
High-Level Paradigms for Deadlock-Free

High-Performance Systems

Peter Welch, George Justo and Colin Willcock

Computing Laboratory, The University, Canterbury, Kent, CT2 7NF

Abstract. This paper reviews the general notion of deadlock (and livelock) in parallel
systems based upon synchronised message passing and relates them to the much worse
problem of undetected data-loss in asynchronous or shared-memory communications.
Two design paradigms (I/O-PAR and Client-Server) are presented that guarantee
freedom from deadlock for synchronised communication regimes (both continuous and
irregular data-
ow). The paradigms are based upon the notion of `synchronisation
classes' for processes that are closed under certain forms of parallel composition.
Checking for deadlock-freeness devolves to checking that the base processes belong
to the correct classes and that the composition rules are observed. The complexity
of this checking is at worst O(n2), where n is the number of processes in the system,
as opposed to O(sn), where s is the (average) number of states in each process. The
latter would be required for an arbitrary parallel design. The automated checking of
these design rules is therefore highly practical.

High-performance applications (e.g. physical system modelling, embedded real-
time systems, ...) generally consist of two components: the computationally intensive
part (which is usually logically simple and can exploit the I/O-PAR paradigm) and
its controlling apparatus (which can be highly complex but can exploit the Client-
Server paradigm). This paper reports on the design rules for hybrid combinations
of the two paradigms that preserve their deadlock-free properties. Examples will be
presented. The classic `Dining Philsopher' system is shown to illustrate an I/O-PAR
Client-Server hybrid that breaks these rules.

Finally, the Client-Server paradigm will be looked at from the point of view of
the special language support provided by occam31 .

1 Introduction

The real-world is a demanding and complex environment in which to embed computer

systems. If the latter are to be of any use to the former, we must �nd ways of designing

them that can safely manage both the performance and complexity issues. In general,

parallel methods lead to implementations that are simpler than their serial equivalents,

since they build up their complex behaviours in the same way as the real-world (i.e.

through the simple interaction of independent and simple entities). They also lend

themselves to high-performance execution since their parallel components o�er many

possibilities for parallel execution on multi-processors.

However, understanding and controlling the global properties of networks of `simple

interactions' between processes requires an additional set of skills from the parallel sys-

tem engineer. The most subtle of these skills lies in guarding against accidental data-loss

during process interaction and partial (or global) deadlock/livelock. For an arbitrary

1occam is a registered trademark of INMOS Limited.

parallel design, there is no mechanical way to induce, from a complete knowledge of the

local process interactions, the overall behaviour of the network. Many designs give rise

to these problems in ways that are non-deterministic { i.e. dependent on the scheduling

order of processes or the relative speed of processors. When this happens, the bene-

�ts claimed earlier for the relative simplicity of parallel design will have been lost and

parallelism will appear to be a very di�cult and dangerous tool to master.

Fortunately, there are disciplines of parallel design that result in systems whose

deadlock/data-loss properties can be analysed, although not necessarily in a completely

systematic manner (i.e. human assistance may still be needed). Foremost of these are

the occam/CSP rules: process interaction only via synchronised message passing and no

shared variables! These eliminate accidental data-loss because data is only transferred

when space has been allocated to receive it and data cannot get zapped behind your

back. Asynchronous communication requires either in�nite bu�ering or a high-level

error-recovery protocol to guarantee its security, both of which imply serious run-time

penalties. A shared `variable' does not have the simple engineering semantics of a

variable (e.g. consecutive readings of its value ought to produce the same result) and

requires very careful management. This management (e.g. semaphores) operates at too

low a level and badly compromises the overall simplicity and, therefore, security of the

parallel approach.

Synchronised message-passing leaves us only with deadlock/livelock and some special

e�ciency issues to resolve before the distributed functionality of a simple parallel design

can be accepted. The e�ciency problems relate to processes being unable to continue

with useful work whilst awaiting synchronisation and the actual message-transfer costs.

The �rst is avoided by having su�cient `Parallel Slackness' [1] in the design (i.e. always

having other processes waiting to run whenever a currently executing process becomes

blocked) combined with a very low context-switch overhead (less than a micro-second

on a transputer). The second can be avoided by not having too much `Parallel Slackness'
in the design (e.g. by using systematic ways of reducing2 parallelism [2]) and hardware

support for simultaneous data-transfer and computation (e.g. as provided by a transputer
network3).

This paper concentrates on paradigms for parallel design that yield systems whose

operations are automatically free from deadlock.

2 Verifying the Absence of Deadlock

The choices made in the design of the occam multi-processing language mean that avoid-

ance of deadlock (and livelock) is the responsibility of the occam engineer. In safety-

critical applications, this responsibility must not be evaded since the consequences of

a broken system are intolerable. occam does not allow the run-time detection of (and,

hence, recovery from) arbitrary deadlock/livelock conditions, since the necessary run-

time checks would require global information on the state of the network and would,

therefore, be ine�cient and unscalable. Instead, we must verify as formally as possible

2In general, we should err on the side of too much parallelism in our design - removing parallelism
is much easier than adding it!

3The T9000/C104 architecture provides a dramatic increase in this support compared with the ear-
lier T2/T4/T8 series. The proposed Chamaelion design from INMOS takes this considerably further.

that our system is free from such errors as a normal part of the design process { an

`o�-line' activity with no run-time cost!

To ensure deadlock-freedom, we must show that there is no state into which the sys-

tem can get from which no further action (i.e. communication or, perhaps, termination)

is possible. Livelock-freedom is a little stronger: there must be no state from which all

external communications may be refused, even though internal activity may continue

inde�nitely.

The number of states in a multi-process network is bounded by the product of the

numbers of the states in each component process. Even for quite modest systems (e.g. a

10 process network, where each process has 10 states), we can have the order of a billion

states to check out! For almost all practical systems, exhaustive testing by generating

each possible state is impossible.

Instead, our veri�cation must consist of an exhaustive reasoning through all possible

`categories' of state, where the number of di�erent categories is small. The choice of

categories will depend upon the nature of the system being analysed and, in general, will

require intelligent insight into its behaviour (a classical example of this being the proof

of deadlock-freedom in the `Dining Philosophers' problem [3]). This type of veri�cation

cannot be automated!

This paper reviews some restricted sets of rules for parallel design that have the happy

property of guaranteeing deadlock-freedom (because general theorems about their prop-

erties can be proved). In this case, verifying the absence of deadlock devolves to checking

that the design rules have been followed { a mechanical process that can be automated

with low computational cost. We claim that these design rules are suitable for most

high-performance high-complexity applications.

3 Know Your Enemy

Whilst occam cannot prevent its systems being mis-programmed and reaching a dead-

locked state, it does make us well aware of the danger. It even goes so far as to provide

a language primitive that explicitly generates it { STOP!

SEQ
 ... compute
 STOP
 ... anything

Figure 1: A Deadlocked Process

Consider the process in Figure 1, where the compute fold contains no communication.

It performs no useful function, since there is no way for its environment to obtain the

results of any of its internal computations. Nothing it was programmed to do in its

anything fold, which may have included external communication, will ever take place.

Worse than this, it is a danger to its environment since any committed attempt to

communicate with it will deadlock the process that makes the attempt!

The process in Figure 2 cannot be distinguished by its environment from the process

of Figure 1, even if the internal computations are completely di�erent. The Figure 1

c

d

SEQ
 ... compute
 c ! 42
 ... anything

SEQ
 ... compute
 d ! 43
 ... anything

Figure 2: An Equivalent Deadlocked Process

and Figure 2 processes are semantically identical { both represent deadlock and are

useless and dangerous to their environments.

SEQ
 ... compute
 WHILE TRUE
 ... compute
 ... anything

Figure 3: An Equivalent Livelocked Process

c

d

SEQ
 ... compute
 WHILE TRUE
 SEQ
 c ? p
 ... compute
 d ! q
 ... anything

SEQ
 ... compute
 WHILE TRUE
 SEQ
 c ! x
 d ? y
 ... compute
 ... anything

Figure 4: Another Equivalent Livelocked Process

The processes in Figure 3 and Figure 4 represent livelock. To their environments,

they behave in just the same way as the earlier deadlocked ones: they refuse all com-

munications and compute nothing that can be accessed! From the point of view of

processor resource, they are slightly worse. At least, the deadlocking processes eventu-

ally stop executing and just sit upon some memory resource { the livelocking processes

continue to burn up computation resource as well!

All these processes o�er the same semantic threat to their environments. They are en-

tities that will not respond to any external enquiry and will deadlock any external agent

that carelessly makes one { spreading the area of contamination. High-performance ap-

plications cannot tolerate such dangers. At best, time on a very expensive machine will

have been wasted. At worst, people will be killed.

This may seem like a good reason to drop parallel algorithms altogether { or, at least,

the occam model of it. Unfortunately, the alternatives are so much worse! Our ability to

manage serial algorithms does not scale with their complexity. Mis-programmed parallel

systems based upon asynchronous communication primitives or shared variables simply

become corrupt, but appear to carry on `working' ! It is much better for erroneous

systems or sub-systems to jam or chatter away harmlessly to themselves { at least we

know that those parts of our application with which we are in touch are inviolate.

For safety-critical applications, we can build logical `�re-walls' between physically

separate sub-systems (that can independently fail for hardware or software reasons), so

that failure in one will not bring down its neighbours [4][5]. Such �re-walls will contain

an explicitly programmed asynchronous communication (constructed from synchronised

ones), but for which the necessary data-loss is deliberate and controlled.

occam gives us excellent visibility of its communications and guarantees that each

of them individually is secure. That makes a pretty good place from which to start

looking for general results about deadlock/livelock.

4 Client-Server Networks

The problem with the deadlocked process in Figure 2 is that each of its sub-processes

committed themselves to di�erent communications with each other. The opposed di-

rections of these communications is irrelevant { deadlock would still result even if both

internal channels
owed the same way (one process trying to speak down one channel

and the other listening on the wrong one). If we are going to allow multiple channels

between processes (and, in general, we must), we need to impose some discipline on the

way they are used. Two such regimes are the client-server principle (this section) and

I/O-PAR (next section).

A B

request

answer

s

c

Figure 5: Client-Server Communications

The client-server principle relates to the pattern of communications across a collection

of channels joining two processes. It is an attribute of this channel bundle, rather than

the processes, and de�nes an ordering on the connection that is independent of the

direction of the data-
ows within it. One end is labelled the client and the other

is called the server. The processes attached to these ends much conform to certain

behaviour patterns when using the connection. Figure 5 shows a simple example.

4.1 Client Behaviour

A client-server transaction is always initiated by the process at the client end (process

A in Figure 5). This will be a communication4 (that may be just a signal carrying no

data) down a distinguished channel in the connection, called the claim-channel. (In

Figure 5, request is the claim-channel and may well carry some data.)

We assume that this claim will always be accepted within a �nite time (see 4.2 below).

If we are in a time-critical sub-system of a real-time application, we will need to be told

an upper bound to this acceptance time.

4Usually, but not necessarilly, this will be an output.

At this point, the processes at each end have synchronised at the start of their

respective client-server transaction routines. They complete the transaction with a

�nite sequence of communications using any of the channels in the connection set { data

may be transferred in either direction. The precise order of these communications may

be pre-de�ned or data-dependent. During this transaction sequence, the client process

may perform further relevant computation (provided this always terminates), but is not

allowed to attempt communication outside the client-server connection set. The client

may assume that all transaction communications (within the set) will complete within

a bounded time.

In practice, the rich and varied message structures a�orded by occam PROTOCOLs

mean that only one channel in each direction is ever needed to support such transac-

tions (e.g. the request and answer channels in Figure 5). It is advisable to keep the

transaction sequence as simple as possible to avoid mis-programming. A common form

is just a single reply to the opening signal { for example, the transaction routine in

process A may be simply:

SEQ

request ! request.parameters

answer ? results

Note that some client-server connections may only need to transfer data in one di-

rection. If this is from the client to the server, only one channel will usually be needed.

If it is from the server to the client, a claim-channel carrying a data-less signal from

the client to the server will also be needed (to open the transaction).

4.2 Server Behaviour

The process at the server end of a client-server connection must always accept a claim

from that connection within a �nite time. The simplest way to control this is to

implement the server as an `interrupt-handler' for that claim { i.e. something that

remains dormant (apart from some internal housekeeping) outside each transaction.

For example:

SEQ

... initialise internal state

WHILE servicing

SEQ

request ? parameters -- the claim

... compute required information

answer ! information -- end of transaction

... update internal state

Server processes are allowed to service more than just one client5. For example:

SEQ

... initialise internal state

5In which case, the claim channels all have to be inputs to the server.

Server

[]request

[]answer

s

s

Figure 6: Server for an Array of Clients

WHILE servicing

ALT i = 0 FOR SIZE request

request[i] ? parameters -- claim

SEQ

... compute information

answer[i] ! information -- end of transaction

... update internal state

This code refers to the server process in Figure 6. Each transaction is `atomic' in

the sense that it cannot be interrupted with other service transactions { a client has

exclusive access to the server whilst it is being served. [Note that this code is not

quite su�cient, since there is no guarantee that a particular client may not be starved

by the demands of an especially active colleague. However, this is easily dealt with by

standard techniques for a `fair' ALT [6] and is not discussed here.]

The compute and update folds in the above server codes must, of course, be guar-

anteed to terminate. Unlike client transaction routines, we do allow servers to commu-

nicate during a transaction { they may need to obtain information not held locally to

satisfy the client request. Communication may therefore take place within the compute

fold, but only as the client-end of a client-server connection { see Figure 7.

Server

[]request

[]answer

help.request

help.answerc

s

s

Figure 7: A Server also Acting as a Client

For example:

{{{ compute information

IF

... we can handle request locally

... compute information here

... we need outside help

SEQ -- client transaction

help.request ! parameters

help.answer ? information

}}}

Thus, on some of its client-server connections, this process acts as a server and on

others as a client. Client transactions may be embedded within a server transaction

(but may also be done elsewhere). Since we assume that client transactions always

terminate within a bounded time, we can maintain our guarantee of bounded response

times to our own clients.

4.3 Client-Server Deadlock/Livelock

Deadlock/livelock analysis of a network of processes communicating solely through the

client-server paradigm is particularly easy { see [7] for full details. Each client-server

connection de�nes an ordering between two processes.

Client-Server Theorem

Any network of client-server connections that is acyclic with respect to the client-

server ordering is deadlock/livelock free.

Proof

By induction over any topological sorting (client-server ordering) of the processes.

The hypothesis is that each process will accept any client signal within a �nite time.

The bottom process in the topological sort makes no demands (as a client) to any

other process in the network. Each service request to this process is handled either

locally or by a client demand outside the network. We assume that external demands

are serviced properly, since we are only concerned about deadlock arising within the

network. Hence, we deduce that each service requested is completed in a (computable)

�nite time and the process will loop around ready to accept further claims. This is the

base case of the induction argument.

The induction step has to establish the hypothesis on any other process, assuming it

for all processes below it in the client-server ordering. In this case, each service request

is handled either locally or by a client demand to a process lower in the ordering or

outside the network. By induction and the same reasoning as for the base case, all

these handling methods terminate successfully and, again, we deduce that this process

will get ready { within a �nite time { to accept further claims.

This completes the induction and we have the hypothesis for all processes in the

network. Hence, external clients will always be serviced. External servers only attempt

to communicate with processes in the network during transactions initiated by those

processes and which those processes locally guarantee to complete. Thus, no external

communications are ever refused by the network and it is deadlock/livelock-free.

Q.E.D.

4.4 Cross-Mounted Servers

Figure 8 shows a network that breaks the rules for the client-server theorem. For ex-

ample, server.A and server.Bmay be separate �le-servers, each with their individual

sets of clients. Sometimes, the �les required by a client attached to server.A are only

available on server.B. In this case, server.A has to become a client of server.B to

obtain the necessary information. Similarly, server.Bmay need to obtain the services

of server.A on behalf of its clients.

server.Bserver.A

s s

c c

ss

Figure 8: Cross-Mounted Servers

So long as these cross-service demands do not occur too heavily, this systemmay pass

its validation trials and start being used. Trouble will eventually arise when server.A

and server.B both become committed to making a claim to each other's service, as a

result of two unfortunately timed local requests. At this point, neither claim ever gets

accepted and the �le-server network deadlocks! [Note: this is a true story!!]

name.serverserver.Bserver.A

multiplex multiplex
c

s

c

s

s s s

Clients Clients

c

s

c

s

Figure 9: Deadlock-Free Multiple Servers

A deadlock-free design is given in Figure 9, where there is now no cycle in the client-

server ordering. External client processes are no longer speci�cally attached to ei-

ther server.A or server.B. Instead they connect through multiplex processes that

route transactions to the correct �le-server, possibly by �rst consulting an independent

name.server to decide which one to use.

4.5 The Clock Problem

Figure 10 shows a clock process that signals on its tick channel at a regular time

interval. This time-interval is initialised by sending a value down its reset channel and

can be changed by sending further values down the reset:

clock
reset tick

s c

Figure 10: A Clock with Speed Control

PROC clock (CHAN OF BOOL tick, CHAN OF INT reset)

TIMER tim:

INT t, gap:

SEQ

reset ? gap

tim ? t -- only read the absolute time once

t := t PLUS gap

WHILE TRUE

PRI ALT

reset ? gap

SKIP

tim ? AFTER t

SEQ

tick ! TRUE

t := t PLUS gap

:

This process acts as a server for its reset channel (and for its internal TIMER) and

as a client on its tick-channel (which it assumes will be taken before its next tick is

due).

Suppose we want to use clock in an application where the process being stimulated

by the ticks needs to control that tick rate { see Figure 11.

clock

reset

tick
users

c

c s

Figure 11: A Clock Controlled by its User

Suppose this user is simple enough to be implemented as a serial process. We have

a cycle in the client/server ordering and, therefore, no guarantee against deadlock! In

fact, the potential for deadlock is very real.

Server processes are allowed to make client calls for its own reasons or on behalf

of its own clients. Under the conditions of the theorem, this does not matter since we

know that those calls will always be answered. The `down-time' of a server is the period

between its decision to make such a call and actually making it. During this down-time,

it is dependent upon other servers to enable it to complete its client transaction and

resume its own role as a server.

For the clock process, this down-time runs from accepting its time-out guard and

attempting the tick { say about 3 micro-seconds on a transputer. The user process can
keep its down-time similarly small, since it can always check its tick channel just before

attempting a reset. If these two down-times ever overlap, there will be deadlock6.

If the average clock rate set by the user were (say) one tick every 12 milli-seconds,

the probability of an individual reset causing deadlock is about (3 + 3)/12000, which

is 0.05%. If the user adjusted the clock rate on average once every 10 seconds, after

nearly 3 hours continuous operation (i.e. 1024 resets) our chance of not being dead-

locked reduces to 60%. After 24 hours, we have a less than 1% chance of still being

alive.

The above rate of deadlock ought to show up under reasonably persistent system

testing. However, suppose the parameters of this system were somewhat di�erent.

Suppose that the reset were generated by human (e.g. pilot) intervention with the

user process and that this happened very rarely { say once every 24 hours
ying-time.

In this case, we would have to wait 2
ying-years before our deadlock chances reached

60%. This deadlock would easily be missed in testing and only show up several years

into the actual service of the plane!! Such a rare deadlock is truly deadly.

The way not to `cure' this problem is to add extra bu�ering in the feedback loop {

see Figure 12.

clock
tick

userc s

reset id

s

c s

c

user.reset

Figure 12: Bu�ered Reset Connection

The id process cycles through waiting for a user.reset and passing it on to the

clock. It acts as a server to the user.reset channel and a client to the reset. We

still have a cycle in the client/server relationships and no guarantee against deadlock.

6Note: we are reasoning here about occam processes and can make no assumptions about the
mechanisms of any multi-processing scheduler (should those processes be allocated to the same proces-
sor). Relying on such properties to verify the absence of deadlock is implementation dependent and,
therefore, unsafe.

However, the chances of deadlock are greatly reduced. The user process must issue

a user.reset, change its mind fairly quickly and issue another one. The �rst reset,

propagated through id, must arrive at the clock during its down-time (probability

0.025%). Also, the tick generated at the end of that period must reach the user during

the down-time for its second user.reset (probability 0.025%). Thus, the probability

of deadlock arising from a randomly generated reset is about 0.000006%, which still

implies a 50% chance of failure after about six months
ying-time (assuming resets

averaging once every ten seconds).

If we programmed the user to promise some minimum tick-service time between

any consecutive (user.reset-generating) down-times, then deadlock could be avoided.

This minimum time must cover the propagation delay in routing the reset through

id plus the down-time of the clock plus the service time for the reset by the clock.

But depending upon such real-time analysis for verifying this fundamental property is

complex and hard to maintain. Any change to the speed or number of processors in the

system, the scheduling algorithm or number of processes, the implementation of clock

or id would require re-calculation of the timing constraints to be used within user.

Administration of such side-e�ects7 is not simple engineering!

The correct way to solve this problem is to use a design that meets the conditions

of the client-server theorem. The system will then be free from deadlock regardless of

the details listed at the end of the previous paragraph. Figure 13 applies two standard

occam idioms: an auto-prompter (prompt) and an overwriting bu�er (OWB), here with

capacity for just one item.

clock usersc

s

c

c

sc

s

tick

reset

req

ans

user.reset

OWBprompt

Figure 13: Secure Reset Connection

The prompt cycles through the sequence <req!, ans?, reset!> and acts only as

a client on its two connections. The OWB is a pure server, accepting user.resets at

any time (which may overwrite previously sent values) and requests (provided it is not

empty).

Although there are two obvious cycles of data-
ow in the system, there is no cycle

in the client-server ordering and, therefore, no deadlock. The OWB/prompt sub-system

provides an asynchronous connection for propagating the reset signal. The data-loss

inevitable from such a link is explicitly managed within OWB { i.e. it is under control.

This data-loss (of an earlier reset value) is no problem in this application since it is

only caused by the arrival of a change-of-mind message. The only process that may be

blocked inde�nitely is prompt, as it attempts to request a reset signal that may never

7Note that adding bu�ering is similarly no solution to the cross-mounted server deadlock of 4.3

be sent. But prompt does not have to promise service to anyone and so the design is

immune to this sacri�ce. This system will
y forever!

4.6 The Farm Worker

Client-Server Closure

Any collection of processes that communicate only using the client-server paradigm

and has an acyclic topology (with respect to client-server relationships) itself commu-

nicates with its environment by the client-server paradigm.

Proof

We just have to show that service is guaranteed to its external clients. This is an

immediate corollary of the client-server theorem, which promises that the collection is

deadlock/livelock-free.

Q.E.D.

buffer
catch

prompter mux

works

c

c worker c

s

c
s

c
c

s

in.work in.result

out.work out.result

s s

Figure 14: Farm Worker Harness

Figure 14 shows the implementation of a worker in a simple processing `farm'. It

consists of four standard `harness' processes (buffer, prompter, catch and mux) and a

work process that is special to the problem being farmed. The buffer is a pure server,

servicing its external link (from which new work-packets arrive) and request-connections

from work and prompter.

The prompter, as before, is a pure client, making demands on the buffer and

forwarding anything it gets to the next worker in the farm (see Figure 15). The central

work process has the same communication behaviour as the prompter { it is a pure

client, obtaining work-packets from buffer, processing them and outputting result-

packets to mux.

The mux process services result-packets from its two input connections and multi-

plexes them (as a client) on to its external output link.

The catch process is a one-place bu�er (like id), forwarding result-packets from the

previous worker to mux. Its purpose is to service the external link in.result so that

it may operate in parallel with out.result. In fact, all four external links of worker

may operate simultaneously (and their respective handlers operate at higher priority

than work to let this happen whenever possible).

work packets results

harvesterfarmer worker worker worker worker

c s c s

c s

c s

c s

c

c

s

s c s

Figure 15: A Farm

This design has no client-server cycle and worker is, therefore, deadlock/livelock-

free and may be treated as a client-server component. A complete farm is shown in

Figure 15, where the �rst worker omits the catch process and the last one omits the

prompter. The worker-pipeline is a server to the farmer (who does not know which

worker will service which packet) and a client to the harvester (who does not know

which worker produced which result). We have a simple pipeline of parallel client-server

connections and are, therefore, deadlock-free.

5 I/O-PAR and I/O-SEQ Networks

Consider a physical system whose components behave in a way determined only by

their own state and those of their immediate neighbours (e.g.
uid
ow, logic circuits,

road-tra�c, heart muscles, real-time control laws, bungee jumping, ...). Such a system

can be precisely emulated by a network of communicating processes, each of which

models one component, and whose topology exactly re
ects that of the real system.

An I/O-PAR normal form [8][9] is a process that has a cyclic serial implementation,

except for its communications which always operate in parallel:

WHILE running

SEQ

... parallel i/o (once on all channels)

... compute

An I/O-SEQ normal form is similar, except that the parallel inputs are done in

sequence with the parallel outputs:

WHILE running

SEQ

... parallel inputs (all input channels)

... compute

... parallel outputs (all output channels)

... compute

Components of the physical system described above may always be implemented in

one of these normal forms. I/O-SEQ is usually applied in systems where the component

interaction is not symmetric (e.g. logic circuits and control laws). In practice, the

system domain is divided up `geometrically' into regions containing similar numbers of

component { the number of regions equalling the number of processors at our disposal.

The components in each region are modelled together as a single normal form, with

each one being placed on its own processor. A simple transformation (using the laws of

occam [10]) is usually performed to overlap input/output with all possible computation

(so we don't have to pay the transfer fees):

WHILE running

SEQ

PRI PAR

... exchange boundary data (parallel i/o)

... compute on middle of region

... compute on boundaries

Note that the above is semantically equivalent to the pure I/O{PAR normal form -

i.e. indistinguishable by any environment.

I/O-PAR Theorem

Any network of I/O-PAR normal form processes is deadlock-free.

Proof

Lemma: any occam program with no ALTs is deterministic (in the sense of CSP [3]).

[By de�nition, the parallel operator, k, of CSP is deterministic. However, the hiding

operator, n, may introduce non-determinism and the occam PAR operator automatically

introduces hiding (for all internal communications). We leave it to the reader to verify

that hiding all internal events between CSP parallel processes still leaves determinism

intact.]

Lemma: if one in�nite trace exists for a deterministic process, all traces can be

extended { i.e. it is deadlock-free. [Again, this is left as an exercise.]

Clearly, any network of I/O-PAR processes contains no ALTs { so it is deterministic.

If the network is scheduled as if there were a global `barrier synchronisation' at the end

of each normal form cycle, it is again clear that it will run forever { i.e. this gives an

in�nite trace. Hence, any trace resulting from any scheduling pattern can be continued.

Q.E.D.

A full proof may be found in [9], which also introduces the following notions.

Definitions

An `I/O-Rnet' is any connected network of I/O-PAR and I/O-SEQ normal forms.

An `I/O-SPnet' is an I/O-Rnet such that there is no closed loop consisting only of

I/O-SEQ normal forms and no path from external input to external output consisting

only of I/O-SEQ normal forms.

Two processes are `p-equivalent' if they cannot be distinguished by any I/O-Rnet

environment.

I/O-PAR/SEQ Closure

Any I/O-SPnet is p-equivalent to an I/O-PAR normal form.

Proof

See [9].

Q.E.D.

Note that p-equivalence is weaker than trace-equivalence. A non-trivial I/O-SPnet

cannot be serialised into an I/O-PAR normal form using transformations that obey

the laws of occam. For instance, an I/O-SPnet with several I/O-PAR normal forms

will allow traces in which some external communications have taken place many more

times than others. A single I/O-PAR normal form will only allow traces in which the

numbers of occurrences of each channel di�ers by at most one. Thus, we could create an

environment in which the normal form deadlocks but the network does not. However,

for all I/O-Rnet environments (which are the only environments for which they are

designed) either they both deadlock (although not necessarily after the same trace) or

they both do not deadlock.

I/O-PAR/SEQ Theorem

Any I/O-SPnet is deadlock/livelock-free.

Proof

Suppose it is not! Then there is a trace (of external communications) after which all

further external communications may be refused.

Construct an I/O-Rnet environment to support this trace as follows. To each external

channel of the I/O-SPnet, attach a pipe-line (`spoke') of I/O-PAR normal forms of

length equal to the number of occurrences of the channel in the deadlocking/livelocking

trace. Connect the end processes of each adjacent `spoke' together to form a connected

I/O-Rnet. This environment will accept the trace (with each normal form cycling by

one more than its distance from the `rim').

Apply this I/O-Rnet to its p-equivalent I/O-PAR normal form. Since the original

network deadlocked/livelocked in this environment, so { at some stage { should the

normal form. Since the normal form only has external channels and cannot cycle

without using them, livelock is impossible { i.e. it must deadlock with the environment.

But the environment consists solely of I/O-PAR normal forms { i.e. the combined

system cannot deadlock (by the I/O-PAR theorem). Contradiction!

Therefore, the trace from which the I/O-Rnet was constructed cannot exist and the

I/O-SPnet must be deadlock/livelock-free.

Q.E.D.

This closure property gives us design rules for constructing parallel emulators for

a wide range of physical systems as a hierarchy of I/O-SPnets that are guaranteed

deadlock and livelock free. Each net models the behaviour of a real system component.

At the lowest level are simple normal forms emulating the simplest components of the

system.

[9] gives (and implements) a constructive serialisation from an arbitrary I/O-SPnet

to its p-equivalent normal form. This has practical signi�cance since it allows us to

automate the production of optimised parallel code for any chosen `domain decompo-

sition' of the system. Thus, distributing the original �nely-grained massively parallel

design on to any (smaller) number of parallel processors can be mechanised.

6 Hybrid Networks

The client-server paradigm supports regular designs (such as farming) but is especially

useful for the safe construction of irregular networks that model complex system inter-

faces. The I/O-PAR and I/O-SEQ paradigm only supports the modelling of regular

systems for which domain decomposition is the appropriate strategy. However, if we

want the latter to be more than just an o�-line activity (e.g. we want to have visual

feedback on the emulation and/or interactive control over its progress and system pa-

rameters), we will need to build a rich interface. The right tool for this is client-server,

which means that we must be able to design safe client-server and I/O-PAR hybrids.

Hybrid nets are safe provided we can maintain a separate view of the di�erent types

of network as intact sub-systems, even though the same processes may be part of

di�erently typed sub-systems.

s

pp
rope

control

c
dump

Figure 16: A Hybrid Component

For example, Figure 16 shows a worker process, rope, for modelling a section of an

elastic rope in the simulation of a `bungee jump' [11]. It is I/O-PAR on its horizontal

links, but acts as a server on its control line and client on its dump channel:

WHILE running

SEQ

PRI PAR

PAR

... i/o-parallel horizontally

... poll control for new parameters

... compute on middle

... compute on boundaries

... dump current state (occasionally)

... update current parameters (if necessary)

If we ignore the control and dump channels, rope is an I/O-PAR normal form and

may be replicated (horizontally) to form a deadlock-free model of the complete rope.

We may now assume that the horizontal communications always succeed.

Each rope process is now connected through its dump channel to a client-server

network that multiplexes the state information to a graphics device. Each rope process

acts as a pure client to this sub-network and graphics is a pure server. So long as this

sub-network is built according to the rules of the client-server theorem, we know that

it will never refuse the dump request from rope.

[Note: rope need not make a dump on every cycle, since that may take too much time

and block progress on the computation. Part of the graphics delivery network may

reside on the same processor as rope, so that the physical output of state information

from the processor can be executed in parallel over several cycles of rope. Only a

one-place bu�er (e.g. id) is needed for this.]

As far as the control line is concerned, the rope process now looks like a `busy-

waiting' server. Whenever a control message arrives (carrying new parameter infor-

mation for the simulation { e.g. time-step, rope elasticity, gravity, viscosity or even

new position and velocity data for some or all of the rope particles), the rope process

guarantees to complete its current cycle and accept the signal.

We may therefore place above each rope process a client-server network that delivers

the control information. The rope process now appears to be a pure server to this

sub-network and will not deadlock it.

s

c

c

s

c

s

mouse

c c c c

s s s s

rope rope rope rope

pp

p

p

p

p

p

p p

user.interface

keyboard screen

graphics

cccc

s s s s

p

Figure 17: A Hybrid Network

Figure 17 shows the complete system. It is a hybrid of two separate client-server net-

works joined along an I/O-PAR seam. The I/O-PAR pipeline handles the main com-

putational functions and the client-server nets deliver interactive control and graphics

visualisation. The user.interface process will have a rich internal client-server struc-

ture to manage simply its diverse responsibilities. Two of its internal processes will

also have I/O-PAR normal forms with respect to their connections to the ends of the

I/O-PAR pipeline.

In general, it is quite safe for a process to have client connections, server connections

and I/O-PAR (or I/O-SEQ) connections { but they must, of course, all be di�erent. So

long as the individual sub-networks constructed from these hybrids satisfy either the

rules for the client-server theorem or are I/O-SPnets, the overall system will remain

free from deadlock and livelock.

[Note: the system in Figure 17 may be directly con�gured on to existing T2/T4/T8

networks using the automatic `virtual channel routing' option provided by the latest

occam Toolset from INMOS. Alternatively, a special-purpose routing network (con-

structed to a deadlock-free client-server design) can be added. For T9000/C104 net-

works, all the virtual channels and routers needed for direct execution of the system

are provided by the hardware.]

An example of a hybrid network that does not follow these rules is the model of

collegiate life described in the `Dining Philosophers' story. Each philosopher is an

I/O-PAR normal form who cycles through `thinking' (computation), `grabbing the

forks' (I/O-PAR signals), `eating' (computation) and `putting down the forks' (I/O-

PAR signals). [Note: some versions of this tale have the philosophers picking up (and

putting down) their forks in a particular order { in which case, I/O-PAR is replaced by

I/O-SEQ.]

On the other hand, each fork is a pure server handling signals from the philosophers

on either side. A transaction covers the period from being `picked up' by one of the

philosophers (this is the claim signal) to being `put down'.

The college consists of a ring of alternating philosophers and forks. For each

connection, one side thinks it is part of an I/O-PAR communication and the other

thinks it is part of a client-server one { confusion reigns! None of the conditions required

for the theorems that guarantee deadlock freedom apply. The college deadlocks.

7 occam3 Support for Client-Server Networks

occam3 [12] provides language support for client-server transactions. This enables the

compiler to ensure that individual clients and servers conform to the behaviour patterns

speci�ed for them in sections 4.1 and 4.2, as well as to generate much faster codes for

their implementation. We have both added security and added performance.

First of all, occam3 introduces channel-types, which allow us to group together as a

single unit the various channels (carrying di�erent protocols and directions of data-
ow)

that make up a single client-server connection.

Secondly, it allows a particular instance of such a connection to be shared between a

single server process and any number of clients { see Figure 18.

Sharing automatically introduces a claim-channel into the connection (or something

equivalent that performs this function). A client initiates a transaction by making a

claim on the shared connection. When this claim is granted (by the server), the client

has exclusive use of the channel resources provided by the connection to interact with

the server. For the shared connection called X.bus in Figure 18, a client transaction

looks like:

server

X.bus

client 0

client 2

client 3

client 4

client 1

Figure 18: Single-Server/Multiple-Clients in occam3

CLAIM X.bus

... use X.bus to interact with the server

The language will not allow clients to use X.bus channels outside such a CLAIM. Inside

the body of the CLAIM, only X.bus channels may be used { no other synchronising events

are permitted. When the body of the CLAIM terminates, the transaction is complete

and the client yields control of the connection. This sequence of claiming, using and

releasing the shared medium cannot be violated.

The server process manages in-coming claims on a FIFO-queue. If the queue is non-

empty, it must grant access on the X.bus to the process at the head of the queue within

a bounded time. A server transaction looks like:

GRANT X.bus

... use X.bus to interact with a client

As before, the server may only use X.bus channels within such a GRANT. Unlike

clients though, a server may indulge in other synchronisations within the body of the

GRANT (like making a CLAIM to another server on behalf of its current client). When

the body of the GRANT terminates, the transaction is complete and the server regains

its authority on X.bus (and should check its queue again). This sequence of granting,

using and regaining control of the shared medium cannot be violated.

As a result, clients have mutually exclusive access to the server. The server `fairly'

grants audiences to its clients on a �rst-come-�rst-served basis. Each GRANT is managed

with a constant overhead { we no longer have the ALT-penalty, whose overhead grows

linearly with the number of clients. [However, ALT is retained in occam3, since a FIFO
management of competing events is not always what we want. Also, GRANTs may be

used as guards in ALTs so that a server may service several sets of clients on separate

shared connections { see Figure 20.]

However, occam3 does not do everything for us! We still have to perform the higher-

level checks of ensuring there are no cycles in the client-server ordering. We also must

check the low-level algorithm in each server to guarantee that it waits on its service

lines in each cycle. [Although, for simple loops, occam3 provides a SERVER process

declaration that supplies this guarantee { but we shall not examine this here.]

7.1 A Simple occam3 Farm

The abstraction of a shared connection is not restricted by physical con�guration. The

clients and their server may be distributed over any number of processors. T9000/C104

con�gurations will support a distributed shared connection in hardware.

W

c

c

W

c

c

W

c

c

W

c

c

s

s

farmer

harvester

Figure 19: An occam3 Farm

Figure 19 shows an occam3 design for a farm of worker processes. It is extremely

simple (as it should be) and quite takes away the fun we used to have implementing

such things. Each work process, W, is a pure client (as it was in Figure 14), but this

time it makes claims directly on the (remote) farmer and harvester, who are now

both servers (compare with Figure 15).

The farmer and harvester simply wait on their respective service lines. The farmer

responds to a claim by outputting another work-packet. The harvester responds to

a claim by inputting a result-packet. As with the earlier farm, neither needs to know

(and does not care) with which worker it is dealing.

The worker, W, simply cycles through claiming the farmer, processing the work-packet

and claiming the harvester. To save being blocked whilst claiming, it might bu�er one

work and one result packet internally (either by including two one-place bu�er processes

or turning itself into an I/O-PAR { or CLAIM-PAR { normal form).

Clearly, the farm has no client-server cycle and is therefore deadlock/livelock-free.

7.2 An occam3 Farm of Servers

A more sophisticated farm is shown in Figure 20. This time the workers are themselves

servers, S, o�ering their services to the world-at-large. The farmer is now a manager,

M, controlling the allocation of farm services to clients, C. Clients want to be given the

�rst available server and do not mind which one they get.

The manager, M, services two shared connections: a public one for use by clients

requesting service and a private one known only to the servers. When a server is free,

it reports to the manager by making a CLAIM on its private line. The manager lets

these queue up until a client makes a CLAIM on the public line. To service the client, it

waits for a server CLAIM (possibly with a time-out { it's up to the client). The server

tells the manager its name and issues a password (end of server transaction) and these

M

s
s

S

s

c

S

s

c

S

s

c

C
c

c

c

C
c

c

c

C
c

c

c

Figure 20: A Farm of Servers

details are forwarded to the client (end of client transaction). The client then calls on

the named server, uses the password and gets the desired service.

If there is a recession (not enough clients), the servers will end up queueing for

work. If there is a boom (too many clients), the clients will have to queue for service.

The queues are automatically managed by the mechanics of the shared channels { no

programming is needed!

This server farm can be made highly secure against client misuse, especially if occam3
CALL channels can be used for the public server connections. CALL channels should

be used for client-server connections when we do not need computational support or

independent decision making from the client during an individual transaction. The

client process is suspended during a CALL, whilst the server process runs the transaction

and has been given certain access rights to certain client resources (e.g. data-structures).

Because only the server process is active, the transaction cannot deadlock because of

mis-programming between the client and server.

The bene�t now is that the server, S, can immediately terminate a client CALL if an

incorrect password is supplied (or at any time during the transaction if it so chooses).

The client, no matter how it has been programmed, cannot resist this! Since each server

generates a new password each time it reports to the manager, a client cannot by-pass

the manager and try to pick up a server directly. Even when it has been allocated a

server, it cannot hang on to it inde�nitely!

The server may also set an internal time-out on the validity of its password, starting

from the end of its transaction with the manager. If the client does not CALL in time,

the server goes back to the manager. In this way, a client cannot acquire a server in

advance of its actual need and sit on it { an anti-social pattern of behaviour!!

This multi-client/multi-server system contains no client-server cycles and is safe.

8 Summary and Discussion

Two paradigms have been presented for parallel system design using synchronised

message-passing that guarantee freedom from deadlock and livelock.

I/O-PAR designs cover the computationally intensive core of super-computing or

high-performance embedded applications that model physical phenomena through `do-

main decomposition'. They may be combined with client-server networks to provide

interactive control and visualisation. They may be tuned automatically to produce

optimised codes for di�erent numbers of processor.

Client-server principles cover the design of processor `farms' for high-performance

applications whose parallel decomposition is logically regular, but requires dynamic

load-balancing. They are also suitable for the safe and maintainable construction of

networks with irregular topology. These greatly simplify the implementation of ever-

increasing levels of sophistication in real-world interfaces (such as an X-window server

[7][13]), where the speci�cations demand similarly irregular functionality.

The analysis of client-server principles in this paper is not complete. In particular,

its closure property is too strong. For example, if we combined the prompt and OWB pro-

cesses of Figure 13, we would get a component with the same client-server connections

as the id process of Figure 12 { and an apparent cycle in the client-server ordering!

We need to introduce the notion of dependency between server and client connections

to the same process. For a serial process, the server connections are always dependent

upon the bounded acceptance of all client transactions that are attempted { any failure

will break the promise it must maintain to its own clients. However, the user.reset

server connection on a combined prompt/OWB process is not dependent on the reset

client connection being accepted.

Server connections can also become dependent upon other server connections! For

example, when the buffer process in the worker harness (Figure 14) is full, the buffer

refuses service on its in.work connection. This connection then becomes dependent on

its sibling connections (both server ones) being called in order for its own service to be

resumed. Tracing this through, we see that the in.work server is dependent upon the

out.work and out.result clients. The in.result server is dependent only upon the

out.result client.

These dependencies should be part of the speci�cation of a client-server component

and the rules need to be worked out for how these dependencies are inherited by `prop-

erly' composed client-server networks. The `proper' composition rules must be relaxed

so that they only forbid cycles of client-server connections that are all pair-wise depen-

dent.

However, the current rules { although too restrictive in the case of client-servers {

are
exible enough to allow the design of a very wide range of high-performance and

safety-critical applications.

Parallelism gives us simplicity and physical concurrency. Synchronised message-

passing and no shared variables give us secure communications (i.e. no unexpected data-

loss). Parallel slackness, auto-serialisation, microsecond context-switches and hardware

support for concurrent computation-with-communication give us e�ciency. The client-

server and I/O-PAR paradigms, with their respective closure rules, give us freedom

from deadlock and livelock (without the need for state analysis of the system design).

occam and the transputer have always supported all these principles. occam3 and the

new T9000 family support them to a considerably greater depth. The need for occam3
to be implemented in full is crucial for the widespread development of these ideas and

the safe exploitation of High-Performance Computing in general.

9 Acknowledgements

We are very grateful to all our colleagues who have talked through (and used!) these

ideas. Special thanks are owed to Andy Bakkers, David Beckett, Vedat Demiralp, Jon

Kerridge, Roger Peel, Dyke Stiles, Shane Sturrock and Steven Turner.

References

[1] L G Valiant. A bridging model for parallel computation. Communications of the

ACM, 33 (8):103{111, August 1990.

[2] P H Welch and G R R Justo. On the serialisation of parallel programs. In Janet

Edwards, editor, Occam and the Transputer { Current Developments, pages 159{

180. IOS Press, Amsterdam, September 1991. ISBN 90-5199-063-4.

[3] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[4] G Jones. Programming in occam. Prentice-Hall, 1987. ISBN 0-13-729773-4.

[5] P H Welch. Managing hard real-time demands on transputers. In T Muntean,

editor, Proceedings of the 7th occam User Group Technical Conference. IOS Press,

Amsterdam, September 1987. ISBN 90-5199-002-4.

[6] G Jones. Carefully scheduled selection with ALT. OUG Newsletter, 10, 1989.

[7] C J Willcock. A Parallel X-Windows Server. PhD thesis, University of Kent,

Canterbury, Kent, CT2 7NF, ENGLAND, May 1992.

[8] P H Welch. Emulating digital logic using transputer networks. In Proceedings of

the PARLE International Conference, volume 258 of Lecture Notes in Computer

Science, pages 357{373, Eindhoven, June 1987. Springer-Verlag.

[9] G R R Justo. Con�guration-Oriented Development of Parallel Programs. PhD

thesis, University of Kent, April 1993. (Submitted).

[10] A W Roscoe and C A R Hoare. Laws of occam Programming. Technical Monograph

PRG-53, PRG, Oxford, OX1 3QD, ENGLAND, 1986.

[11] S Bakhteyarov, E Dudnikov, and D Jahn. Oscillatory system simulation on a

transputer network. WoTUG Newsletter, 16:34{38, January 1992.

[12] G Barrett. occam3 reference manual. Technical report, INMOS Limited, Bristol,

BS12 4SQ, ENGLAND, March 1992.

[13] C J Willcock and P H Welch. A parallel X-windows server. In TRANSPUTING

'91, pages 406{430. IOS Press, April 1991. ISBN 90-5199-045-9.

