that

ftr ⌈ in ↓ tr ⌈ out

but need not be equivalent to this. Consider the examples

null x = (x, [])

coy x = (⊥, [])

Each has as collection of traces
{[√]}

since

null ⊥ = (⊥, [])

coy ⊥ = (⊥, [])

The null process passes the remainder of the input stream, so has terminal trace
[
√

], whereas coy will not ask for more input yet will not pass the remainder.
[
√

] is a terminal trace of null, but not of coy.
In the following section we re-examine the examples we looked at in section

13.

16 The examples revisited — traces and termi-

nal traces

In this section we re-examine the examples from section 13, and look at their
traces. In this paper we simply state the traces etc. in [5] we show how they are
derived in more detail. Two points emerge during the discussion.

26

• We show that the weak pretraces of a process are insufficient to characterise
the behaviour of a process in context by supplying two examples, 5 and
6, with the same weak pretraces but with different behaviours in context.

• The
√

symbol can only appear in a trace after all the write items. Clearly
it would be counter-intuitive for this to fail, but we exhibit a proof of the
fact in example 3 below.

Example 1

write in = (in, [message])

The set of traces will be

{[], [w message], [w message,
√

]}

Are there any terminal traces? If we refer back to the defining equation, we can
see that

write ([] ++ in) = (in, [message])

so that [w message] will indeed be one. It is the only one.

Example 2

read (a : x) = (x, [])

We saw that the weak pretraces were

{[], [r a]}

and so, since the
√

must follow all writes, we have two possible pretraces:
[
√

, r a] and [r a,
√

] — we can see that completion does take place at some
point, since the output is []. For the first possibility, we need to show that

read [] ↓ []

since [
√

] is a completed initial segment of [
√

, r a]. Looking back at section 13
we see that this is not the case. What about the second candidate? The only
completed initial segment is the sequence itself, and we have that

read [a] ↓ []

assuring us of the pretrace property. In fact,

read([a] ++ x) = (x, [])

so that this pretrace will be terminal too.

27

Example 3

echo (a : x) = (x, [a])

echo has [] and [r a, w a] as its weak pretraces. What are its potential pretraces?
We claimed that a tick could only follow all the writes in a pretrace — intuitively
this is clear, but can we see a formal reason for it? If

√
precedes the writing

of some item, b say, then there are two sequences outsq1 and outsq2, the first
a proper initial segment of the other, which will contain b, with corresponding
input sequences insq1 ⊆ insq2 and

f(insqi ++ ⊥) = (⊥, outsqi)

Since insq1 ⊑ insq2 we should have by monotonicity outsq1 ⊑ outsq2 but this
is not the case, as outsq2 is a proper extension of outsq1, a contradiction.

This means that there is only one possible completed pretrace, [r a, w a,
√

],
and this will indeed be one, since

echo [a] ++ ⊥ = (⊥, [a])

that is
echo [a] ↓ [a]

Also we have
echo [a] ++ x = (x, [a])

for every x, making the pretrace terminal. As the complete initial segment
[] is not completed, the fact that it is a weak pretrace makes it a pretrace
immediately.

Example 4

promptin1 (a : x) = (x, [prompt])

A similar analysis to the above leads us to conclude that the traces take the
form

{[], [r a], [r a, w prompt,
√

]}
with the final trace being terminal.

Example 5

promptin2 y = (tl y, [prompt])

Has the set of traces

{[], [w prompt,
√

], [w prompt,
√

, r a]}

Observe that
promptin2 [a] ++ x = (x, [prompt])

for every x, so that the final trace will be terminal.

28

Example 6

promptin3 x = (y, [prompt] ++ rest)

where

(y, rest) = (tl x, []) , existstail x

existstail (b : z) = True

This provides a variant of the previous two functions. promptin2 and promptin3

have the same weak pretraces (an exercise for the reader), but their pretraces
will be different. In particular, [w prompt,

√
] is not a pretrace, since that would

require that
promptin3 [] ↓ [prompt]

which is not the case. Now, the only possible candidate pretrace is

[w prompt, r a,
√

]

It has a single completed initial segment which we can check has the right
property, making this a pretrace (because [w prompt] is not a completed initial
segment we only require its weak pretrace property).

The last two examples serve to emphasise the fact that weak traces and pretraces
are insufficient to characterise the behaviour of processes in context.

17 The definition of sequential composition

This section introduces the operation of sequential composition on trace sets

and proceeds to prove that the sq function (defined in section 9 and appearing
below) which combines interactions is sound with respect to this operation. We
shall see that the operation has some subtlety, and will show why we needed to
introduce the machinery of ticks and terminal traces.

We saw in section 15 that processes complete their behaviour in two different
ways

• The output is completed — a definite list is returned as the output portion
of the result.

• The remainder of the input is passed to a succeeding process.

Recall also the discussion in section 10, in which we explained how evaluation
was driven by the need to print — in other words evaluation is demand driven.
How does this affect the sequential composition of two processes using the sq

function?

sq f1 f2 in = (rest, out1 ++ out2)

where

(betw, out1) = f1 in

(rest, out2) = f2 betw

29

The output produced by the function is out1 ++ out2. The printer will de-
mand the item-by-item evaluation of out1 to be followed on its completion by a
similar evaluation of out2. Note that out2 is only examined if and when out1 is
completed. Once this happens, we begin to take output from the second process.

What does this have to suggest about the traces of the process

sq f1 f2 ?

Clearly any trace of f1 should be a trace of the composite, and we would expect
that if (and only if) a trace tr1 of f1 is completed, its effect can be followed by
that of described by a trace tr2 of f2. In other words, we might expect that
tr = tr1 ++ tr2 would be a trace of the composite. This is roughly right, except
for two provisos.

1. As we remarked in section 10, writing is eager, and a write at the start

of tr2 might overtake a read at the end of tr1. This will indeed happen
after the output of f1 is completed, so any read after the tick (

√
) will be

overtaken by a write from the front of tr2.

2. We have not demanded that the trace tr1 be terminal, i.e. that f1 pass the
remainder of its input to f2. In case tr1 is not terminal, none of the reads
in tr2 (nor any of the writes which follow such a read) can be performed.
Writes at the front of the sequence can and will be performed (before any
reads following the tick, as in 1.). On the other hand, if a trace tr1 is
terminal, then all the following actions can be performed.

We can now formulate our definition.
Suppose that t1 is a completed trace and t2 is a pretrace. t1 will take the

form
t1 = t11 ++ [

√
] ++ t12

where t12 will consist exclusively of reads (by the monotonicity argument we
gave in example 3 of section 16 above). t2 will take the form

t2 = t21 ++ t22

where t21 consists entirely of writes, and t22 begins either with a read or a
√

.
We define the sum of t1 and t2,

t1 ⊕ t2

to be
t11 ++ t21 ++ t12 ++ t22

except in the case that t22 = [
√

] ++ t22
′ when it is

t11 ++ t21 ++ [
√

] ++ t12 ++ t22
′

To explain the definition in words — the reads following the tick in t1 are
overtaken by the writes which begin t2. Termination of output happens at the

30

same point, unless that point is immediately after the initial block of writes
which overtake t12. In this case, termination will take place immediately after
the block of writes, and before t12. Note that if either t12 or t21 is empty, that is
if t1 ends with a tick (which will certainly happen if its last action is to write)
or if t2 begins with a read, then

t1 ⊕ t2 = t1 ++ t2

We also define the partial sum of t1 and t2,

t1 ⊗ t2

to be
t11 ++ t21 ++ t12

except in the case that t22 = [
√

] ++ t22
′ when it is

t11 ++ t21 ++ [
√

] ++ t12

Again, to explain the definition, this is a case where the reads at the end of t1
are overtaken by the writes at the front of t2 — the rest of t1 is lost, however.
This combinator models the combination of traces when t1 is not terminal, the
case we discussed in point (2.) above.
Definition
We define the sum S1 ⊕ S2 of sets of pretraces S1, S2 to consist of

1. The non-completed members of S1, tr1, say.

2. The sums tr = tr1 ⊕ tr2 of terminal traces tr1 from S1 with members tr2

of S2.

3. The partial sums tr = tr1 ⊗ tr2 of non-terminal completed traces tr1 from
S1 with members tr2 of S2

We now look at the proof that this sum embodies “lazy” sequential combi-
nation of processes.

18 Proving the correctness of sequential compo-

sition

In this section we prove that the sq function implements sequential composition,
as defined in the previous section. This has the formal statement:

Theorem 2 If Si is the set of pretraces of fi then S1⊕S2 is the set of pretraces

of sq f1 f2.

31

Proof:
A full proof is to be found in [5].

We prove the result in two parts. First we show that every member of
S1 ⊕ S2 is a pretrace of the composition of f1 and f2, and then show that each
such pretrace is a member of the sum set.

The second part aims to show the converse, that every pretrace of the com-
posite is a member of the sum set. In this part of the proof we shall rely on the
determinacy theorem as seen in section 14. This theorem can be extended to
pretraces proper, rather than weak pretraces — we leave this extension as an
exercise for the reader. We now proceed by examining the general form of the
definition of f and sequences insq, outsq so that

f insq 7→ outsq

The proof again splits into a number of cases, which we look at in turn.2
We make two assumptions during the course of the proof.

1. For all interactive functions, g, and all input streams x, if

g x = (rest, out)

then rest is a final segment of x, or is ⊥, which can be considered to be
the degenerate final segment.

2. If insq, outsq are sequences, then if

f insq ++ ⊥ = (betw, outsq ++ ⊥)

then betw = ⊥. This is discussed further in the paper [5].

19 Conclusions

We have explored the general behaviour of our streams-as-lazy-lists model for
interactions, and have shown how the behaviour of sequential composition can
be explained in terms of trace sets. If we ensure that output termination, as
signalled by

√
, occurs only at the end of terminal traces, we can be sure that no

overtaking takes place, and that composition of traces is simply concatenation.
On the other hand, we have the formal means by which we can explain more
exotic interactions. As can be seem from the first part of the paper, sq is
the crucial combinator as together with a simple choice combinator, primitive
reading and writing operations and recursion we are able to define all the other
higher-level combinators.

Definition
We call a process, f say, read-strict if for no trace of f does

√
precede an

input item (and therefore
√

precedes no other items).

32

It is not difficult to show that the basic operations of section 5 are read-
strict and that the combining forms introduced there preserve read-strictness;
the only non-trivial case is that of sq, and that result follows from our analysis of
sq above. Now, if we take the sequential composition of two read-strict processes
we can see that no “overtaking” of reads by writes can take place (again, by our
analysis of sq), and so we would claim that the interleaving behaviour of the
functions of section 5 is the predictable as we suggested. On the other hand, as
we saw from the examples in 6, it is all too easy to go astray if we adopt an ad

hoc approach.

Another approach to I/O in a functional language is suggested by Backus,
Williams and Wimmers in [1] and followed up in [8]. In the latter paper they
suggest that the lazy stream, or ‘pure’, approach which we adopt here is one
which is less convenient to use than one in which every function is taken to
have a side-effect on the history of the I/O devices. We would prefer to see our
approach as complementary to theirs. Indeed, as we explained in 4, we can see
our type

interact ∗ ∗∗
as a type of functions with side-effects on I/O.

As Williams and Wimmers remark, many functions fail to affect the history.
This phenomenon is manifested here by the apply operation,

apply :: (∗ → ∗∗) → interact ∗ ∗∗

which turns a “true” function into one with (trivial) I/O side-effects. Once we
realise this we can see that properties of many functions will carry over, just as
Williams and Wimmers suggest.

The major advantage that we see in our approach is that we have a purely

functional model of I/O, and so one to which we can apply the accepted methods
of reasoning. Again, as we rearked in the conclusion to the first part of the paper
we see no need to combine the functional one with any other in order to perform
interactive I/O.

I am grateful to my colleagues at the University of Kent for various discus-
sions about interactions and processes, and for using the interaction combina-
tors supplied in the earlier paper and giving me valuable feedback about their
behaviour.

References

[1] John Backus, John H. Williams, and Edward L. Wimmers. FL language
manual (preliminary version). Technical Report RJ 5339 (54809) 11/7/86,
IBM Research Division, 1986.

33

[2] Robert Cartwright and James Donahue. The semantics of lazy (and indus-
trious) evaluation. Technical Report CSL-83-9, Xerox, Palo Alto Research
Center, 1984.

[3] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Inter-
national, 1985.

[4] A. Pnueli. Applications of temporal logic to the specification and verifica-
tion of reactive systems: a survey of current trends. In J. W. de Bakker,
W. P. de Roever, and G. Rozenberg, editors, Current Trends in Concur-

rency. Overviews and Tutorials, number 224 in Lecture Notes in Computer
Science. Springer Verlag, 1986.

[5] Simon J. Thompson. Interactive functional programs. Technical Report 48,
Computing Laboratory, University of Kent at Canterbury, 1987. An ex-
tended version of this paper, containing further discussion of the examples,
and full proofs of the theorems.

[6] Simon J. Thompson. A logic for Miranda. Draft of a paper describing a
logic in which to reason about Miranda programs. Based on PPΛ., March
1987.

[7] David A. Turner. Miranda: a non-strict functional language with polymor-
phic types. In J. P. Jouannaud, editor, Functional Programming Languages

and Computer Architecture. Springer-Verlag, 1985.

[8] John H. Williams and Edward L. Wimmers. Sacrificing simplicity for con-
venience: Where do you draw the line? In Proceedings of POPL, 1987.

34

