
Quanti�ed Assertions in Ei�el

Stuart Kent and Ian Maung�

Department of Computing, University of Brighton,

Brighton BN2 4GJ, UK.

Email: Stuart.Kent@brighton.ac.uk, Ian.Maung@dcs.warwick.ac.uk

Abstract

This paper discusses extensions to the language
Ei�el, required to write more comprehensive
software speci�cations, where a speci�cation in
Ei�el is a collection of class interfaces with fea-
tures speci�ed using an assertion language (i.e.
a BON static model). The focus of the paper
is the extension of the assertion language with
quanti�cation. Two forms of quanti�cation are
identi�ed, which are distinguished according to
whether the quanti�ed variable is of reference
or expanded type. A semantics for each of the
two forms is described, and the consequences for
assertion checking at run-time considered.

1 Introduction

This paper considers the extension of the object-
oriented (OO) programming/design language
Ei�el with quanti�ed assertions. The assertion
language in Ei�el gives it some formal speci�ca-
tion capability, in its support for contracts and
seamless software development. It enables con-
tracts to be speci�ed precisely, extracted from
the class de�nition source code automatically
and monitored at run-time. Run-time check-
ing assists in the location of bugs during test-
ing and forms the basis of disciplined exception

�Department of Computer Science, University of War-
wick, Coventry CV4 7AL, UK.

handling for the delivered system. It also checks
that the implementation is consistent with the
contract, particularly important during system
maintenance.

As explained in (Wald�en and Nerson 1994), Eif-
fel supports a truly seamless approach to soft-
ware speci�cation, design and implementation.
Systems are speci�ed using deferred classes giv-
ing the interfaces of problem domain classes
(names, signatures and contracts of exported
features), and the inheritance and clientship re-
lationships between classes. During design, new
solution domain classes are introduced (proba-
bly reused from a library) and secret and se-
lectively exported features of the problem do-
main classes and their contracts are de�ned.
Implementation introduces e�ective classes, im-
plementing the deferred class interfaces and in-
troducing feature bodies for deferred features.
As software development progresses, no trans-
lation is required; progress is achieved simply
by adding more detail until the system becomes
executable. Most importantly, the same seman-
tic model and the same abstraction mechanism
(the class) is used throughout. This is in con-
trast to other OO approaches (e.g. (Cook and
Daniels 1994; Booch 1994)) where di�erent se-
mantic models are used at each stage, requiring
a potentially tedious, ill-de�ned and error-prone
translation between the di�erent models. For-
mal approaches to software development (e.g.
(Jones 1990)) either su�er from the same prob-
lem or achieve seamlessness by using a toy pro-
gramming language with inadequate abstraction
constructs and facilities. Finally, as also noted
in (Wald�en and Nerson 1994), Ei�el/BON sup-
ports reversibility i.e. the automatic generation
of speci�cation and design models from Ei�el
source, which is of great value when (inevitably)
requirements change and the source undergoes

maintenance.

However, it is clear that the assertion language
of Ei�el is de�cient in its support for writing
formal speci�cations. In particular, it has been
observed (McKim and Mondou 1993; Wald�en
and Nerson 1994) that some form of quanti�-
cation is required. (McKim and Mondou 1993;
Wald�en and Nerson 1994) have also suggested
extensions to the language to introduce quan-
ti�cation. The approach taken here is more an-
alytical, in the sense that we look at the general
case, and pay particular attention to the seman-
tics. A comparison with (McKim and Mondou
1993; Wald�en and Nerson 1994) is conducted
in section 7. The conclusion of this analysis is
that a single syntactic form of quanti�cation suf-
�ces, where a di�erent semantics may be applied
depending on the nature of the type of the vari-
able being quanti�ed. In particular a distinction
is drawn between reference and value quanti�ca-
tion, and this matches a distinction between ref-
erence and value types, the latter being e�ected
by expanded types in Ei�el. The paper also
considers the consequences of this analysis for
the run-time checking of quanti�ed assertions.
Here the news is good: all forms of reference
quanti�cation, and forms of value quanti�cation,
where the range of the quanti�ed variable is a
clearly identi�ed �nite collection of values, may
be checked at run-time.

The paper is organised as follows. Section 3 dis-
cusses the extension of the assertion language
with quanti�ers. Section 4 gives a formal se-
mantics to reference types and uses this to dis-
cuss the variations in the meaning of reference
type quanti�cation. Section 5 does the same for
value quanti�cation, which leads to a discussion
of the semantics of expanded types. Section 6
discusses the run-time checking of quanti�ed as-
sertions. Section 7 is a summary, and sections 8
and 9 survey related and further work, respec-
tively. An example speci�cation, draughts, is
used throughout by way of illustration; its de-
sign is outlined in section 2.

2 Example

The ensuing discussion uses a speci�cation of the
board game draughts (chequers to some), which
has been extracted from a speci�cation compiled

under the ISE Ei�el 3 environment. This section
describes its basic design.

The design comprises seven classes in ad-
dition to the standard library. These
are: COLOUR, BOARD, PIECE, FORWARD PIECE,
BACKWARD PIECE, KING PIECE and BOARD POS.
COLOUR de�nes an enumerated type using the
integers, according to the method described by
Meyer (Meyer 1988, pp318-20). It is inherited
into any class that needs it. BOARD is the main
class, providing features to query the status of
the board and the game, and a command for
moving pieces. Some of these features will be in-
troduced and discussed as the paper progresses.
BOARD is a client of the ... PIECE, PIECE and
BOARD POS classes. Informally speci�ed inter-
faces of PIECE and BOARD POS are given in Fig-
ures 1 and 2, respectively.

The ... PIECE classes are descendants of PIECE,
identifying di�erent kinds of piece according to
the way in which they can move. The only dif-
ference is more restrictive ensure conditions on
normal and take possible.

PIECE re
ects the design decision that BOARD is
responsible for maintaining the rules of draughts
as a whole, only delegating to a piece the respon-
sibility of checking whether a move would be
valid or not for that piece, under the assumption
that other pieces are positioned correctly. An
alternative design would be to delegate more re-
sponsibility to PIECE, in which case PIECE would
need to know about the positions of other pieces
on the board, e.g. through an attribute of type
BOARD storing the board on which it was placed.

The purpose of BOARD POS is to provide valid
board positions on the board, which are pairs
of integers on an 8 � 8 grid. Its speci�cation
should be self explanatory. It is an expanded
class for reasons that will become clear as the
paper develops.

3 Quanti�ed Assertions

An obvious extension to the assertion language
(we assume the Ei�el assertion language as de-
�ned in (Meyer 1992)) is to add quanti�ers, as
found in standard predicate logic. Syntactically,
adding quanti�ers to assertions can be very sim-
ple:

deferred class interface PIECE

feature -- queries

colour:INTEGER

-- attribute stating the colour of the piece

normal (to:BOARD POS):BOOLEAN

-- is the move a normal (not a take) move for the piece?

pos:BOARD POS

-- attribute storing the position of piece on the board

take possible (to:BOARD POS):BOOLEAN

-- is the move a possible take move for piece, (assuming

-- other pieces on the board are in appropriate positions)?

valid move (to:BOARD POS):BOOLEAN

ensure

result = (normal(to) or take possible(to))

feature -- commands

move (bp:BOARD POS)

ensure

pos = bp

end -- class PIECE

Figure 1: Outline speci�cation of PIECE class

there exists x:C . A

for all x:C . A

where C is a class, A an assertion (which may also
involve quanti�ed expressions), and x is a logical
variable; x must not be used to name any other
variable in A or any feature/entity that can be
mentioned in A, according to the rules for Eif-
fel assertions (Meyer 1992, pp122-3). A similar
syntactic extension is provided in the BON as-
sertion language (Wald�en and Nerson 1994).

There are two possible interpretations for such
assertions:

1. the variable ranges over possible values that
the state of an object of the class may take

2. the variable ranges over instances (direct or
indirect) of the class itself

An example of (2) is given by the universal quan-
ti�cation in a possible formalisation of the en-
sure condition of win in BOARD:

win:BOOLEAN

ensure

there exists col:INTEGER .

for all p:PIECE .

(p /= Void and then on board(p))

implies p.colour = col

The ensure condition here may be paraphrased
as \all pieces currently on the board are of the
same colour", which corresponds to a winning
position in draughts. An example of (1) is given
by the universal quanti�cation in a di�erent for-
malisation of the ensure condition:

win:BOOLEAN

ensure

there exists col:INTEGER .

for all pos:BOARD POS .

board status(pos) = Void or else

board status(pos).colour = col)

which may be paraphrased as \the colour of
pieces on occupied board positions is the same".
Here the for all quanti�er ranges over all pairs
of integers that are valid states of board position
objects (i.e. within range), and for each one ex-
amines board status. Interpretation (1) and
(2) will, from now on, be referred to as value

expanded class interface BOARD POS

feature -- queries

col:INTEGER

-- attribute storing x coord

mid (to:BOARD POS):BOARD POS

require

-- `Current' and `to' to be on the same diagonal with a position between

ensure

-- result is the board pos between `Current' and `to'

next:BOARD POS

-- returns the `next' board position,

-- looping round the board from left to right, and bottom to top

row:INTEGER

-- attribute storing y coord

feature -- commands

set (x,y:INTEGER)

ensure

col = x and row = y

end -- class BOARD POS

Figure 2: Outline speci�cation of BOARD POS class

and reference quanti�cation, respectively.1

A number of questions remain. Are both in-
terpretations required to write useful speci�ca-
tions? If both are required, is there any existing
syntax in Ei�el to distinguish the two situations,
or is new syntax required? Also, what variations
of reference quanti�cation (e.g. only currently
existing objects) should be admitted.

Strictly, the answer to the �rst question could
be no, as in practice one might be able to rejig
a speci�cation so that all is expressable using
quanti�cation by value. However, if one is inter-
ested in providing as transparent and natural a
speci�cation as possible, this might not be desir-
able. Looking at the above example, one could
attempt to argue about which is more natural
than the other (we happen to think it is the
�rst), but that would be missing the point. We
believe the speci�er should be given the option
of writing either, or even both, so that as much
information may be provided in the speci�cation
in as natural a form as possible.

1Note that in both cases the existential quanti�cation
is read as value quanti�cation.

Furthermore, there do seem to be circumstances
in which it is not possible to rewrite the asser-
tion. For example, in the ensure condition for
the move(p:PIECE; to:BOARD POS) command
in BOARD, there must be the conjunct

(to.row = 8 or to.row = 1) implies

(there exists k:KING PIECE . new(k)

and board status(to) = k

and k.colour = old colour to go

and k.pos = to and on board(k)

and not on board(p))

which states that if the piece p is being moved
to the �rst or last row on the board, then it is
replaced with a new2 king piece whose colour
and position is the same as the piece being
moved, and p is no longer on the board. Here
to:BOARD POS is the board position being moved
to; board status(pos:BOARD POS):PIECE is a
query which returns the piece on the board po-
sition pos; and colour to go:INTEGER is an at-
tribute storing the colour of the next piece to
move.

2The meaning of new is considered in the section on
further work.

The only way of expressing this condition with-
out quanti�cation over KING PIECE (and assum-
ing no other extension of the language), would
be to alter the design of the PIECE class to
include an attribute identifying the piece as a
king, forward moving piece etc. However, this
seems to be a rather drastic solution and tends
to go against good practice as described in e.g.
Meyer's discussion of the use of enumerated
types (Meyer 1988, pp318-20)3.

In order to answer the second question | how,
syntactically, should the two types of quanti�-
cation be distinguished? | one should begin by
asking if the existing language already captures
the required distinction. In this case, assuming
the same syntax for quanti�cation is used, this
boils down to distinguishing between the two in-
terpretations by looking at the type chosen for
the quanti�ed variable.

Returning to the above example, there is an im-
portant di�erence between e.g. BOARD POS, for
which value quanti�cation seems appropriate,
and PIECE, for which reference quanti�cation is
desirable. The former is what Cook and Daniels
(Cook and Daniels 1994, p75) term value types

| types which intrinsically are \immutable and
lack identity". In particular, entities of value
type denote values directly, rather than point-
ers to values (objects). Thus, it is not surpris-
ing that when quantifying over such types one
is interested in ranging over values, rather than
references to objects | indeed the latter would
make no sense!

This suggests that providing a language distinc-
tion between reference and value types would be
su�cient. In Ei�el, value types (e.g. INTEGER)
seem to be characterised using expanded types.
It is our claim that this captures the required
distinction. In section 5, this claim is supported
through a detailed semantic argument. First,
however, we discuss the various possibilities for
assigning a meaning to reference quanti�cation.

3An enumerated type would be required to distinguish
between di�erent kinds of pieces

4 Reference Quanti�cation and

Reference Types

It was mentioned above that there are a number
of possible interpretations of reference quanti�-
cation. These depend on whether:

� objects that exist, will exist or have existed
should be considered;

� Void is a valid instantiation of the logical
variable.

Before exploring the possibilities further, and in
order to add a degree of precision to the dis-
cussion, a formal rendering of this semantics, in
terms of �rst order predicate logic (FOPL), is
now provided.

4.1 Semantics of reference types

Our approach to semantics is similar to that of
Larch (Guttag, Horning, and Wing 1985), where
a speci�cation language is given a semantics es-
sentially in terms of theories of order sorted �rst
order predicate logic (OSFOPL). This has the
advantage of being widely understood, and it is
hoped that such a semantics could provide the
basis for proof assistant and simulation tools,
such as those described in (Jones, Jones, Lind-
say, and Moore 1991; Costa, Cunningham, and
Booth 1990). The basic idea is to convert an
Ei�el class interface into a theory of OSFOPL.
This theory must not only characterise the be-
haviour of an arbitrary object of the class (i.e.
viewing the class as a template) but also the
identity and creation of objects. Object iden-
tity may be characterised simply in terms of a
sort Cid corresponding to the collection of all
potential instances (i.e. those that have existed,
exist, and will exist) of classes conforming to C.
Objects have state which may change through
time, where the view on this state and ways of
changing it are provided through its features.
To model this, a sort � of possible states is pro-
vided. It is assumed that this includes all possi-
ble states of a system, only some of which will be
abstract states of an object in the system (hence
one sort su�ces for all class theories and com-
binations thereof). The values that objects may
have in a state are determined by the sort Cs.

To model existence, a boolean function exists

ranging over object identities, is included. This
must also range over �, as the existence of an
object may change from state to state. So that a
di�erent predicate is not required for each class,
the sort ANYid is also introduced. This charac-
terises the collection of all potential objects, no
matter what the class, and Cid is a subsort.

The values that objects may have in a state are
modelled by the sort ANYs. The function

state(�; ANYid) : ANYs

is used to dereference object identities, where
state(s; x) returns the value held in the state of
x at s. For each class, there is also a sort Cs

which is a subsort of ANYs. In addition, the
axiom

8s : �;x : Cid � state(s; x) : Cs

included in the theory for C, ensures that appro-
priate values are assigned to the state of objects
of C. To summarise, the theory for a class C may
be presented as

theory C

includes ANY

sorts

Cid; Cs

functions

. . . { feature signatures
axioms

Cid < Anyid
Cs < Anys
8s : �;x : Cid � state(s; x) : Cs

V oid : Cid

. . . { axioms for features, invariants etc.

where the line includes ANY , means that all
the symbols and axioms of ANY are included in
C. Here ANY is given by

theory ANY

sorts

ANYid; ANYs;�
functions

exists(�; ANYid) : BOOLEAN
state(�; ANYid) : ANYs

V oid : ANYid

. . . axioms

8s : � � exists(s; V oid)
. . .

where it is assumed the theory of BOOLEAN
is already de�ned in the usual way (as we as-
sume the logic is already de�ned). Note that,
in the theory ANY , V oid is treated as an ob-
ject (which happens to have no behaviour) and
the axiom embodies the assumption that V oid
always exists. A method by which such theo-
ries might be derived from speci�cations in (ex-
tended) Ei�el will be considered in the section
on future work.

For simplicity, in giving a semantics to features
of a class, we assume a distinction between com-
mands and queries (see e.g. (McKim and Mon-
dou 1993)), and do not allow queries with side-
e�ects (which are visible to the client, so e.g.
it is possible to create a new object as part of
a query). The distinction is embodied in the
speci�cation of draughts used here.

Queries

A query q(a:A):B of class C introduces the se-
lector function on Cs

q(Cs; A) : B

in the theory of C.

The behaviour of features is obtained by deriv-
ing axioms from the require and ensure condi-
tions, and the class invariant. Assuming a class
invariant Inv, for query q as above with require
condition Rq and ensure condition Eq, the de-
rived axiom is4

8s0 : �; v0 : Cs; a : Aid�

(Rqhs0; v0i ^ Inv(s0; v0)))
Eqhs0; v0i[q(v0; a) ! Result]

where [x ! y] means that any occurrence of
y in the preceding expression is substituted by
x. For expression (resp. quanti�ed assertion) Y,
Y hs0; v0i is a term (resp. formula) of OSFOPL
which is obtained by transforming Y as follows:

1. any call to a query of C, through expression
p(B), is replaced by p(v0; Bhs0; v0i)

4This assumes that A is a reference type. s0 and v0

have been used here to be consistent with the rules when
an assertion is a predicate of two states, as discussed in
the sequel.

2. any call to a query of another object
through X.p(B), where X is an expres-
sion of reference type, is replaced by
p(state(s0;Xhs0; v0i); Bhs0; v0i)

3. all other expressions translate to themselves
without change

(1) ensures that selector functions of the same
class are related on the same values (represented
here by v0). (2) corresponds to invoking the se-
lector function p on state(s0;Xhs0; v0i), the value
of the state of the object referenced by X at
s0, with argument Bhs0; v0i. For simplicity, the
rules only consider queries with a single argu-
ment, though they extend to queries with an
arbitrary number of arguments. The rules in-
cluding expressions of expanded type are given
later.

The axiom ensures that the selector function is
constrained by its ensure condition only in states
where its require condition and invariant hold.
To illustrate the process, consider the speci�ca-
tion of the query valid move in BOARD:

valid move (p:PIECE; to:BOARD POS):BOOLEAN

ensure

result = (p.colour = colour to go

and (follow on implies p = last move)

and (take possible implies take(p,to))

and (not take possible implies

p.normal(to)))

The ensure condition states that moving a piece
p to board position to is valid if and only if
(conjunct by conjunct): the colour of p is the
colour of the piece expected to move next; if the
move is a follow-on move (e.g. during a multi-
ple take) then the same piece as before is being
moved; if a take is possible then the move is in-
deed a take move; if a take is not possible then
the move is a normal move. The fragment of
theory that would be generated from this spec-
i�cation is given by �gure 3.

Here BOARD POS is translated as the sort
BOARD POSs for reasons that will become
clear as the paper progresses.

Commands

A command c(a:A) introduces the function

c(�; Cid; Aid) : �

so c(s; x; a) returns the state s0 reached by per-
forming c on object x in state s with argument
a. Assuming a require condition Rc and ensure
condition Ec on c, the derived axiom is

8s; s0 : �;x : Cid; v; v
0 : Cs; a : Aid:

(v = state(s; x) ^ v0 = state(s0; x)
^Invhs; vi ^Rchs; vi ^ c(s; x; a) = s0)

) (Invhs0; v0i ^Echs; s0; v; v0i)

where for Y as before, Y hs; s0; v; v0i is obtained
by transforming Y according to the following
rules:

1. any call to a query p(B) of C is replaced by
p(v;Bhs; s0; v; v0i)

2. any call to a query of another object
through X.p(B), is replaced by
p(state(s0;Xhs; s0; v; v0i); Bhs; s0; v; v0i)

3. any call to the old value of a query old

p(B) of C is replaced by p(v;Bhs; s; v; vi)5

4. any call to the old value of a query of an-
other object through a call old X.p(B), is
replaced by
p(state(s;Xhs; s0; v; v0i); Bhs; s; v; vi)

5. all other expressions translate to themselves
without change

These conditions extend those given before to
deal with the keyword old used to refer to the
values of queries in the state s from which the
command was invoked. An example of the old

rules in action is given by the translation of an-
other conjunct from move in BOARD

move (p:PIECE; to:BOARD POS)

require

valid move(p,to)

ensure

board status(old p.pos) = Void

...

which states that the status of the old position
of the piece being moved (i.e. the \from" po-
sition) is Void after the move has completed.
The de�nition axiom for move derived from this
speci�cation fragment follows.

5Note that according to (Meyer 1992, p377), old has
lower precedence than feature call, hence B is evaluated
in the old state i.e. Bhs; s; v; vi.

functions

valid move(BOARDs; P IECEid; BOARD POSs) : BOOLEAN
axioms

8s0 : �; v0 : BOARDs; p : PIECEid; to : BOARD POSs:

valid move(v0; p; to) = (colour(state(s0; p)) = colour to go(v0)
^(follow on(v0)) p = last move(v0))
^(take possible(v0; p)) take(v0; p; to))
^(:take possible(v0; p)) normal(state(s0; p); to)))

Figure 3: Theory from valid move

8s; s0 : �;x : BOARDid; v; v
0 : BOARDs;

p : PIECEid; to : BOARD POSs:

(v = state(s; x) ^ v0 = state(s0; x)
^valid move(v; p; to)
^move(s; x; p; to) = s0)

) (board status(pos(state(s; p)) =
V oid ^ : : :)

Clientship and inheritance

Where a class is a client of another class (in-
cluding library classes), we assume that its the-
ory contains the relevant component, e.g. the
interface, of the theory derived from that class,
as already outlined. Thus BOARD contains the
theory of PIECE, KING PIECE, BOARD POS, etc.

For inheritance, the theory of the child is an ex-
tension of the theory for the parent; that is the
child contains the theory of the parent. In ad-
dition, there is a subsorting axiom which relates
the �id and �s sorts of the parent and child;
this allows for polymorphism by allowing e.g.
an entity of sort KING PIECEid to be used
where an entity of sort PIECEid is expected;
similarly for �s sorts. The details are currently
being worked out, including taking account of
renaming and repeated inheritance.

4.2 Semantics of reference quanti�ca-

tion

Assuming that the quanti�ed assertion appears
in the context of s; s0 : � and v; v0 : ANYid, a
naive semantics for reference quanti�cation ex-
pressed in this framework would be

9x : Cid:Ahs; s
0; v; v0i

8x : Cid:Ahs; s
0; v; v0i

for universal and existential quanti�cation, re-
spectively. However, this ignores any consider-
ation of whether the variable ranges only over
objects currently existing, or all potential ob-
jects (i.e. including those that have existed or
will exist), and whether Void is a valid instanti-
ation.

Looking again at the ensure condition, involving
reference quanti�cation, for win in BOARD

there exists col:INTEGER .

for all p:PIECE .

((p /= Void and then on board(p))

implies p.colour = col)

it is interesting to note that only pieces in exis-
tence need to be considered by the quanti�cation
(and this is the interpretation we are assuming
here), as the behaviour of on board is only de-
termined for arguments referencing existing ob-
jects. Since, in general, entities can only refer
to existing objects (or be Void), this should be
the semantics of reference quanti�cation. By a
similar argument, Void should be an allowable
instantiation, as features may have Void argu-
ments and results6. Thus the semantics for ref-
erence quanti�cation should be: consider only
currently existing objects, and allow Void as an
instantiation.

Assuming that the quanti�ed assertion appears
in the context of s; s0 : � and v; v0 : ANYid,

7 the
preferred semantics may be expressed as

9x : Cid � (exists(s
0; x) ^ (Ahs; s0; v; v0i))

6Though note that we have had to disallow Void ex-
plicitly here, because it would be disallowed by the re-
quire condition of on board.

7This context, of course, would only appear in an en-
sure condition of a command. The semantics in a context
of only s0 : � and v0 : ANYid follows similarly.

8x : Cid � (exists(s
0; x)) (Ahs; s0; v; v0i))

Clearly alternative semantics could be provided
by leaving out the exists(s0; x) constraint (all
potential objects are to be considered), or in-
serting the additonal condition that x 6= V oid.
By this semantics, the axiom derived from the
speci�cation of win using the above ensure con-
dition is

8s0 : �; v0 : BOARDs � 9col : INTEGER�

8p : PIECEid�

exists(s0; p))
((p 6= V oid ^ on board(v0; p)))

colour(state(s0; p)) = col)

assuming, for the time being, that INTEGER is
treated like BOOLEAN, in that we assume its the-
ory is pre-de�ned in the logic.

A similar semantics has been chosen for quanti-
�ers in the POOL assertion language (America
and de Boer 1990), though we note that they
only have reference quanti�cation.

5 Value Quanti�cation and Ex-

panded Types

Recall that for value quanti�cation the interpre-
tation of e.g.

for all x:C . A

is to quantify over all possible values that the
state of an object of C might have. The seman-
tics of this is simply

8x : Cs �Ahs; s
0; v; v0i

assuming a context of s; s0 : � and v; v0 : ANYs,
noting that the rules for Y hs; s0; v; v0i need to
be extended to include expanded types. To il-
lustrate this consider again the motivating ex-
ample

win:BOOLEAN

ensure

there exists col:INTEGER .

for all pos:BOARD POS .

board status(pos) = Void or else

board status(pos).colour = col)

from which the axiom

9col : INTEGER � 8pos : BOARD POSs�

board status(s0; v0; pos) = V oid_

colour(s0; state(s0; board status(s0; v0; pos)))
= col

is derived (assuming that there is no class invari-
ant), where, for this example, the rules already
de�ned for Y hs; s0; v; v0i are su�cient. However,
in general the rules need to be extended to deal
with expanded types. Consider for example the
kinging clause, introduced earlier, in the ensure
condition of move in BOARD.

(to.row = 8 or to.row = 1) implies ...

Assuming the same rules for expanded as those
for reference types, to.row would be trans-
lated as row(state(s0; to)) which is incorrect be-
cause to would be of sort BOARD POSs not
BOARD POSid, as required by state. This is
actually not a problem with quanti�cation, but
with the interpretation of calls, when the entity
being called is of type ANYs. It is simple to
rectify: just reinterpret the invocation in such
situations, so that it does not dereference enti-
ties of sort ANYs. Then, for this example, the
translation is simply row(to), as required. The
general rules are given in the sequel.

Returning again to the question of providing
a syntactic distinction between reference and
value quanti�cation, it should already be clear
that expanded types in Ei�el provide the solu-
tion. That is, when the type of the quanti�ed
variable is expanded the interpretation of quan-
ti�cation is value quanti�cation, otherwise it is
reference quanti�cation. An expanded type is a
type whose syntactic representation is expanded
C where C is a class (or C where C is an expanded
class). It is a promising candidate because an
entity of expanded type directly denotes a value,
rather than a reference to some object whose
state has that value. This allows equality and
assignment to directly work with values, giving
a more natural treatment of (value) types such
as the integers. In the next section, a semantics
of expanded types is developed, which both sup-
ports the interpretation of value quanti�cation
given above and matches their use in Ei�el.

5.1 Semantics of expanded types

From the discussion so far, the treatment of
expanded types is di�erent from the treatment
of reference types in at least the following two
ways:

� Wherever an entity is declared to be of ex-
panded type in a speci�cation, it is declared
to be of �s sort in the corresponding logical
theory.

� A call of the form X.p(b), where X is of
expanded type is interpreted so that X is
not dereferenced.

The latter is captured formally in the complete
interpretation of Ahs; s0; v; v0i, for some asser-
tion expression A, as follows:

1. any call to a query p(B) of C is replaced by
p(v;Bhs; s0; v; v0i)

2. any call to a query of another object
through a X.p(B), is replaced by

(a)
p(state(s0;Xhs; s0; v; v0i); Bhs; s0; v; v0i)
if X is of reference type

(b) p(Xhs; s0; v; v0i; Bhs; s0; v; v0i), if X is of
expanded type

3. any call to the old value of a query old

p(B) of C is replaced by p(v;Bhs; s; v; vi)

4. any call to the old value of a query of
another object through old X.p(B), is re-
placed by

(a) p(state(s;Xhs; s0; v; v0i); Bhs; s; v; vi),
if X is of reference type

(b) p(Xhs; s0; v; v0i; Bhs; s; v; vi), if X is of
expanded type

Changes have been made to conditions (2) and
(4). In each case, a di�erent interpretation is
chosen depending on whether X is of reference or
expanded type. If the former, then the condition
is as before; if the latter, then X(s; s0; v; v0) is no
longer dereferenced using the state function.

This semantics is in agreement with Ei�el ex-
panded types for equality and reattachment, be-
cause entities of expanded type directly denote

values: thus x = y means that the value of x is
equal to the value of y, not that they point to the
same object; and x := ymeans that the value of
x in the state reached after the assignment is the
value of y before the assignment. However, the
semantics of commands needs to be considered
more carefully. According to the semantics for
reference types, the command set in BOARD POS

would be represented by the function

set(�; BOARD POSid;

INTEGER; INTEGER) : �

with de�ning axiom

8s; s0 : �; b : BOARD POSid;
v; v0 : BOARD POSs;x; y : INTEGER�

(v = state(s; b) ^ v0 = state(s0; b)^
x >= 1 ^ x <= 8 ^ y >= 1 ^ y <= 8^
set(s; b; x; y) = s0))

(col(v0) = x ^ row(v0) = y)

Now consider, for example, the call b.set(1,1)
where, for simplicity, b:BOARD POS is assumed to
be an attribute of the calling object. According
to the semantics for expanded types proposed
above, b(: : :) would be of sort BOARD POSs.
Thus the translation of this call, assuming that
s is the state in which the call is made and w is
the value in s of the object making the call, into
the expression set(s; b(w); 1; 1), would be invalid
as set expects its second argument to be of sort
BOARD POSid.

So let's suppose we change the semantics of com-
mands for expanded types so that set is now
represented by the function

set(�; BOARD POSs;

INTEGER; INTEGER) : �

This solves the above problem, but now the
de�ning axiom needs to be changed. Changing
it in the most obvious way would result in

8s; s0 : �; v; v0 : BOARD POSs;
x; y : INTEGER�

(x >= 1 ^ x <= 8 ^ y >= 1 ^ y <= 8^
set(s; v; x; y) = s0)

) (col(v0) = x ^ row(v0) = y)

The main di�erence here is that the values v

and v0 are no longer obtained by dereferencing
some b. The problem with this axiom is that,
although the value v is passed as an argument
to set, the value v0 is not. Thus, looking again
at the call b.set(1,1) and its translation as
set(s; b(w); 1; 1), where s is the state from which
the call is made and w the value of the calling
object in s, we see that the above axiom does
not ensure that, for example, col(b(w0)) = 1,
where w0 is the value of the state of the calling
object in the state reached. To put it another
way, b holds a state value rather than a pointer
to a state value. The e�ect of b.set(1,1) is to
change the value held by b (i.e. the state of the
calling object) rather the value of the state of the
object pointed to by b. The point of the argu-
ment above is that, assuming the above function
chosen to represent set in the semantics, there
is no way of de�ning the required behaviour in
the axiom derived from its speci�cation. This is
because there is no way of accessing the value
held by b in the state reached by performing the
command.

The way out of this is to change the function
used to represent a command, which, in this case
may be achieved simply by returning a value of
sort BOARD POSs as part of the result. Thus
the function is

set(�; BOARD POSs;

INTEGER; INTEGER) :
��BOARD POSs

with de�ning axiom

8s; s0 : �; v; v0 : BOARD POSs;
x; y : INTEGER:

(x >= 1 ^ x <= 8 ^ y >= 1 ^ y <= 8^
set(s; v; x; y) = (s0; v0))

) (col(v0) = x ^ row(v0) = y)

Then the call b.set(1,1) becomes b(w0) =
snd(set(s; b(w); 1; 1)) where s is the state in
which the call is made, w is the value of the
state of the calling object in s, and w0 is
the value of the state of the calling object in
fst(set(s; b(w); 1; 1)). fst and snd return the �rst
and second items of a pair, respectively.

This semantics also works for reference types, by
changing the semantics of calling to dereference

before making the call, rather than dereference
as part of the call. For example, if BOARD POS

was not expanded, then the above call would
translate to

state(s0; b(w0)) =
snd(set(s; state(s; b(w)); 1; 1))

with s, w and w0 as above, and where s0 =
fst(set(s; state(s; b(w))). That is, b(w) is deref-
erenced before being passed as an argument to
set.

Generalising this, the semantics of a command
c(a:A) with require condition Rc and ensure
condition Ec in a class with invariant Inv is given
by the theory fragment in �gure 4.

6 Run-time Assertion Check-

ing

A key motivation for introducing assertions into
Ei�el is that they can be monitored at run-time.
This means that as a program is being executed,
require conditions and class invariants are eval-
uated when a feature is invoked (by a client, not
Current) and ensure conditions and invariants
are evaluated on completion of a routine's ex-
ecution. An exception is raised if an assertion
is violated. This section considers the run-time
evaluation of quanti�ed assertions.

6.1 Reference quanti�cation

In short, it should not be di�cult to check all

reference quanti�ed assertions at run-time. The
semantics given above only allows quanti�cation
of currently existing objects (including the value
Void). Since this will always be a �nite col-
lection, and, presumably, the run-time system
will have access to all members of this collec-
tion, an assertion checking mechanism can, in
the worst case, evaluate the assertion for all ex-
isting objects in turn. Of course the mechanims
may be made more e�cient by only considering
those objects which conform with the type of
the quanti�ed variable. No doubt further opti-
misations could be made by examination of the
assertion. For example, in checking the assertion

for all x:PIECE . c.has(x) implies ...

functions

c(�; Cs; Aid) : �� Cs

axioms

8s; s0 : �; v; v0 : Cs; a : Aid:

(Invhs; vi ^Rchs; vi ^ c(s; v; a) = (s0; v0))) (Invhs0; v0i ^Echs; s0; v; v0i)

Figure 4: Theory fragment for a command

where c:COLLECTION[PIECE], it would only be
necessary for the checking mechanism to con-
sider those objects actually stored in the collec-
tion. This is also noted in (Wald�en and Nerson
1994, pp53-7), where they give a special syntax
for this case.

6.2 Value quanti�cation

The situation here is more complicated. In gen-
eral, to check a value quanti�ed expression re-
quires a search through all possible values that
the state of an object of the class could have.
Since, with assertion checking one is dealing
with entities which are storable in a computer's
memory, one may assume that the number of
such values, though large, will be �nite. Thus
in theory this should be possible. The prob-
lem is in knowing what are the valid values of
the expanded type. One solution to this would
be to keep copies of all possible values in some
allocated area of storage. Not only is this space-
ine�cient, but it also reduces the problem to one
of providing a way of generating the values in the
�rst place. The other option is to generate the
values dynamically. Thus either way, a method
for generating the values is required. One pos-
sibility is to `hardwire' such generation proce-
dures; whilst this may be an adequate solution
for basic expanded types such as the integers,
it is clearly not the ideal solution for expanded
types such as BOARD POS. The remainder of this
section outlines an alternative approach.

Consider again the quanti�ed assertion in win.
There we are wishing to quantify over all values.
One way to achieve this would be to start with
the value (row=1,col=1) and continue to invoke
the next feature to obtain successive values, un-
til (row=8,col=8) was reached|i.e. whilst the
value being obtained was between these two val-
ues. If the �rst of these values was referred to as
first pos and the second as last pos, then we

might write the collection de�ned by this process
as (first pos,last pos,next,<) where infix
"<" (y:BOARD POS):BOOLEAN would be a new
feature of BOARD POS saying what it means for
one BOARD POS value to be before another. This
in turn suggests an extended syntax for value
quanti�cation, for example

for all b:BOARD POS in

(first pos,last pos,next,<)

requiring b to be chosen from the designated
collection. It remains to say how this trans-
lates into our semantics and how first pos and
last pos may be de�ned in the class. The
former may be achieved by providing a con-
structor function for returning a value of type
BOARD POS: that is, we would like to have func-
tions first pos,last pos which can be used in
expressions to represent these values (much like
1, 2, etc. represent integer values). In current
Ei�el, these may be de�ned in the class in which
they are required. If that class is the expanded
class itself, then this would mean that all values
of the type would themselves have the construc-
tors as features.

A better solution, in our view, would be to pro-
vide a way of de�ning constructors in the ex-
panded class, without the latter side e�ect. This
could be achieved through new syntax. Per-
haps a more e�cient solution would be to allow
the interpretation of certain commands as con-
structors. For example, the set command in
BOARD POS only updates attributes of the class,
and, in addition, needs to make no reference to
previous values of these attributes. The former
means that it does not need to return a new
state 8 and the latter that it does not need to be
passed the old value of the state as argument.

8If it referred to the state of supplier objects, then it
could have side e�ects in those objects, which could, in
theory be experienced by the calling object.

Thus it could be interpreted by the theory frag-
ment in �gure 5

which would allow set to be used in expres-
sions. Under this scheme the quanti�ed asser-
tion above could now be expressed as

for all b:BOARD POS in

(set(1,1),set(8,8),next,<)

With regard to semantics, the above quanti�ed
expression could be interpreted as

8b : BOARD POSs�
in this collection(b)) : : :

where in this collection is a recursive function
de�ned in terms of set, next and <, in the usual
way.

7 Summary

Two types of quanti�cation have been intro-
duced, namely reference and value quanti�ca-
tion. These are distinguished syntactically, by
examining whether the quanti�ed variable is of
reference or expanded type. A semantics for
reference and expanded types has been given,
and this has then been used to provide a seman-
tics for the two forms of quanti�cation. The
run-time checking of quanti�ed assertions has
also been considered. Here the news is good:
all forms of reference quanti�cation, and forms
of value quanti�cation, where the range of the
quanti�ed variable is a clearly identi�ed �nite
collection of values, can be checked. A system-
atic approach to de�ning this collection has been
proposed.

8 Related Work

The work described here is related, in general,
to work on OO speci�cation languages such as
those described in (Lano and Haughton 1994).
We restrict ourselves here to consider speci�c
proposals to extend Ei�el with quanti�ers.

The idea of extending Ei�el with quanti�cation
is not new. It is mentioned in (Meyer 1994),
and proposals appear in (McKim and Mondou
1993) and (Wald�en and Nerson 1994). Meyer

discounts quanti�ers on the grounds that they
are not expressive enough e.g. to specify acyclic-
ity of linked lists (this is not a �rst order prop-
erty). Instead, Meyer proposes the use of an
intermediate functional language. Whilst this
may be a valid point, it misses the fact that
quanti�ers often provide a way of expressing
properties naturally. Thus, whilst it may be pos-
sible to express the required property in terms
of a recursive function, this may not always be
a desirable thing to do.

McKim proposes two kinds of quanti�er, one
which ranges over integers between a designated
range, and another which ranges over objects of
any type. The distinction is made, as, he argues,
the former is simple enough to be compiled and
checked at run-time, whereas the latter is too
general to be useful for run-time checks. In our
terms, McKim's quanti�cation over an integer
range is a particular form of value quanti�ca-
tion. His second form of quanti�cation seems to
encompass reference quanti�cation and all other
forms of value quanti�cation.

The BON notation (the analysis and design no-
tation and process for the Ei�el method) also ex-
tends the Ei�el assertion language with syntax
for universal and existential quanti�ers. Their
purpose is not so much to provide the ability
to specify complete contracts (McKim's moti-
vation) but rather to extend Ei�el into a wide-
spectrum notation, suitable for high-level sys-
tem speci�cation. Again, no formal semantics
is provided, and no distinction between refer-
ence and value quanti�cation is made. Run-time
checking of quanti�ed assertions is only consid-
ered for reference quanti�cation.

Thus our proposal is more general than previ-
ous proposals and recognises a distinction (be-
tween value and reference quanti�cation) which
has been previously ignored. This insight has led
to a clari�cation of the semantics of quanti�ed
assertions, which we have been able to express in
detail and precisely. It has also clari�ed which
forms of quanti�ed assertions can be checked at
run-time.

9 Further work

This paper has discussed the extension of Ei�el
with quanti�cation, to enhance its speci�cation

functions

set(�; INTEGER; INTEGER) : BOARD POSs

axioms

8s : �; v : BOARD POSs;x; y : INTEGER:

(Rset(s; v) ^ set(s; x; y) = v)) Eset(s; v))

Figure 5: Theory for set command as a constructor

capability. The further work described here is
restricted to consideration of further enhance-
ments.

Expanded classes model value types, but do not
allow for their full speci�cation; in particular it
is di�cult to de�ne constructors. We have sug-
gested how some commands of expanded classes
could be reinterpreted as constructors and used
as such in expressions. This would e�ectively
give expanded classes the full power of ADT
speci�cation, as it would provide constructors
for use in invariants. This would be useful in for-
mulating designs (viz. BOARD POS in draughts),
and could provide a means by which full contract
speci�cations can be provided for a reference
type, by building it in terms of some appropriate
value type. However, this proposition needs to
be checked, including some consideration of the
constraints placed on implementations of classes
speci�ed using such an approach. If full con-
tract speci�cations of value types could be pro-
vided, then there would be no need to de�ne ba-
sic types such as BOOLEAN and INTEGER

in the logic, as their behaviour could be derived
from their Ei�el speci�cations using our seman-
tics. This would improve seamlessness, as rea-
soning would then be based entirely on what is
speci�ed in the language.

Although Ei�el provides all the necessary cre-

ation procedures for writing programs, it pro-
vides no way of talking about creation in the
assertion language. In particular, it has no way
of ensuring that an object is one that has just
been created, so can not be the same as any
other currently existing object. This seems to
be a de�ciency; for example, it was observed,
in the discussion of quanti�cation in Section 3,
that the kinging condition in the ensure condi-
tion for move from BOARD requires one to be able
to say that an object is `new', in the sense that
it did not exist when the command was called,

but does now exist. A small extension to the lan-
guage su�ces: a new keyword new, which has a
single argument of type ANY, where new(x) has
the semantics (:exists(s; x) ^ exists(s0; x)), s
and s0 being the state before and after the com-
mand, respectively.

A speci�cation language needs to provide sup-
port for expressing frame conditions|stating
what does not change when a command is per-
formed. For example, the popular speci�cation
languages VDM-SL and Z provide support e.g.
through the ext rd, ext wr and �, � notation,
respectively. Ei�el provides comparable support
through the use of strip expressions in ensure

conditions, which indicate which parts of the
state of the current object do not change. How-
ever, for an object-oriented speci�cation lan-
guage, these are not su�cient, since, to be com-
plete, one must also be able to express how a
command a�ects the state of supplier objects.
strip can only be used to state that attributes
of the current object are not reattached, not that
objects they are attached to have not changed
state. Thus some modi�cations or extensions
must be made to the assertion language to en-
able the speci�cation of frame conditions.

One solution would be to extend the scope
of strip, to consider supplier objects. How-
ever, this would lead to a proliferation of strip
statements, one for each supplier. However,
this could be combined with a notation which
lists those objects whose state is changed by
a command. For example, the Larch approach
to specifying object systems (Liskov and Wing
1993) allows a clause consisting of the keyword
modifies followed by a list of object reference
valued expressions (e.g. modifies e1,e2) to be
included in the de�nition of a feature. The se-
mantics of this clause is that only the states of
the objects denoted by the expressions e1 and
e2 can be changed; all other objects have un-

changed states. The Ei�el assertion language
could be extended in a similar way.

References

America, P. and F. de Boer (1990). A Sound
and Complete Proof System for SPOOL.
Technical Report 505, Philips Research
Labs.

Booch, G. (1994). Object-Oriented Analysis

and Design, with Applications. Benjamin
Cummings.

Cook, S. and J. Daniels (1994). Designing Ob-
ject Systems. The Object-Oriented Series.
Prentice Hall.

Costa, M., J. Cunningham, and J. Booth
(1990). Logical Animation. In Proceedings

of the International Conference on Soft-

ware Engineering.

Guttag, J., J. Horning, and J. Wing (1985).
The Larch Family of Speci�cation Lan-
guages. IEEE Software 2 (5), 24{36.

Jones, C. B. (1990). Systematic Software De-

velopment using VDM (second ed.). Pren-
tice Hall.

Jones, C. B., K. Jones, P. Lindsay, and
R. Moore (1991). Mural: A Formal Devel-

opment Support System. Springer Verlag.

Lano, K. and H. Haughton (Eds.) (1994).
Object-Oriented Speci�cation Case Stud-

ies. The Object-Oriented Series. Prentice
Hall.

Liskov, B. and J. Wing (1993). Speci�cations
and their use in De�ning Subtypes. In Pro-
ceedings of OOPSLA-93.

McKim, J. and D. Mondou (1993). Class In-
terface Design: Designing for Correctness.
Journal of Systems and Software 23 (2),
85{92.

Meyer, B. (1988). Object-Oriented Software

Construction. Prentice Hall.

Meyer, B. (1992). Ei�el: The Language. The
Object-Oriented Series. Prentice Hall.

Meyer, B. (1994). Beyond Design by Con-
tract. Keynote Lecture at TOOLS Paci�c
94.

Wald�en, K. and J. Nerson (1994). Seam-

less Object-Oriented Software Architec-

ture: Analysis and Design of Reliable Sys-

tems. The Object-Oriented Series. Pren-
tice Hall.

