On the Serialisation of Parallel Programs

PH.Welch and G.R.R.Justo
Computing LaboratoryUniversity of Kent at CanterburT2 7NF.

Abstract. This paper argues that one of they iechniques for making the mosfieilent use of multi-proces-

sor architectures is treerialisationof parallel code!Paallel algorithms are presented as having strong engi-
neering merits that will form the natural basis for systems design in the flRanadlelisation of serial code

is regarded as having only short-termalue (for ‘dusty-decks’, whose correctness cannot be verified) as well
as being mathematically intractabl8erialisation on the other hand, is much easier to automate and can be
profitably employed todaySeveal serialising transforms fasccamprocesses are presented and applied to

various simulation and image compression tasks.

2.nr H110. Introduction

This paper réews and interprets some of theacticeandexperienceof programming par
allel computing systems we yedtained at the Umersity of Kent aer the past six years.
We present in a semi-formal, but disciplined, manner some of the practical skills wesbelie
should be regularly applied to thevaélpment of parallel programsiNe ae by no means
alone in our beliefsWe ae alarmed, hwever, that they do not seem to be recognised by
the “mainstreani’computer science community.

The chief lessons are these :

» parallelism is a major structuring method that enables us to manage complexity (in the
design, verification and maintenance of systems);

» system design, therefore, should be (highly) parallel from the start;

* in general, there should be nyamore logical processes than physical processpa{‘
allel slackness”);

» to optimise performance, parallel sub-networks running on individual processing nodes
may need serialisingTools to automate (prat least, help in) such serialisation are
badly needed.

Expressed posiueély like this, these do not seem to be too contentious. It is tiivne
conclusions we can drefrom them, howeer, that seem to raise eyebrows :

* design standards thakaude parallelism also exclude security for compdeplica-
tions. Thisleads to growing losses — both financial and human life;

» efficient and robust systems cannot lbdttby “first getting them to work serially on
one processdrand then “parallelising’'them;

» existing “dusty-deck’ codes, that represent magsfinancial ivestments that'¢cannot
afford to be vasted’, also represent massi ®rial codes that are becoming unmaintain-
able and are certainly werifiable. Theseare technical dead-ends — as commercial
pressures will gradually maldear to all those who persist with them;

» tools to assist the parallelisation of large-scale serial codeegralifficult to make, will
be very @pensve o buy and will not be needed by the timetlaee half-made to wrk.

On Serialisation -2- Welch & Justo

Regadless of the reaction of your eyebrows to thevalssertions, please read on!

1. Some Meritsof Parallel Design

Paallelism does notend the range of functions that can be computdu parallel oper-
ator inCSPJ[0] is completely defined in terms of #gerial choice operatorThe only motve
for its introduction is that it simplifies the expression (i.e. thegramming’) of the be-
haviour of most processes (alma bw levd of complexity) and, hence, our ability to rea-
son about them.

The parallel construct inccam[1] is directly based upo8SPtheory and directly reflects
the abeoe poperties. Brallelism (or at least,occamparallelism) should be gerded as a
high-level programming structure and used freely may be ‘compiled” down to low-
level serial code (just ag/HILE andFORIoops may be implemented by unstructucfra),
but that lov-level code is almost atays much more complicated and harder to understand.
Nevertheless, this serialisation carwals be done and sometimes there are good reasons
for doing it — see bels. The reverse operation, parallelisation, requires the-compila-
tion” of | ow-level code back to high-lel structures — an activity that wer produces sat-
isfactory results!

We ae aguing the case for parallelism on the grounds that it simplifies and clarifies the
development of comple systems — not that it makes them gstier! Historysupports this
view. Software parallelism was first experimented with in the early 1970s infart &f
make gperating systems work — @t least, to mag& them work for longer periods between
crashes! Thessystems were supporting uni-processor computers, so that the question of
exploiting concurreng to improve performancedid not arise. Indeed, a performance
penalty (due to thewerheads for managing the software concurrency) was cheerfully
accepted if thearall reliability could be increased to tolerabledks.

We ae very fortunate these days that parallel hardware lets us apply conguwenc
increase the performance of computer systems. In our excitewvardllothe MIPS and
MFLOPS that are o at aur disposal, we must not fpet the powerful benefits for clear
thinking that were the original meétion for going parallel.

2. Some Designs Just Haveto be Parallel

The following test.rig provides a useinterface for controlling and monitoring the state
of a continuously running machine :-

feontrol * * * * m *umomtor

test.rig

keyboard * * screen

Its required behaviour is as follows :

* the user supplieselystrokes to thekeyboard channel and recegs dsplay information
from thescreen channel;

On Serialisation -3- Welch & Justo

* responding to user elstrokes, thetest.rig generatescontrol messages to the
machine under test and updates the ss#splay to indicate what it has don&rro-
neous kystrokes “bleeg’the usess dsplay;

» atthe same time, thest.rig receves oontinuous information from itsonitor chan-
nels about the machine state. This informatiow fi® too great to display in its wa
form and has to be filtered and summarised before being dynamically presented to the
user in some meaningful way;

» the user may freeze the display ay amoment by pressing &ause’ key — he next
keypress resumes normal operations.

The next figure describes a reusable design for the implementation of sdchga
It shonvs a natural parallel construction out of four processes — each one performing its
own logically self-contained function.

[Jcontrol A A A A YV V.. vyl[Imonitor
generate filter
A > \
keyboard.handler - screen.handler
test.rig
keyboard A\ Y screen

Thekeyboard.handler =
» validates and forwards characters freayboard to generate ;

* invdid characters (pressed by the user by mistake) are not passed on — instead an
“ error” signal is output to thecreen.handler

» if the ‘pause’ character arvies, it outputs a‘pause’ signal to thescreen.handler
waits for another &ystroke and sends a “resumesignal.

Thegenerate process-—
* receves \alidated characters from theyoard,;

* interprets these as instructions to modify an internal data-base recording the state of v
ious control options in the machine under test;

* issues appropriate commands down thevaateontrol line;

« formats a display packet to reflectyathanged control value and sends this to the
screen.handler

Thefilter ~ process-=
» continuously receies data from itamonitor channels about the state of the machine;
» filters this data by integrating it into a “historglatabase (internal to this process);

On Serialisation -4 - Welch & Justo

* reports meaningful summaries about changing machine state in display packets to the
screen.handler

Thescreen.handler -
» multiplexes formatted display packets straight through taedisen channel;
» ‘“error” signals from the &yboard are interpreted by “bleepinhghe screen;

* a“pausé’signal causes this process to lock on to its channel fromeyso&rd and
awat a “resume’ signal — freezing further screen output;

» thekey.handler signals tak priority over display packets.

We daim that this design is much simpler thary &quivalent serial one. Each process
has responsibility for one distinct area of operatitis. data-structures are its owrfaaf
and its algorithm is»pressed from its own‘@bject-oriented) point of view — not that of
an external controllerStrong engineering principles are followed in this design: processes
have ightly controlled external interfaces (only channels) and high internal cohesion (with
all design details prate). Eachprocess is ne sufficiently simple so that a seriad¢can)
implementation is probably clearer thary amatural language specification.

The same could not be said abouy aerial implementation for the wholest.rig !
That would require an ingeation of the algorithms and data structures of the four processes
into a single thread of controBuch an integration wouldvart their object-oriented char
acter and gnraely damage their clarityWorse still, in order to maintain the same freedom
to synchronise with its @ironment that the parallel implementation enjoyed, duid
sometimes ha o ALT across all its channels — both input and output! It must maintain
this freedom — deadlockould threaten if it ver committed itself solely to output a con-
trol adjustment to anpart of the machine that happened to be close to another part from
which feedback monitoring was being obtainedte output guards may be reved by
further transformation [2], but it would nohavegot very obscure indeed.

It would therefore be very rigkto atempt a serial implementation of thkatrig . The
parallel implementation is the correct one werethough we neer haveary need or inten-
tion of distributing it @er more than one processor!

3. Serialisation and General Purpose Parallel Computing

If you havre ane processing unit, then youveaan excuse for trying to devise your algo-
rithms with a single thread of control. If youMeatwo processors, then twprocess logic
would seem appropriate. If you Vedght processors, you can neak @se that the most
effective way to exploit them to soéva marticular problem is to program it up as eight-par
allel processes. What is not crediblepeoer, is to replace eachéight” in the preceding
sentence hysay, “twenty three’ or *‘one hundred and eighty\san”!

Even if we stick to one parallel computing architecture and one particular installation of
that architecture, the number of working compute nodes allocated to usyfparéioular
run will be somewhatariable. D cope with these conditions, we must design our algo-
rithms with (apparently)»@essie parallelism — at least ten times as manocesses as we
are &er likely to be allocated processor3hen, without re-designing the software, it
becomes possible to configure it to the resources we are actwaily ¢rleally this should
happen automatically as the system is being loaded (when its resources become apparent).
Even betterwe @an envisage the possibility of dynamic balancing of the software processes
acainst the gien hardware (e.g. during your run, some nodes may fail or be takep a
from you by the operating system or you magnebe ganted extra ones!).

On Serialisation -5- Welch & Justo

For the moment, with currertccam/transputesystems, we need aFfeminutes notice of
the resources we are going to beegiin order to change some configuration constants or
in the worst case, perform some mechanical code transformations and re-cdtiapite.
eve, the parallel slackness means that no re-design is necessary.

There is one other compelling reason for designing withxaass of parallelismOnly
parallel ‘farming” algorithms run compute nodes that operate most of their time com-
pletely independentlyAll other parallel paradigms require significant interaction between
processors. Consideéhe viev from a particular processing node. Because the time to
acquire information held on other nodes is so great compared with the time to load informa-
tion from our evn node, we must find some useful work for our node to get on with whilst
awating external information or accept anefficieng/ of use from our nodeWith alarge
number of processes being managed by our node, érysunlikely thg will all become
blocked avaiting external gents at the same timedence, there is akys something prof-
itable to be doing and we obtain higlii@éngy. See \aliant's papers [3, 4] for a detailed
analysis on the merits of this “parallel slackness”.

We row havethree grounds for designing systems with a high degree of parallelism :

» itis good (software) engineering — i.e. it makes system design, verification and mainte-
nance easier;

* it gives us mrtability across different pisical configurations of a particular multi-pro-
cessor architecture (ultimatelyccamwill give us portability across different architec-
tures as well);

» it enables a high &tiengy of use for each indidual processor — i.e. it makes the sys-
tem go faster!

Serialisation of thesexeessively parallel designs e becomes a viable optimisation
technique. lis not alvays applicabléout, with so magy processes allocated to each proces-
sor, it can:—

» save time:by eliminating context switches and the gioig of data packets between
processes;

* save spaceby having a common data area for shared data-structures, rather than sepa-
rate buffers in each process.

With a sub-microsecondverhead intransputers context switching is not really a prob-
lem. Hawever, ggnificant savings can sometimes be aeédeon he other tw items.

Beware that serialisation — whilst\abys possible — will not avays prove o be an pti-
misation. Theuser-interbce component described in theyimas section is constrained to
operate at the speed of a usminal. Serialisingts processing logic will not address that
bottleneck!

Beware also that serialisation can — and usually does — lead tx@asm®n in the
length and complexity of the resulting cod&his can be soxeessie @& to render the
whole operation impracticalln the following sections, we describe some examples where
the synchronisation characteristics of the processes we are combinindgiarensyfwell-
behaed to dlow the serialisations to evk. Notethat the resulting code should be consid-
ered as‘tcompiled” code — software engineering principles are not upheld and this is not
the level at which the components should be maintained.

In the abwe paragraphs, we a aly been discussing the processes dliraictly contrib-
ute to the algorithm that solves the original problem. Qnpamticular node, there will be

On Serialisation -6- Welch & Justo

a further collection of (high-priority) processes to manage&real communication and
evants. Thisis because a physical node in a credible multi-processor machine will itself be
a parallel device. Itmay hae anly one compute engine, but it will certainlyvearrultiple
communications engines that can operate at the same Tinezefore, there is a minimum
level of parallelism to which each node must be programmed if it is to be used to its full
advantage.

Thus, @en an dficient ‘farm” worker on atransputerneeds a harness of eight support
processes (to dre dl its links bi-directionally and in parallel with its main taskifor
occamand the current generatitnansputer(T2s, T4s and T8s), these high-priorityfiiers,
auto-prompters, multiplexors and forwardersendiecome well known, ery simple and
standardised. Smuch so that in the megeneration T900@&ransputers some of these pro-
cesses are in harawne! Noattempt, of course, should be made to serialiggr@maining)
high-priority processes with the background application-specific tasks.

4. Serial “In-Lining” of a Simple Server
In simulating the growth ofdif fusion limited aggrgaes’ [5], the computationally inten-
sive innermost loop consisted oteeuting a random walkwer a regular lattice. Anything

that could be done to speed up thes¢éksrhad a direct and equal effect on the speed of the
entire simulation.

Each step of the alk consisted of obtaining three random bits to decide the direction of
the step, making the step (i.e. updating some coordinates) and checking to see if you had
reached asticky” tile (which indicated the end of thealkk). e used the random number
algorithm from [6] that produces acceptable sequences for our application, whilst being
computationally light. Despite this lightness, most of the time for each stegpent com-
puting these numbers — there being so little else to do!

The proper wy to implement the random number generator is sexnaer continuously
pushing its results weards itsclient:—

random

licati
(n, initial) application

where =

PROC random (VAL INT n, initial, CHAN OF INT out)
-- outputs n random bits per communication

INT seed:
. other state declarations
SEQ
seed := initial
initialise rest of state
WHILE TRUE
INT word:
SEQ

. compute n r andom bits in word & update seed etc.
out ! word

On Serialisation -7- Welch & Justo

and =
PROC application (CHAN OF INT from.random, ...)
local declarations
body

and where, deep inside thedy , the innermost loop goes :

WHILE walking
INT next:
SEQ
from.random ? next
rest of step

This is good engineering. The application has no responsibility for maintaining the ran-
dom number seed nor for the random number logjite seed is a prite data-structure,
encapsulated and hidden by the random number server that alone neessdoduiat.

However, we want to remue the overhead of running the server as a separate process
from its client. The serialisation in this case is quite &gy first hare o decide which (if
ary) of two threads of control to retain as defining the structure of the unified thread of con-
trol. Thelogic of the client application is fairly compleoutside its innermost loop and
would not tale kindly to the irversion of its logic if it were not choserOn the other hand,
the server control structure is rather trivial and can, thereforefitaknecessary knocks.

So, theapplication stays in chaye! It must inherit the parameters of its absorbed
server — apart, of course, from the connecting service channel thalisappears=

new.application
(n, initial)

Internally, it picks up ag persistent data-structures from the server ¢eed etc.) and
installs ay server initialisation code-:

On Serialisation -8- Welch & Justo

PROC new.application (VAL INT n, initial, ...)

(old) local declarations
INT seed: -- from random
... other state declarations -- from random
SEQ
seed = initial -- from random
initialise rest of state -- from random
(old) body

We nust “in-line” the server loop code wheee thebody used to demand service :

WHILE walking
INT next:
SEQ
{{{ from.random ? next
INT word:
SEQ
compute n r andom bits in word & update seed etc.
next := word
)
rest of step

We o longer hae a ontext switch to be performed and the server communication has
been replaced by an assignment.

Finally, we dosene that the transient data-structwerd (inherited from the server) can
be dispensed with, along with the dataygog assignment, and we compute the result
directly where it is needed :

WHILE walking
INT next:
SEQ
compute n r andom bits in next & update seed
rest of step

From an engineering point of wethis code is not as manageable as the origiGhént
and serer data-structures are mixed up and so is the logic that operates orHberver,
our walking speed has increased from 93,000 steps per second to 127,000!

5. Serialisation of Pipe-Lined Logic

5.0. Basic Principles

Some pipelines are designed specifically for tiéebing characteristics tiggntroduce and

their ability to service their supplier and consumer processes in pafatteéxample, this
technique enablgsansputerso communicate and compute at the same tiBerialisation

is probably not the right way to try to optimise these pipelines — see [7], [8] and [9] for a
discussion on this.

Other pipelines are introduced to separate the phases of a particularly xctungteon
into manageable stage¥/e mncentrate on these and shbow to serialise them so as to
presere their overall functionality but not worry too much about theulfering services
they originally provided. Theervironment in which such a pipeline is applied is only inter
ested in the mathematical transformation being performed — indeed, one of the optimisa-
tions being sought through this serialisation is the elimination of superfluousudfata-b
and data-copng. Formally, the semantics of the (originally pipelined) component will be
preserved with respect to an environment thatwsyad willing to accept its output.

On Serialisation -9- Welch & Justo

Consider a component process with a single input and a single output chakenelll
such a component p-g-transformerif it synchronises with its etronment by gcling
through the sequence: first dinputs and then dq outputs.

If it is implemented with code of the form :

PROC transform (CHAN OF A in, CHAN OF B out)
state declarations
SEQ
initialise state
WHILE running
SEQ

do p i nputs
compute
do g outputs

where we also alls computation to be interlead anongst the abee inputs and out-
puts , we @y the transformer is inormalform.

Serialising a pipeline afiormal form 1-1-transformergs fairly easy It becomes a e
normal form 1-1-transformerthat contains all the state variables of the original pipeline
components (modulo some name changesdi ary clashes). Allinitialisations on these
states are first performed (inyasequence) and its main cycle then :

* inputs (as in the first component of the pipeline);

» performs the sequences of computations made from theidodl computations from
each component in the pipelin&he order of this sequence is the same as the order of
the components in the pipelindhe communications between pipeline components
become assignments between corresponding state variables;

* outputs (as in the last component of the pipeline).

In the computation phase alep there is plenty of opportunity for state-variable and
assignment elimination.

If a transformer is not imormal form then part of its state is gerned by where it is in
its code. By introducing further statanables to represent these positions and testing these
within its compute section, ayp non-normal form transformer can a&kys be transformed
into normalform.

5.1. Structue Aash within the Pipeline

The result of normalising and serialising a pipelind.-df-transformerswill be more com-
plex than the original code. Things get realkciing, hovever, when we do the same for a
pipeline ofp-g-transformersvith differing p andq values!

Consider part of an image compression pipekne :

a b c
——— encode - pack |+———r

where channels, b andc respectrely carry the protocols-=

PROTOCOL PICTURE IS [height][width]BYTE:
PROTOCOL BITS IS BOOL:
PROTOCOL PACKET IS [packet.size]INT:

On Serialisation -10 - Welch & Justo

A stream of (fragments of) pictures aei an channelCa and are ‘Huffman-encoded”
into a compressed bit-stream on channelhe encoding operates on differences between
neighbouring pixels — small ones are Hodn-encoded, larger differences are transmitted
plain (preceded by anescap€’ code). Thebit-stream fromb is paclked into a decently
sized packet for onward transmission dawfand out of théransputej.

The encode process is d-“many’-transformer, where“ many” is data-dependentThe
pack process is gpadket.size-1-transformer There is a serious structure clash hefdle
parallel design protects us completely from its difficulttes :

PROC encode (CHANNEL OF PICTURE in, CHAN OF BITS out)
WHILE TRUE
[height][width]BYTE picture:
SEQ
in ? picture
SEQ i =0 FOR height
VAL [width]BYTE line IS pictureli]:

compress line
where =
{{{ compress line
INT last.pixel:
SEQ
last.pixel := 127
SEQ j = 0 FOR width
VAL INT pixel IS INT line[j]:
SEQ
VAL INT diff IS (pixel — last.pixel) + 255:
VAL INT n IS n.bits[diff]:
INT code:
SEQ
code := h.code][diff]
emit bottom n bits of code
last.pixel := pixel
1
and where-

VAL [510]INT n.bits IS [...]:
VAL [510]INT h.code IS [...]:

are compile-time constant tables holding, respelgti the number of bits and the actual
code values for each possible change in pixel intenBibally :-

{{{ emit bottom n bits of code
SEQk=0FORnN
SEQ
out!(codeNl)=1
code :=code >> 1

i

The structure of the akie mde is dened naturally from the specification afhcode .
The same thing happens fer :
PROC pack (CHAN OF BITS in, CHAN OF PACKET out)
WHILE TRUE
[packet.size]INT packet:
SEQ
SEQ p = 0 FOR packet.size

On Serialisation -11- Welch & Justo

INT word IS packet[p]:

SEQ
word :=0
input bits into word
out ! packet
where =
{{{ input bits into word
INT bit:
SEQ
bit:=1
SEQ g = 0 FOR WORD.SIZE
BOOL b:
SEQ
in?b
IF
b
word := word V bit
TRUE
SKIP
bit := bit<< 1
1}

This completes the programmin@he structure clash between the synchronisation char
acteristics of the tovdements is absorbed by the run-time schedulére use of parallel-
ism to design such a clean solution to this problem was first described (to e da)
in the book by Jones and Goldsmith [10].

5.2. A Serialising Optimisation

The problem with le@ng the code lik this is that the bit-stream channel (whether mapped
on to memory or an external link) imposes a bottleneck on the data-ftomust be
removed — i.e. we must serialise tl@code andpack processes.

We haveto chose which process structure to preservit does not really matter which.
Let us choose to preserencode (since it has three nested loops in its cycle @ed has
only two).

The state of theack process is represented by itiablespacket , word, bit , p andg.
Import these ariables into what used to be the structure oktlsede process and is mo
the serialised=

PROC encode.pack (CHAN OF PICTURE in, CHAN OF PACKET out)
INT word, bit, p, q:
[packet.size]INT packet:
SEQ
word, bit, p,q:=0,1,0,0
structure of the encode process

On Serialisation -12 - Welch & Justo

Theencode structure is unchanged except for its single output (deep insighaititgold).
This output triggered a cycle of tipack process — it is replaced by a fold that contains
that logic with its housekeeping alviarted -

{{{ out I (codeNl)=1
SEQ
‘pack’ response to the communication
.. ‘pack’ housekeeping
1
where =
{{{ ‘pack response to the communication
SEQ
IF

(codeN1)=1
word := word V bit
TRUE
SKIP
bit := bit<< 1
1}
and =
{{{ ‘pack’ housekeeping
SEQ
qg=q+1
IF
g = WORD.SIZE
SEQ
packet[p], word, bit, g := word, 0, 1, 0
p=p+1
IF
p = packet.size
SEQ
out ! packet
p:==20
TRUE
SKIP
TRUE
SKIP

i

That completes the transformatioBesigning such compteserial code directly wuld
not be a good idea!!

The alternatie ransformation — i.e. retaining the structurepadk and irverting encode
into it — leads to a very different serial structuféhis is left as anx@rcise for the reader!
Note, havever, that the transformations (via the original parallel code) wilvprbe equv-
alence of tw very different serial versions.

5.3. Further Optimisations Now Become Possible

Of course, nw that the code is serial and the innermost loops from tbeotiginal pro-
cesses he keen interleeed and can see each otherdhata-structures, further optimisations
become possibleFor instance, the resulting innermost loop (in ¢het fold) transfers
bits fromcode over to word one bit at a time!Clearly, this loop can be remved and the
transfer done in one ge :

On Serialisation -13 - Welch & Justo

{{{ emit bottom n bits of code
SEQ
word := word V (code << q)
qg=9g+n
IF
g >= WORD.SIZE
SEQ
g = q - WORDSIZE
packet[p], word := word, code >> (n - q)

p=p+1
IF
p = packet.size
SEQ
out ! packet
p:=20
TRUE
SKIP
TRUE
SKIP

i

Note thatcode should nev be declared as &AL and that thevit pointer and, of course,
the innermost loop control varialdeare no longer needed.

All these codes plus the necessauffdrs can be fitted into the on-chip memory of a T2
transputer On a 20 MHz T800 (alas, we k& ro T2s), the original clean parallel code took
7.3 usecs. to produce one compressed bit of outpte first serialisation reduced this to
4.6 usecs. Thdast optimisation abee (hat was enabled by the serialisation) reduced this
further to 2.1usecs. W& ocould go on, but again we leathis to the interested readdOf
course, all run-time checks — including those for array-bound violation —leféi@n for
the abee imings. Switchinghem of is always a false economy!]

6. Arbitrary Topologies with Well-Behaved Synchronisation

6.0. Basic Principles

Our final example is taken from the field of continuous system simulation (e.g.utistrib
networks for @s or electricityurban traffic flav, digital circuit emulation ...). The simple
way to design the simulation is to create a network of software processes that directly mir
rors the physical network of processes in the real system.topology — including those

with feedback — must be allowed.

In general, attempts to optimise an arbitrary processaonktioy serialisation will lead to
an impractical ¥plosion in the size of the resulting codeowever, the synchronisation
characteristics of the processes studied here are simple and regular — each process commu-
nicates continuously and in parallel with all its topological neighbours. This is generalised
“ systolic” computing — irregular networks with feedback arevedld as well as gular
meshes. & such systems, serialisation does not cause a bang!

In [11], the notion of an/O-PAR process was introducednformally, an 1/O-PAR
process is one that, whemeit communicates, communicates on all its channels in parallel.
The following two processes ardO-PARand innormalform -

On Serialisation -14 - Welch & Justo

PROCA(...) PROCB(...)
... declarations A ... declarations B
SEQ SEQ
initialise A ... initialise B
WHILE TRUE WHILE TRUE
SEQ SEQ

parallel i/lo A ... parallel ilo B
compute A ... compute B

A key property ofl/O-PARprocesses is that aparallel network of them is deadlock-free
and remain¥O-PAR— that is wly it is so easy and safe to design with them!

Clearly, a retwork of 1/O-PAR processes can synchronise with its environment more
freely than one imormalform. At ary particular moment, such a neivk may hae com-
municated on one of its channelseal more time than it has communicated on one of its
other channels (wher&séveral” i s bounded by the maximundiameter’ of the netvork).
However, a retwork in this condition will avays be ofering its environment communica-
tions on its more backward channels (that would enable the number of timéatkbeen
used to catch up with the leadeRor an I/O-PARprocess imormalform, the *several” is
limited to one.

If we place a collection offO-PAR processes in an environment that is it$&€f-PAR
(with respect to its connections to that collection), then that collection may be serialised
into anl/O-PAR process imormal form without changing the semantics of the whole sys-
tem.

These results are more formally presented in [12], together with the serialising transfor
mations and some proofs! Here we are somewhat less formal. Suppose we want to run
processes andB in parallel =

PROCAB(...)
‘internal’ channels for connecting A and B
PAR

A(..)
B(..)

where the parameters farB are the union of those ferand those fos, less their inter
connecting channels.

To werialise them, we extract a set ofeeution paths that can be expressed/@PAR
normalform. Thiscertainly loses some of the paths that weadlable to the original par
allel code — but since we are only going to run theveadroode in anl/O-PAR environ-
ment that is not going to exploit those extra paths, this does not mblterderialised code
is -

PROCAB(...)
declarations A
... declarations B
SEQ
initialise A
initialise B
serialised A and B loop
Since thg concern separate sets of stateiables, the order of theitialise sections

derived from A andB is irrelevant. Sinceno communications arevalved (i.e. the xternal

On Serialisation -15 - Welch & Justo

ervironment cannot detect what is happening), it is safe to serialise them. The same is true
for the respecte compute sections inside the loop :

{{{ serialised A and B loop
WHILE TRUE
SEQ
PAR
parallel i/o A (except ‘internals’)
parallel i/o B (except ‘internals’)
‘internal’ assignments
compute A
compute B
)

The position of the respeesi parallelilo sections clearly represents a synchronisation
behaiour with its environment that the original parallel code coulkteltaosen. Thais all
we promised to do!

In parallel with those communications are a set of assignments between theastate v
ables ofa andB. These are deréd from the original‘internal” communications between
A andB. Agan, because noxéernal communications areviolved, it is safe to serialise
these assignments (inyaarder — because the anti-alias and usage ruleecdmensure
there can be no data-dependenciesllso, because there are no usage conflicts with the
ilo (currently happening in parallel), it is safe tovadhese assignments to the start of the
compute region of the cycle=

{{{ serialised A and B loop
WHILE TRUE
SEQ
PAR
parallel i/o A (except ‘internals’)
parallel i/o B (except ‘internals’)
‘internal’ assignments
compute A
compute B
1

This last change is, of course, undetectable by its environment and the codenisrno
mal form I/0O-PAR— as equired.

Another ley poperty of processes, discussed in [11, 12lGsSEQ This is similar to
I/O-PAR except that input communications are serialised before output dhesever,

input communications are still all parallel — i.e. when one input happens, all inputs must
happen. Theame is true for outputs. The following process isarmal I/0-SECQform -
PROCC(...)
... declarations C
SEQ
initialise C
WHILE TRUE
SEQ
... parallel inputs C
compute C (part0)
parallel outputs C

compute C (partl)

On Serialisation -16 - Welch & Justo

The second general result is this: if we runl/@rSEQprocess in parallel with arO-
PAR process that supplies all its input, yhmay be serialised into aO-PAR process in
normalform (again modulo an environment that is it$&€-PAR).

Suppose that these conditions apply to processasd C above. A valid (sub-)set of
execution paths is gen by the serialisation=

PROCA.C(...)
declarations A and C
SEQ
initialise A and C
WHILE TRUE
SEQ
PAR
parallel i/o A (except ‘internals’)
SEQ
‘internal’ assignments (from A to C)
compute C (part0)
PAR
parallel outputs C (except ‘internals’)
‘internal’ assignments (from C to A)
compute A and C (part 1) - any order

Again, we may mee the internal assignments and computations around & bit :

WHILE TRUE
SEQ

‘internal’ assignments (from A to C)

compute C (part0)

‘internal’ assignments (from C to A)

PAR

parallel i/o A (except ‘internals’)
parallel outputs C (except ‘internals’)

compute A and C (part 1) - any order
while the parallel usage rules ensured that there were no data-dependenciesntagre

6.1. Applying the Tansforms
We will take a oncrete example from [11]. Fundamentates used in digital logic circuits
are emulated byO-PARprocesses. df instance, a two-inpuiand gate is gven by —

PROC nand (CHAN OF INT in.0, in.1, out)
INT a.0, a.1, b.0, b.1:

SEQ
b.0, b.1 := undefined, undefined
WHILE TRUE
SEQ
PAR .
in.0?a.0 in.0 out
inl1?a.l
out! [Ob.0ADb.1) in.1
PAR
in.0?b.0
in1?b.1

out! [Ha.0Na.l)

On Serialisation -17 - Welch & Justo

Becauseoccamchannels hae © be ‘point-to-point’, branches in wiring hze o be ep-
resented by acte processes-

PROC delta (CHAN OF INT in, out.0, out.1)

WHILE TRUE
g\IETQX' in out.0
:QA?RX : out.1
out.0 ! x
out.1!x

The I/0O-SEQnature of the ahe process corresponds to a digital logic component with
zero propagation delaysuch components, therefore Mearo impact on the timing charac-
teristics of the circuit being emulated and may be freely used.

The preiousnand process corresponds to a component with a pedmagdelay equal to
one (emulated) sample intahbetween incoming logicalues. \riable length propagy

tion delays can be easily modelled by additizPAR* delay-line’ processes, parametrised
to the required value.

A four-valued logic is emulated in these processesiEandFALSE (represented by1
andoo respectrely) and two “undefined’ | evds (represented byo ando1). Noticethat,

for a word length of 32, up to 16 independent sets afdront trials can be conducted
simultaneously.

A simple circuit with feedback is thetch -

out.0

out.1l .

latch

which can, of course, be instantly implemented :

PROC latch (CHAN OF INT in.0, in.1, out.0, out.1)
CHAN OF INT p, q, 1, s:
PAR
nand (in.0, r, p)
nand (s, in.1, q)
delta (p, out.0, S)
delta (g, r, out.1)

To erialise this, let us first join thkO-PARIlogic gate with its adjacemtO-SEQ* fan-
out” process. Thigransformation is based upon the second owengn the previous sub-

section, extended in the obviousyto cope with the tav1/0O-PAR phases of theand
cycle -

iQ.O Da out.0
in.1 out.1

nand.delta

Yy

On Serialisation -18 - Welch & Justo

PROC nand.delta (CHAN OF INT in.0, in.1, out.0, out.1)
INT a.0, a.1, b.0, b.1, a:
SEQ
b.0, b.1 := undefined, undefined
WHILE TRUE
SEQ
a:= [Ob.0ADb.1) -- first phase
PAR
in.0?a.0
inl1?a.l
out.0'a
outl'!a
a:= HaOANal) -- second phase
PAR
in.0?b.0
in1?b.1
out.0'a
outl'!a

This is nav in (two-phase)/O-PAR normalform. Noticethat the wariablesa.0 anda.1
need only hee vey local scope — that of the first parallel communications in the loop and
its following assignmentNext, by moving the first assignment in the loop to the end of the
loop (and, of course, duplicating it in the initialisation part), we olesthat the same is
true for the ariablesn.0 andb.1 . Localising both pairs of definitions and renaming them
toc.0 andc.1, we end up with a loop whose body is a sequence ofitientical phases.
This collapses to a simpl&-PAR normaform -

PROC nand.delta (CHAN OF INT in.0, in.1, out.0, out.1)

INT a:
SEQ
a : = undefined N\ undefined)
WHILE TRUE
INT c.0, c.1:
SEQ
PAR
in.0?c.0
inl1?c.l
out.0'a
out.l'a
a:= [OcOAc.l)

Now, thelatch runs two instances of thisand.delta in parallel. This may ne be ri-
alised by applying the first transform from the previous sectiée. raveto rename the
internal state-variables to@d clashes — we do this by adding thefiguhi to those from
the “higher” nand.delta and.lo to the “lower” one =

On Serialisation -19 - Welch & Justo

PROC latch (CHAN OF INT in.0, in.1, out.0, out.1)
INT a.hi, c.0.hi, c.1.hi;
INT a.lo, c.0.lo, c.1.lo:
SEQ
a.hi, a.lo := other.undefined, other.undefined
WHILE TRUE
SEQ
PAR
in.0 ? ¢.0.hi
out.0!a.hi
in.1?c.llo
out.l!a.lo
c.1.hi, c.0.lo := a.lo, a.hi
a.hi: [({c.0.hi A c.1.hi)
a.lo: ({c.0.lo A c.1.l0)

Clearly, the \ariablesc.1.ni andc.0.lo may be dispensed with and their assignment
costs seed — the alo andahi values being used directly in the final assignments.
Renamingc.0.hi andc.l.lo asthi andtlo respectiely and localising their declara-
tion, we are left with-

PROC latch (CHAN OF INT in.0, in.1, out.0, out.1)

INT a.hi, a.lo:
SEQ
a.hi, a.lo := other.undefined, other.undefined
WHILE TRUE
INT t.hi, t.lo:
SEQ
PAR
in.0 ? t.hi
in.1?tlo
out.0 ! a.hi
out.l1!a.lo
a.hi, a.lo := It.hi A a.lo), Oa.hi A t.lo)

Looking at the resulting code, it is possible that it coulkeHzen coded lig that in the
first place. However, the serialised code only collapsed to this simple form because of the
symmetry in the original circuitLess regular circuits would require serial code veily
not like to mmpose directly!For example, a latch circuit whoseatgs imposed dérent
propagation delays!!

The resource demands from theotversions of the ab@ latch component are signifi-
cantly diferent. Theparallel \ersion requires 308 bytes of workspace and processes
incoming signal sampléwavdronts” at the rate of onewery 36 usecs. Thdinal serial
version only requires 84 bytes of workspace and cycles psé6s.

We would expect similar benefits to be obtained from serialising larger circuits —
enabling them to be emulated in the same (real) time from the samsp(tej hardware
resources. \thout automatic tools, hower, we would not like to ty it!

On Serialisation -20 - Welch & Justo

7. Discussion

A recent article [13] on parallel computing in the popular computingamagBY TEends
with the following paragraph-:* The hadware issue has already been solved, thanks to the
INMOS tansputer Software remains the final hurdle to clear if galel processing via
multicomputes is to eneige & a pular alternative to sequential processing

This point-of-viev is a little worrying. Whilstthe article mention€ and FORTRAN it

makes no no reference tmccam Yet occamwas devised specifically to address the soft-
ware and hardware issues associated with parallel computing [14, 15, 16, 17] — the secu-
rity weaknesses in‘standard’ programming languages disqualifying them from being
robust platforms on which to build concurrent syster@camwas devdoped simultane-

ously with thetransputerand the latter would not exist (as we wnid) without the former

If you only pick up half the groceries, dorbmplain if you get hungry!

Our experience from working witbccamis that hardware issues and software issues are
no different from one anothekVe alopt the same approach for each. Both are designed as
parallel systems — &' just that the hardware designs tend to stay parallel, while the soft-
ware elements sometimes get serialised a little bit!

The second sentence of the abapotation endorses the common belief that it is some-
thing in theparallelismthat causes the difficulty in the sofive. Thetheme of this paper is
that this is false — it is the attempt to write compderial code directly that causes (and
always has caused) the problems.

We haveargued that parallelism is a highvk programming concept. It enables us to
capture compbe system behaviour much more directlgoncisely and simply than gn
equiaent (lon-level) serial code. On the practical side, tovélep application softare
that will be portable and efficient acrosdeliént architectures and configurations of multi-
processgrwe reedmud more parallelism in our algorithms and data-structures than we are
eve likely to be offered in hardware.

We haveconsidered three dérent applications (the simulated growth of diffusion limited
aggr@aes, image compression and digital logic emulation) and demonstrated tfeee dif
ent parallel paradigms (client/seryvpipe-lines and arbitrary feedback networks) that yield,
respectrely, well-engineered solutions for thenfror each of these cases, wevhahown
how to transform (‘compile”) them into equialent serial code that is morefiefent in
terms of its space and time requirements,i® more compbeand less well-engineeredn
general, we hze little confidence in our ability to produce such serial code directly and
none in our ability to maintain it.

The serialising optimisations weveauwsed are all construesly defined and can clearly
be automatedWe se an ugent need for tools to do these transformations for us. In the
medium term, serialising will be arveeyday activity for parallel programmers and pro-
grammers mak o mary mistakes on their wn! We dso need these serialising tools inte-
grated into asecue dewelopment evironmentalongside their complementaryf@iding”)
editor, compiler and maintenance tools — i.e. the INMO®BS [18], or something that
shares its philosophmust be re-born Eventually serialisation may be hidden from us by
being incorporated into the compilévader or dynamic load balancer.

“ Computer algebratools (e.g. [19]) hee keen deeloped and are in significant use by
mathematicians to help them manipulate their formulae. It seems extraordinary that com-
puter scientists (who made those tools for the mathematiciaves)nbiademanded similar
help. We ae far too confident in our abilities to manipulate our formulae (i.e. programs) —

On Serialisation -21- Welch & Justo

evidence of ournability is widespread.

The real reason for the lack of program manipulation toolsignificantuse) is that the
programming languages (significantuse) do not ally formulae (i.e. programs) with the
same simple algebraic properties as are enjoyed in mathematics. LanguagesCsant as
FORTRANhave ill-defined and highly compkesemantics that rule out the prospect foy an
formal analysis or manipulation.

On the other hand, transformation tools exist for simetionalprogramming languages
and also, of course, faccam[20, 21]. Occamis the exception to the general statement in
the preceding paragraph. It is the only programming language in significant (industrial) use
that only allows formulae (i.e. programs) with simple algebraic propertidarertheless,
the use of the Oxford tools [21] is nagry widespread — it seems not tovbapne much
beyond INMOS (and its sub-contractors), where it has played a crucial role in the design of
major features of the T90Gfansputer[22]. The Oxford tools do not include the serialis-
ing transforms described in this pap&ve ae keen to use such tools at Kent and work is in
progress here to produce them.

Finally, we siammarise our approach to (parallel) computing applicatiens :

» design a solution incorporating as much parallelism as naturally falls out from the appli-
cation — this is usually mass

» balance this across the number of processors at our disposal — this is easy so long as
the parallelism in the algorithm greatly exceeds the parallelism in the hardware;

» for each individual node, serialise therker processes so long as this yields significant
optimisations — i.e. a complete serialisation is notagé necessary and may be
counter-productie. We reed tools to assist us in this.

We havebeen fortunate in being able teoal working with “dusty decks. Extracting
parallel code from them (in order to exploit parallel hardware) is as hargtrastiag
“ high-level’’ source code from a vaassembler listing.It's quicker and safer and cheaper
to go back to the original problems and re-write them from scratch using the higher para-
digm. We must, of course, use a proper multi-processing language that allows the use of
formal methods and enables us, and automated tools, to work.

8. Acknowledgements

The work of one of the authors (GRRJ) has been funded by the Brazilian Research Council
(CNPq), under grant No. 205034/88-8, and we are especially grateful for their support.

We ae also indebted to the community of parallel system engineers within the Comput-
ing Laboratory at the Uweérsity of Kent, who hee aeated the culture from which the par
ticular experiences reported in this paperenkeen dravn. Thatwork has beenariously
supported by the Computer Board Initiation Software Environments for Parallel Com-
puters, the SERC/DTI Transputer Initiagi the Royal Armament Research andvBep-
ment Establishment and the COMETT training programme of the EEC.

9. References
[0] C.A.R.Hoare! Communicating Sequential Processd’entice-Hall; 1985.

[1] INMOS Ltd.: “occam2 Refence Manual; Prentice-Hall; ISBN 0-13-629312-3,;
1987.

On Serialisation -22 - Welch & Justo

2]

[3]

[4]
[5]

[6]
[7]

[8]
[9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

G.Jones! On Guads’; in ‘International Workshop on the Parallel Programming of
TransputeBased Machines’, the Proceedings of the 7th. Occam User GealnniT

cal Conference, Grenoble, France; edited by T.Muntean; I0S Press, Holland,;
September 1987.

L.G.Valiant: “ Bulk-Synchonous Rrallel Computing’; in ‘Paallel Processing and
Artificial Intelligence’; edited by M.Rae and S.E.Zenith; John /éy & Sons Ltd.,
England; ISBN 0-471-92497-0; July 1989.

L.G.Valiant: “ A Bridging Model for Rrallel Computatiori; Commun. ACM 33, 8,
pp. 103-111; August 1990.

D.R.Morse A.M.Welch and M.Welch:“ Diffusion Limited Agregation: an Example
of Real-Time &rallelisation”; in ‘Real-Time Systems with Transputers’, the Pro-
ceedings of the 13th. Occam User Grouwghhical Conference, York, England;
edited by H.Zedan; pp. 248-261; IOS Press, Holland; September 1990.

S.K.Park and K.WMiller: “Random Number Geraprs: Good Ones a&r Hard to
Find”; Commun. ACM 31, 10, pp. 1192-1201; October 1988.

R.Peel:“ Issues Raised while Implementing a Layered Protocol using Occam and the
Transputer”, in Proceedings of the 10th. Occam User Groaghhical Conference,
Twente, The Netherlands; edited by A.Bakkers; 10S Press, Holland; April 1989.

G.Jones! Efficient Multiple Buffering in Occary’'in Occam User Group Nesletter,
No. 11, pp. 36-44 (July 1989).

P.H.Welch:“ Secuely Manayed Fointers”; in Occam User Group Nesletter No. 15
(July 1991).

G.Jonesand M.H.Goldsmith:* Programming in Occam?2’ Prentice-Hall; ISBN
0-13-730334-3; 1988.

PH.Welch:“ Emulating Digital Logic Using fansputer Networks (Very HighaRal-
lelism = Simplicity = Rrformance)} in ‘Paallel Architectures and Languages
Europe - ¥lume 1’; Lecture Notes in Computer Science, vol. 258, pp.357-373;
Springer-Verlag; June 1987.

G.R.R.Justoand PH.Welch: “ Synthesis of Deadl&e~ee Farallel Programs”; in
Proceedings of the 3rd. pan-Hellenic Conference on Informa#ohriblogy Athens,
Greece; pp. 46-59; May 1991.

R.M.Stein: “ Scaling Up: Get the Mesge?”; in Byte, June 1991, pp. 231-244;
McGraw-Hill; June 1991.

C.A.R.Hoareet al. :“Laws of Pogramming”; Commun. ACM 30, 8, pp.672-686;
August 1987.

A.W.Roscoe and C.A.R.HoaréLaws of Occam Rgramming”; Technical Mono-
graph PRG-53, Oxford Uwérsity Computing LaboratoryProgramming Research
Group, 8-11 Keble Road, Oxford, OX1 3QD, ENGLAND; 1986.

R.Shepherd? Security Aspects of OccdmTechnical Note 28 (72-TCH-028-00);
INMOS Ltd., Bristol; 1987.

G.Barrett:B.Sufrin, “ Formal Support for Distributed Systems: occam and tlaasF
puter”. In ‘TRANSPUTING '91’; IOS Press, Holland; ISBN 90-5199-056-6; April
1991.

On Serialisation -23- Welch & Justo

[18]
[19]

[20]

[21]

[22]

INMOS Ltd.: “Transputer Development System’ Prentice-Hall; ISBN
0-13-928-995-X 1988.

S.Wolfram: “ Mathematica — a System for Doing Mathematics by Computetdi-
son-Wesley; 1991

M.H.Goldsmith:* Occam Tansformation at Oxfat”; in ‘International Workshop on
the Rarallel Programming of fansputeiBased Machines’, the Proceedings of the 7th.
Occam User Groupethnical Conference, Grenoble, France; edited .Muiitean;
IOS Press, Holland; September 1987.

M.H.Goldsmith:* The Oxfod Occam Tansformation System — User Documentation
" ; Programming Research Group, Oxford amsity; January 1988.
A.W.Roscoe, M.H.Goldsmith, A.D.B.Cox and J.B.Scajed: “ Formal Methods in

the Development of the HXahsputer”. In ‘TRANSPUTING '91’; 10S Press, Hol-
land; ISBN 90-5199-056-6; April 1991.

