
Value Types in Ei�el

Stuart Kent and John Howse

Department of Computing, University of Brighton,

Brighton BN2 4GJ, UK.

Email: Stuart.Kent@brighton.ac.uk, John.Howse@brighton.ac.uk

Abstract

This paper proposes extensions to the semantics
of Ei�el's expanded types to support the mod-
elling of value types. This provides support for
de�ning immutable entities and is useful in al-
lowing ADT-style speci�cations of values to be
given in Ei�el. An abstract semantics is given
for expanded types in terms of order sorted �rst
order predicate logic; this is less restrictive than
the existing operational semantics, and allows
value types to be identi�ed directly with ex-
panded types. An operational semantics, which
is closer in spirit to the abstract semantics than
the existing Ei�el semantics, is outlined. This
retains most of the advantages of the abstract
semantics. It is concluded that the extra exi-
bility thereby provided could be used to restruc-
ture the Ei�el data structure libraries by start-
ing from ADT-style speci�cations of value types
written directly in Ei�el.

1 Introduction

In object oriented (OO) programming and de-
sign it is possible to draw a distinction between
value types and reference types. Entities (at-
tributes, parameters, local program variables,
etc.) of a reference type hold pointers to objects,
which have state that may change over time,
even though the entity itself does not change

its value (which is a pointer to the object). On
the other hand, entities of value type hold val-
ues directly, rather than pointers to values. In
the words of Cook and Daniels [1994, p75] value
types intrinsically are \immutable and lack iden-
tity".

This paper examines the modelling of value
types in the OO programming language Ei�el.
It identi�es problems with the current model viz.
expanded types, and proposes a small, backward
compatible syntactic extension and a change to
the semantics. The ideal or abstract semantics is
described formally using �rst-order logic; an op-
erational semantics, which is closer in spirit to
this ideal than Meyer's semantics for expanded
types, is then outlined.

Our interest in value types is motivated by the
following observations.

1. Value types could be used more extensively,
and e�ectively, in OOmodelling and design.
We believe that there are things which in-
trinsically are immutable and lack identity,
and that these go beyond the basic types.1

The example used in Section 2 illustrates
this point.

2. It has proved di�cult to provide complete
speci�cations of the behaviour of objects
and classes, in terms of Ei�el contracts, for
certain data structures [McKim and Mon-
dou, 1993]. Such speci�cations are impor-
tant to ensure both correct data structure
libraries and their correct use. We believe
that the ability to de�ne value types exi-
bly in the programming language provides

1Even if you disagree with this, you must agree that

the claim can not be tested unless su�cient support is

provided in programming and design languages for prac-

tioners to experiment with the technology.



a solution to this problem, a point which
will be returned to in the section on further
work.

Some support for modelling value types is al-
ready given in OO programming and design lan-
guages. Their role is recognised in the OO de-
sign method Syntropy [Cook and Daniels, 1994],
and support provided to de�ne them. Ei�el
[Meyer, 1988] also includes some support for
value types, more of which in Section 2. Pro-
gramming languages such as C++ and Ada95
have value types, though this may be a leftover
of their non-OO lineage. In Smalltalk, value
types are approximated by immutable object
types. However, with the exception of Syntropy
this support is limited. In particular, it does not
provide the exibility a�orded by algebraic spec-
i�cation languages [Guttag et al., 1985], which,
we believe, is necessary to support the aims of
(1) and (2) above.

Value types are typically used to model basic
types, such as the booleans and integers, but not
much else. In the case of Ei�el, C++, Ada95
and Smalltalk, this may be because the sup-
port provided to build one's own value types has
signi�cant limitations. This paper will support
this statement in detail for Ei�el. In the case
of [Cook and Daniels, 1994], there is consider-
able support for de�ning value types. However,
the authors observe (p379) that the use of value
types available in design is often limited to those
available in the target programming language.

We believe a solution to this problem is to en-
hance Ei�el. Our reasons are threefold.

1. Ei�el provides some support for formal
speci�cation in its assertion language,
which as [Kent and Maung, 1995b] and
this paper indicate, only requires relatively
small extensions to give it the power of
those speci�cation languages mentioned, at
least for sequential systems. This is impor-
tant in respect of value types where most of
the work in their de�nition has happened in
the speci�cation world.

2. Ei�el provides a seamless approach to
development [Wald�en and Nerson, 1994],
where programming and speci�cation are
intermingled. This brings formal speci�-
cation techniques within the realm of the

practising software engineer, who is more
likely to learn a programming language
than a formal speci�cation language. It also
avoids the problem observed above of map-
ping a speci�cation/design language (e.g.
Syntropy) to a programming language.

3. Ei�el is a `pure' object oriented language,
in contrast to, for example, OO extensions
of Z and VDM in the speci�cation world,
and C++ in the programming world. This
also makes it a more suitable language than
those mentioned, for the speci�cation and
implementation of an OO system.

The paper is organised as follows. Section 2 in-
troduces expanded types in Ei�el by example,
and section 3 notes their de�ciencies (assuming
the semantics of [Meyer, 1992]) when modelling
value types. Section 4 gives an abstract seman-
tics, providing an ideal model which it may or
may not be possible to reproduce operationally.
A formal approach is adopted to lend a degree
of rigour to the discussion, and the semantics
is shown to be compatible with, though not as
constraining as, Meyer's semantics. This is used,
in section 5, to argue that the semantics of ex-
panded types in Ei�el may be relaxed in a way
that allows the de�ciencies noted in section 3
to be overcome, in particular, in the de�nition
of generators, in allowing value subtyping, and
in giving greater exibility to the implementa-
tion of value types. Section 6 outlines how the
abstract semantics may be reproduced opera-
tionally, making as few concessions as possible.
Section 7 is a summary, section 8 discusses re-
lated work, and section 9 outlines further work.

2 Expanded types in Ei�el

An example of an expanded type, taken from a
speci�cation and implementation of draughts in
Ei�el, is given by �gure 1.

The purpose of D B POS is to provide a type
whose values are valid positions on a draughts
board. The value is given by the queries: row
and col giving the coordinates of the position;
mid identifying the position between two posi-
tions a square apart on a diagonal (useful when
considering taking in draughts); next for giving
the next position on the board (useful for step-



expanded class D B POS inherit

BASIC ROUTINES ;
D B POS DIM

feature -- queries

row, col : INTEGER;

mid (to: D B POS ): D B POS is

require

abs (row � to.row) = 2 and abs (col � to.col) = 2
ensure

Result.row = (row + to.row) == 2 ;
Result.col = (col + to.col) == 2

end ;

next : D B POS is

require

(col >= min col and col <= max col and row >= min row and row <= max row)
ensure

col = max col implies (Result.col = min col
and (row = max row implies Result.row = min row)
and (row == max row implies Result.row = row + 1 ));

col == max col implies (Result.row = row and Result.col = col + 1 ))
end ;

feature -- command

set (x , y : INTEGER) is
require

(x >= min col and x <= max col and y >= min row and y <= max row)
ensure

row = y ;
col = x

end ;

end -- class D B POS

Figure 1: Draughts board positions class



ping through each position e.g. when display-
ing the board). Note that mid is speci�c to
draughts; it is required for identifying the po-
sition of a piece being taken. However, it would
not be important for a game like reversi; instead
other features would be required, e.g. for iden-
tifying whether a position is between two other
positions in a particular direction. This illus-
trates the need to tailor a value type to a par-
ticular application.

set is a command for `setting' a value to a given
coordinate. To understand what is meant by
`set' here, it is necessary to briey consider the
semantics, which is described in full in [Meyer,
1992].

The di�erence, semantically, between expanded
and reference types is centred around the mean-
ing of equality and assignment. If a and b are
entities of conforming reference types, then a
= b means that they contain the same object
reference|i.e. they point to the same object.
Similarly, a := b means that the reference held
by a is set to be the same as that held by b.

On the other hand, if a and b are of conform-
ing expanded types (which in Ei�el means they
must be of the same type), then a = b means
that the attributes of a must have the same
contents as the attributes of b. Note that if
some of these attributes hold references to ob-
jects then the semantics requires the references
to be the same (i.e. the attributes in question to
refer to the same object). An alternative would
be a form of deep equality, where the references
themselves do not need to be the same, but in-
stead the values held in the attributes of the
objects referred to must be the same. Similarly,
assignment for expanded types directly copies
the values stored in the attributes of b into the
attributes of a, without going deeper into the
object structure.

The semantics of reattachment (e.g. when pa-
rameters are passed) is the same as that for as-
signment in both cases. Ei�el also allows one of
a and b to be of expanded type and the other
of reference type. This paper will not consider
these cases; see [Meyer, 1992] for details.

The semantics of expanded types e�ectively
means that entities of value type hold the ac-
tual values (the record with the attributes as
�elds), rather than pointers to the values (as is

the case for reference types). Thus, for example,
the attribute

pos : D B POS

would cause the compiled code to store a record
comprising a pair of integers, corresponding to
the row and col attributes. The e�ect of per-
forming the command pos.set(x , y) would be to
replace the value held by pos before the com-
mand with the value that results from perform-
ing the command, i.e. the pair of integers x and
y. In contrast, if D B POS was a reference type,
the e�ect of pos.set(x , y) would not be to change
the value held by pos, but rather the value of the
object pointed to by pos.

3 De�ciencies of Expanded

Types

D B POS is intended to be an example of a
user-de�ned value type, as opposed to an Eif-
fel supplied value type, such as INTEGER or
BOOLEAN. In this section we note some de�-
ciencies in the use of expanded types to model
user-de�ned value types, and look at possible
work-arounds in the current language. In partic-
ular we observe in Section 3.1 that a backward-
compatible change in syntax is required, and in
Section 3.3 that a change to the semantics is
required.

3.1 Constructors

We immediately notice that expanded types in
Ei�el are missing some vital components that
value types usually have. In particular they are
missing a collection of constructors. In the world
of algebraic speci�cation these, together with
transformers, are the operations which are used
to generate the values of the type. For exam-
ple, one, two, three etc. are constructors for the
natural numbers; succ is a transformer; both are
generators.

In order to provide a set of constructors for
D B POS in Ei�el, it is necessary to go outside
the class. For example, it is possible to de�ne
the class in �gure 2, which is inherited into any
class that needs the constructors.



class D B POS CONSTR inherit

D B POS DIM

feature

min pos: D B POS is

do

Result.set (min row , min col)
end ;

max pos: D B POS is

do

Result.set (max row , max col)
end ;

empty pos: D B POS is

do

Result.set (0 , 0 )
end ;

the pos (x , y : INTEGER): D B POS is

do

Result.set (x , y)
end ;

end -- class D B POS GEN

Figure 2: Constructors for D B POS

This solution is inelegant as it requires be-
haviour to be split across two classes, when re-
ally one should su�ce. This in turn requires
additional features (e.g. the set command) to
be included in the class de�ning the value type,
which are required in order to de�ne the con-
structors.

It also means that the constructors may not be
used in the de�nition of the value type itself,
unless the class de�ning them is itself inherited
into the class de�ning the value type. The conse-
quence of not including the constructors is that
other ways have to be found to specify certain
aspects where constructors would be useful. Al-
though this last point is not drastic it may mean
that the same thing ends up being de�ned in two
places, i.e. in the de�nition of the value type,
and elsewhere in the de�nition of the construc-
tors. It can also mean the inclusion of unnec-
essary extra baggage, such as min col, max col

etc. in the value type de�nition.

The alternative is to inherit the constructors
into the class de�ning the value type. However,
this is inelegant as it means that values take on
additional components (in the form of queries)
which return other values that have absolutely
nothing to do with the original value. For ex-
ample, if D B POS CONS were inherited into
D B POS then it would be possible to perform
the query pos.max pos which returns a value
that has nothing to do with the original value of
pos.2

In section 5.1 we will show how constructors can
be provided for expanded classes with a small
but backward compatible extension to the syn-
tax.

3.2 Subtyping

Another problem with expanded types in Eif-
fel is that they do not allow subtyping of
value types. For example, suppose a class
PAIR OF INTEGER has been de�ned with at-
tributes �rst and second (renaming row and col)
and command set, as in D B POS.

It seems reasonable that D B POS could be
constructed by inheriting from this, and, fur-
thermore, that any D B POS value could be
used polymorphically as a PAIR OF INTEGER
value. Although in Ei�el this inheritance is
valid, the polymorphic substitution is not for ex-
panded types.

3.3 Implementation of value types

We end this section by looking at the implemen-
tation of value types, when modelling them us-
ing Ei�el expanded types. This will illustrate a
weakness in the current semantics for expanded
types, namely that it is too restrictive.

Consider the de�nition of a stack value type
which is outlined in �gure 3.

The de�nition is based on the ADT for a stack
which can be found in [Meyer, 1988, p55]. Re-

2In this respect, it is also interesting to note that the

features inherited from BASIC ROUTINES are not part

of a pure de�nition of D B POS, and, indeed it would

be better if the routines were provided as part of the

de�nition of the type INTEGER, which is modelled as

an expanded type in Ei�el.



expanded class STACK [X ] creation
new

feature -- queries
pushed stack(x : X ): STACK [X ]

ensure

Result.top = x
Result.popped stack = Current

not Result.empty

popped stack : STACK [X ]
require

not empty

top: X
require

not empty

empty : BOOLEAN

feature -- commands
new

ensure

empty ;

push(x : X )
ensure

Current = pushed stack

pop
require

not empty
ensure

Current = popped stack

end -- class STACK [X ]

Figure 3: The value type stack de�ned as an
expanded type

member this is a de�nition of a stack value
type, as opposed to a reference type, and is
the best translation of an ADT that we can
manage in current Ei�el. In particular notice
that the transformers push and pop are given
both as queries (popped stack and pushed stack)
and commands. The queries actually model the
transformers; the commands are required to pro-
vide implementations of the queries to allow the
latter to manipulate the stack values they re-
turn. Their appearance as queries means that
they may appear in assertions, which is what is
required to provide a translation of the ADT ax-
ioms appearing here in the ensure condition on
push stack.

The stack speci�cation also illustrates the inel-
egance, in the de�nition of value types in Ei�el,
of having to de�ne extra commands to be able
to implement the generators (in this case the
transformers push and pop).

As it stands, the de�nition is only a speci�cation
because we have not said how the stack is to be
implemented, in particular how the values of the
stack are to be stored.3

Suppose we decide to implement the stack using
a (resizeable) array, by inserting the following
features, and de�ning the routines in terms of
these.

featurefNONEg
storage: ARRAY [X ]

The bodies of pushed stack and push would be
de�ned, respectively, as follows:

do

!!Result
Result.push(x)

end

do

storage.resize(old storage.lower,
old storage.upper + 1)
storage.put(x,storage.upper)

end

3In Ei�el, expanded classes can not be deferred, so it

is necessary to provide the implementation. Even if this

was not the case, then at some point we would have to

provide an implementation.



The implementation of the new command,
which is relevant to the ensuing discussion, is
given below. The code resizes the array so that
it contains no elements.

do

storage.resize(old storage.lower,
old storage.lower)

end

There would also be a creation routine to create
the array.

The current semantics of expanded classes does
not allow us to do this, at least not with the
desired e�ects.

For example, suppose s := t, where s, t :
STACK [X ], at some point in a program, then
the value held by s becomes a reference to the
array pointed to by t. Suppose that t is then
updated by performing the new command. This
has the e�ect of emptying the array by resizing
it to zero. However, because s points to the same
array, e�ectively it will also be updated, in that
a query (say top) on s will give the same value
as the same query on t, i.e. it will be an invalid
call. This is undesirable, as e�ectively it makes
the value type behave as if it were a reference
type: one can manipulate a value t, only to dis-
cover that e�ects are also felt in another value
s.

A similar argument could be constructed for the
commands push and pop.

The situation just described would not occur
if the semantics of assignment were changed
so that the contents of the array were copied,
rather than the reference to the array copied.
Such a change to the semantics of assignement
would, in turn, require a change to the seman-
tics of equivalence to mean that the contents of
the array were the same rather than them being
the same array.

However, having assignment copy the whole
structure would also be undesirable. If X in
STACK[X] was substituted for a reference type,
then one would probably want the references
contained in the array to be copied, not the ob-
jects pointed to by those references, which would
be the case with deep copy. Similarly for equiv-
alence.

It is in fact possible to e�ectively provide one's

own version of equivalence and assignment in
Ei�el, by de�ning new features in the way de-
scribed. Indeed there are kernel library func-
tions, such as copy, clone and their deep coun-
terparts to help you do this.

We take a slightly di�erent view that the se-
mantics of standard assignment and equivalence
for value types is too strong, in general. The
abstract semantics given in the next section em-
bodies this view, and in section 5 we demon-
strate that it supports the modelling of value
types required. A solution to the \not too deep"
copy/equivalence problem is outlined in section
6.

4 Abstract Semantics

This section describes an abstract semantics for
expanded types. The semantics is a level of ab-
straction removed from an operational seman-
tics (a conceptual view of the target of compi-
lation), such as that provided in [Meyer, 1992].
This enables an `ideal' picture of the semantics
to be painted, and it is this which is used in sec-
tion 5 to show that expanded types could pro-
vide better modelling of value types, at least at
a speci�cation level. Section 6 outlines an oper-
ational semantics which is less pessimistic than
the current semantics for Ei�el, with respect to
this ideal.

A formal approach is used to lend rigour and
precision to the argument. The approach is sim-
ilar to that of Larch [Guttag et al., 1985], where
a speci�cation language is given a semantics es-
sentially in terms of theories of order sorted �rst
order predicate logic (OSFOPL). This has the
advantage of being widely understood, and it is
hoped that such a semantics could provide the
basis for proof assistant and simulation tools,
such as those described in [Jones et al., 1991,
Costa et al., 1990].

4.1 Framework

The basic idea is to convert an Ei�el class inter-
face into a theory of OSFOPL. This theory must
not only characterise the behaviour of an arbi-
trary object of the class (i.e. viewing the class
as a template) but also the identity and cre-
ation of objects. Object identity may be charac-



terised simply in terms of a sort Cid correspond-
ing to the collection of all potential instances
(i.e. those that have existed, exist, and will ex-
ist) of classes conforming to C. Objects have
state which may change through time, where the
view on this state and ways of changing it are
provided through its features. To model this, a
sort � of possible states is provided. It is as-
sumed that this includes all possible states of
a system, only some of which will be abstract
states of an object in the system (hence one sort
su�ces for all class theories and combinations
thereof). The values that objects of class C may
have in a state are determined by the sort Cs.

To model existence, a boolean function exists
ranging over object identities, is included. This
must also range over �, as the existence of an
object may change from state to state. So that a
di�erent predicate is not required for each class,
the sort ANYid is also introduced. This charac-
terises the collection of all potential objects, no
matter what the class, and Cid is a subsort.

The values that objects, whatever the class, may
have in a state are modelled by the sort ANYs.
The function

state(�; ANYid) : ANYs

is used to dereference object identities, where
state(s; x) returns the value held in the state of
x at s. For each class, there is also a sort Cs

which is a subsort of ANYs. In addition, the
axiom

8s : �;x : Cid � state(s; x) : Cs

included in the theory for C, ensures that appro-
priate values are assigned to the state of objects
of C. To summarise, the theory for a class Cmay
be presented as

theory C
includes ANY
sorts

Cid; Cs

functions

. . . { feature signatures
axioms

Cid < Anyid
Cs < Anys
8s : �;x : Cid � state(s; x) : Cs

V oid : Cid

. . . { axioms for features, invariants etc.

where the line includes ANY , means that all
the symbols and axioms of ANY are included in
C. Here ANY is given by

theory ANY
sorts

ANYid; ANYs;�
functions

exists(�; ANYid) : BOOLEAN
state(�; ANYid) : ANYs

V oid : ANYid

. . .
axioms

8s : � � exists(s; V oid)
. . .

where it is assumed the theory of BOOLEAN is
already de�ned in the usual way (as we assume
the logic is already de�ned). Of course, with
value types in the language, it would be possi-
ble to derive the theories from suitable speci�-
cations. We come back to this in the section on
further work. Note that, in the theory ANY ,
V oid is treated as an object (which happens to
have no behaviour) and the axiom embodies the
assumption that V oid always exists.

From now on we will refer to Cid as the identity
or reference sort of C, and Cs as the value sort.

4.2 Features

For simplicity, in giving a semantics to features
of a class, we assume a distinction between com-
mands and queries (see e.g. [McKim and Mon-
dou, 1993]), and do not allow queries with side-
e�ects (which are visible to the client, so e.g. it
is possible to create a new object as part of a
query).

Queries

A query q(a:A):B of class C introduces the se-
lector function on Cs

q(Cs; A) : B

in the theory of C.



The behaviour of features is obtained by deriv-
ing axioms from the code and/or speci�cation
(require and ensure conditions, and the class in-
variant). For the purposes of this paper it is
not necessary to show in detail how this is done.
The derivation of axioms from the speci�cation
is described in [Kent and Maung, 1995b].

However, it is instructive to look at the trans-
lation of query invocations, which forms part of
the general interpretation of Ei�el expressions.
For Ei�el expression A, its translation is given
by Ahs; s0; v; v0i, where s; s0 : � and v; v0 : ANYs

are provided by the context in which the trans-
lation of A appears. The rules giving the trans-
lation of queries as they appear in Ahs; s0; v; v0i,
are given below. 4 An explanation of the rules
follows.

1. any call to a query p(B) of the current ob-
ject is replaced by p(v;Bhs; s0; v; v0i)

2. any call to a query of another object
through a X .p(B), is replaced by

(a) p(state(s0;Xhs; s0; v; v0i),
Bhs; s0; v; v0i), if X is of reference type

(b) p(Xhs; s0; v; v0i; Bhs; s0; v; v0i), if X is
of expanded type

3. any call to the old value of a query old p(B)
of C is replaced by p(v;Bhs; s; v; vi)

4. any call to the old value of a query of
another object through old X .p(B), is re-
placed by

(a) p(state(s;Xhs; s0; v; v0i); Bhs; s; v; vi),
if X is of reference type

(b) p(Xhs; s0; v; v0i; Bhs; s; v; vi), if X is of
expanded type

(1) and (2) deal with the case when the query
does not appear in an old expression; cases (3)
and (4), when it does. For the purposes of this
discussion, we can ignore (3) and (4)|they are
included for the sake of completeness.

s; s0 represent system states. s is only used in
the translation of old expressions so may be ig-
nored (similarly for v). That is, in (1) and (2) s0

4For simplicity, the rules only consider queries with

a single argument, though they extend to queries with

an arbitrary number of arguments. The rules including

expressions of expanded type are given later.

represents the system state in which the query is
being evaluated. (1) ensures that selector func-
tions (which represent queries) of the same class
are related on the same values (represented here
by v0).

(2.a), which deals with the case when the en-
tity being invoked is of reference type, corre-
sponds to invoking the selector function p on
state(s0;Xhs; s0; v; v0i), the value of the state of
the object referenced by X at s0, with argument
Bhs; s0; v; v0i. This e�ectively dereferences the
pointer held by X, and then uses the appropri-
ate selector function to invoke the query on the
value returned.

(2.b) deals with the case when X is of expanded
type, and is the same as (2.a) except that no
dereferencing is required. This is because en-
tities of expanded type are assumed to denote
values directly (here represented by the value
sorts), as opposed to pointers to those values.

Notice that the semantics makes no distinction
between attributes and queries. The distinction
is not appropriate at this level; rather it is a
matter for the operational semantics. In what
follows we will argue that the operational se-
mantics currently given to Ei�el is too strong in
its encoding of this ideal semantics (why this is
ideal will be discussed in section 5). In section
6, we will outline an alternative approach to the
operational semantics.

Commands

A command c(a: A) introduces the function

c(�; Cs; Aid) : �� Cs

As with queries, the detailed derivation of be-
havioural axioms is not important for this paper.
The rules giving the translation of command in-
vocations are given below, where: s; s0 are the
system states respectively before and after the
invocation of the command; w;w0 are the values
of the current object in s; s0, respectively; snd
returns the second component of a pair.

1. any call to a command c(A) of the current
object is replaced by
v0 = snd(c(v;Ahs; s; v; vi)

2. any call to a command of another object
through X .c(A) translates to



(a) state(s0;X(s0; s0; v0; v0)) =
snd(c(s; state(s;X(s; s; w;w)),
Ahs; s; w;wi)), if X is of reference type

(b) X(s0; s0; w0; w0) =
snd(c(s;X(s; s; w;w); Ahs; s; w;wi)),
if x is of expanded type

(1) deals with the case of an object invoking one
of its own commands. (2.a) deals with the case
of an object's command being invoked through a
pointer held in X, and dereferences as appropri-
ate. (2.b) deals with the case where the object
itself is held as a value denoted by the entity, in
which case no dereferencing is necessary.

Thus the abstract semantics regards a command
as returning a new state and a new value, where
the latter is put in the appropriate place as part
of the invocation of a command: as the value of
an object pointed to by the entity involved in the
invocation, for reference types, or as the value
held by the entity itself for expanded types.

4.3 Equality and Assignment

Equality of expressions translates to equality of
the translations of those expressions. In par-
ticular, for expressions of expanded types, this
means comparing two values of the same value
sort. Two entities of a (value) sort are equivalent
i� the results returned by the selector functions,
applied to each value for all arguments, are the
same. This corresponds to query equivalence,
making no distinction between derived queries
and attributes.

Assignment translates to a statement ensuring
that the denotation of the attribute in the l.h.s.
after the assignment is equal to the denotation
of the expression on the r.h.s. before the as-
signment, where for reference types, the denota-
tion will be of reference sort, and for expanded
types, of value sort, noting that in the latter
case, equivalence of values is as above.

4.4 Compatibility with Expanded Se-

mantics

The operational semantics for expanded types,
described in [Meyer, 1992], is pessimistic with
respect to the abstract semantics just described.

The operational semantics of query and com-
mand invocation is compatible with the abstract
semantics. According to the operational seman-
tics of [Meyer, 1992], when a command is in-
voked on an entity of expanded type, its e�ect
is to update the value, which is stored as a col-
lection of attributes, denoted by that entity by
performing the command directly on those at-
tributes. This is compatible with our abstract
view where the command returns a new value,
possibly based on the old value, and the old
value is then replaced by this.

Under the operational semantics a = b for a and
b of the same expanded type requires the at-
tributes of a to be equivalent to the attributes
of b. Given that all queries are calculated from
the attributes, this guarantees that the queries
are equivalent, which is all that is required by
the semantics described above. However, as the
example described in section 3.3 illustrates, situ-
ations are feasible where the (public) queries are
equivalent, although the (secret) attributes are
not. This indicates that the operational seman-
tics is too strong i.e. pessimistic. (Although
we have not done so above, we are at liberty
to de�ne a di�erent notion of equality for each
sort, and this would correspond to only requir-
ing the public queries to be equivalent on all
arguments.)

Similarly, for the assignment a := b the current
operational semantics requires the attributes of
a to be the same as the attributes of b, which
is stronger than the abstract semantics, which
only requires the (public) queries on a to return
the same values on all arguments as the queries
on b.

5 Extension of expanded types

to value types

5.1 Constructors

Abstractly, the semantics of commands means
that for entity X of expanded type the invoca-
tion of a command X .c(a) is achieved by con-
structing a new value, which is returned by the
command, and then assigning this new value to
X. This admits the possibility of allowing a com-
mand to appear on the right hand side of an as-
signment. In other words, X .c(a) can be seen



as a shorthand for X := X .c(a).

Applying this idea to D B POS, we observe
that the invocation pos.set(i,j) could be a short-
hand for pos := pos.set(i,j). Applying the idea
in reverse, observe that the assignment pos :=
pos.next would be required to make pos the next
value in line from its current value. Given the
semantics outlined in Section 4, as reected by
the existing operational semantics for expanded
types, there is nothing to stop us de�ning next
as the command

next is
require

(col >= min col and col <= max col
and row >= min row
and row <= max row)

ensure

col = max col implies (col = min col
and (row = max row implies

row = min row)
and (row == max row implies

row = old row + 1 ))
col == max col implies (row = old row

and col = old col + 1 ))
end

and then write pos.next as a shorthand for the
above assignment. In other words, commands
of expanded types correspond to transformers
from the ADT world.

So how does this help with the problem of de�n-
ing constructors outlined in section 3. One fur-
ther insight su�ces. Looking at the de�nition
of set in D B POS, one notices that it is not de-
pendent on any old values. In which case pos
is redundant in the r.h.s. of pos := pos.set(i,j),
and instead there is no reason why we should
not be able to write pos := set(i,j) in this case.
And here, set is behaving as an ADT construc-
tor. Generalising this idea, we observe that the
property of set we have identifed, is a property
that any creation routine must have. Thus the
constructors of a value type correspond directly
to the creation commands of an expanded type.

To summarise, we propose that for entities of ex-
panded type in Ei�el, commands may be used
in expressions to return values of that type, and
we have given an abstract semantics which sup-
ports this, and argued that, in this respect at
least, the current operational semantics for Ei�el

agrees with the abstract semantics. We further
propose that creation commands may be used
in expressions on their own (e.g. set(i,j) instead
of pos.set(i,j)), thereby e�ecting constructors for
the expanded type.

There are two further items to tidy up, in re-
spect of the latter proposal:

1. Ei�el only allows one creation routine to
be de�ned for expanded types, and that to
have no arguments. We propose removing
this restriction, by allowing a further key-
word default to (optionally) label a single
creation routine with no arguments which
should be used, instead of the system de-
fault, to initialise attributes of value type
when an object is created. For an exam-
ple of these extensions in action see the
rewrite of STACK in the section on further
work. Note that this is backward compati-
ble with existing syntax, in that if only one
creation routine is included in the de�nition
of the expanded type (currently all that is
allowed), then this will be assumed to be
the default and no extra annotation is re-
quired.

2. If set is also de�ned as a creation command
in another value type, then it will not be
clear to which value type a call to set refers.
In such circumstances the name of the fea-
ture must be quali�ed by the name of the
class as in, for example, !D B POS!set(i,j).5

5.2 Subtyping

In the proposed semantics, subtyping of value
types is embodied in an axiom which requires
the value sort of the child to be a subsort of
the value sort of the parent. For example, if
D B POS is constructed by inheriting from IN-
TEGER PAIR, as suggested in section 3, then
the axiom

D B POSs < INTEGER PAIRs

would appear in the theory for D B POS. This
gives polymorphism as all features are factored

5We have used similar syntax to creation instructions

in Ei�el, which use !. . . ! to identify the exact type of

object being created; here we wish to identify the exact

type of value being created.



over the value sorts (in particular, queries corre-
spond to selctor functions over the correspond-
ing value sort).

This corresponds to the situation for reference
types where, in our semantics, subtyping is
achieved by having a similar axiom over the ref-
erence sorts.

The more sophisticated form of the semantics
may need to be constructed to deal with renam-
ing, in particular where repeated inheritance is
concerned.

Unfortunately, as discussed in the next section,
it is di�cult to translate the above into an
operational semantics, because of the way in
which query equivalence must be modelled op-
erationally. Fortunately, it seems that a useful
compromise can be found.

5.3 Implementation

Since the semantics is based on query, rather
than attribute equivalence, the problems identi-
�ed in section 3 with regard to the implemen-
tation of value types disappear, at least at an
abstract level. The trick is to �nd an opera-
tional semantics that gives the same exibility
as the abstract one. Such a semantics is outlined
in the next section.

6 Operational Semantics

This section outlines an operational semantics
which is less pessimistic than that for existing
Ei�el with respect to the abstract semantics of
section 4. This is only an outline and is yet to
be tested. Some account is taken of the impact
on e�ciency.

6.1 Assignment

In section 3.3, we observed that a shallow copy of
attributes (existing Ei�el semantics for assign-
ment) might not allow the implementation of
a value type using references to objects. The
implementation of a stack value type using an
array object was given as an example. It was
argued that a form of \semi-deep" copy is re-
quired. The following scheme would, at �rst
sight, seem to generalise on what was said there.

For all attributes A,

1. If A is of value type, copy the value.

2. If A is secret and of reference type, (shal-
low) copy the object referred to by A.

3. If A is public and of reference type, copy
only the reference stored in A.

Note that public attributes are treated as in
the existing semantics; this is needed to ensure
query equivalence.

Returning to the stack example, the above
scheme ensures that the array is copied, but not
the objects referred to by the array. However, if
the stack had been implemented using a linked
list, this scheme would not have worked, as, in
that case, we would also want to copy the indi-
vidual links of the list, not references to them,
otherwise we would end up with two lists in-
terfering with one another. A possible solution
to this problem is given by [Kent and Maung,
1995a] which introduces a notion of object own-
ership, and shows how it could be e�ected in Eif-
fel. The basic idea is to distinguish between ob-
jects wholly owned by another, and those which
can be shared. In this case, owned objects would
be copied, but not shared objects. In the case
of a linked list, the elements of the list would
be owned by the list so would be copied along
with the list itself, but the objects referred to by
elements of the list would be shared objects so
only their references would be copied.

6.2 Query equivalence

The use of query equivalence, in favour of
attribute equivalence, is in general not com-
putable, as the queries on each value would have
to be evaluated for all arguments, and, in gen-
eral, this is not possible. However, a form of
equivalence similar to the \semi-deep" copy de-
scribed above would provide what is required,
but without the drawbacks of simple attribute
equivalence. That is two values of conformant
type are considered equal if for all attributes A
in common,

1. If A is of value type, the values stored in A
for each object are equivalent.



2. If A is secret and of reference type, the ob-
ject stored in A for one object is a (shallow)
copy of that stored in A for the other ob-
ject.

3. If A is public and of reference type, the ref-
erences stored in A for each object are the
same.

6.3 Subtyping

There is a slight complication with the proposed
operational semantics, in respect of value sub-
typing, as the any form of deep equal, how-
ever shallow, requires the entities being com-
pared to have the same attributes in the same
places. With subtyping, it is possible for one
value to have attributes that the other does not.
It should be possible to obtain a limited form of
subtyping and polymorphism on value types op-
erationally, for example if it can be shown that
one of the structures being compared is a sub-
structure of the other. This would ensure that
the values would be equivalent for the queries
a�ected by that substructure. This corresponds
to the case where the exact type of one of the
operands is a subtype of the exact type of the
other.

6.4 Commands as constructors

Potentially, the interpretation of commands as
constructors could lead to ine�cient use of stor-
age. In general, for an assignment of the form x
:= A it would be necessary to create the value
returned by A in a new area of storage and then
copy that value into the storage allotted for x.
We have observed (section 5.2) that for non-
creation command f, x.f(. . . ) is equivalent to
writing x := x.f(. . . ), for x is of value type, and
for creation command g, x.g(. . . ) is equivalent
to writing x := g(. . . ). Further, we have ar-
gued (section 4.4) that the existing operational
semantics is compatible with this. Thus the use
of storage in performing assignments of either of
the above forms can be as e�cient as any pro-
duced by existing compilers when interpreting
the corresponding calls. We suspect that opti-
misations would include the direct manipulation
of storage allotted for x, rather than working on
a copy.

6.5 Compatibility with existing oper-

ational semantics

The main changes in the operational semantics
proposed here are:

1. semi-deep equivalence of values, instead of
simple attribute equivalence

2. semi-deep copying of values, instead of sim-
ple attribute copying

3. the use of commands as constructors

(3) is fully compatible with the existing seman-
tics. We have just allowed commands to be
used in expressions, observing that the existing
semantics of value types e�ectively treats com-
mands as value returning queries.

With regard to (1) and (2), if an existing pro-
gram uses the fact that simple attribute equiv-
alence/copying is used to e�ect value equiva-
lence/assignment, then there may be problems.
However, we suspect that this will be the case
in only a handful of situations if at all.

7 Summary

The paper has advocated the use of value types
in OO programming, speci�ctaion and design,
in general, and in Ei�el, in particular. It has
identi�ed problems with the modelling of value
types in Ei�el using expanded types: problems
with de�ning constructors; no value sub-typing;
problems with implementation of value types. A
small syntacic extension and an abstract seman-
tics has been given which resolves these prob-
lems: commands are interpreted as constructors
and transformers; sub-typing is admitted; query
equivalence, instead of attribute equivalence, al-
lows greater exibility in implementating value
types. An operational semantics, which is closer
in spirit to the abstract semantics than Meyer's
semantics for expanded types [Meyer, 1992], has
been outlined. This retains most of the advan-
tages of the abstract semantics. The compati-
bility of the extended language and revised se-
mantics with existing Ei�el has been discussed.



8 Related Work

As far as we are aware, no research on value
types in Ei�el has been reported, apart from
the original work on expanded types by Meyer
[Meyer, 1988, Meyer, 1992]. The work is clearly
related to work in formal methods, in particu-
lar the extension of speci�cation languages such
as Z, VDM and OBJ with OO constructs [Lano
and Haughton, 1994]. All these support the use
and de�nition of value types, though some bet-
ter than others. The di�erence with our work is
that it brings formal speci�cation and program-
ming under the one seamless, umbrella, namely
Ei�el. This is perhaps closer in spirit to the
Larch method [Guttag et al., 1985], which at-
tempts to bridge the gap between speci�cation
and programming by using a shared language
for de�ning the value types, and an interface
language (one for each programming language)
which acts as a speci�cation language for speci-
fying programs, where the assertions (pre, post
conditions) on routines are essentially written
in terms of the shared language. The main dif-
ference with our approach is that the shared
language becomes part of the programming lan-
guage itself, which allows value types to be used
directly in a program. A possible consequence
of this, as discussed below, is the automatic gen-
eration of reference types from value types.

9 Further Work

Clearly work needs to be done to implement the
ideas described here in Ei�el. This task falls to
the compiler writer, who would need to encode
the operational semantics outlined in section 6.
Fortunately, as we have shown, this semantics
is largely compatible with the existing seman-
tics, so such a rewrite should not signi�cantly
a�ect existing code. In so doing, it would, in our
view, be sensible to change the expanded key-
word to value to reect the fact that expanded
types are really value types. The changes to
allowable creation routines in expanded types,
proposed in section 5, including the addition of
a default keyword, would also need to be incor-
porated. These extensions are compatible with
the existing language, so should be compatible
with already written code.

One immediate aim is to apply the ideas to the

expanded class STACK [X ] creation
new

feature -- queries
top: X

empty : BOOLEAN

feature -- commands
new

ensure

empty ;

push(x : X )
ensure

top = x ;
pop = old Current ;
not empty ;

pop

end -- class STACK [X ]

Figure 4: The stack remodelled

speci�cation, implementation and general reor-
ganisation of the basic types and data structure
libraries for Ei�el. To see how this might be
done, we return once again to the stack exam-
ple.

In section 3, we identi�ed a problem with the
implementation of an expanded type, namely
that one could not usefully use a reference type.
The implementation of an expanded stack via
an array was used as illustration. The prob-
lem is resolved in our semantics by weakening
the semantics of expanded types. In section 5,
we showed how our semantics allows construc-
tors and transformers in the ADT de�nition of
a value type to be modelled using commands in
an Ei�el class, for the special case when that
class is expanded. In this framework, a stack
may now be remodelled as in �gure 4.

The di�erence between this and �gure 3 is that
the transformers push and pop have been mod-
elled as commands. Note that: the creation
command new corresponds to the only construc-
tor for stacks; top may be used in the ensure



condition of push due to our semantics of com-
mands; the ensure condition on push could have
been written as an invariant, which would have
brought it closer in appearance to the usual
ADT speci�cation.

Now comes the interesting step. If one wished
to transform this value type de�nition to a ref-
erence type, then one could do so by de�ning
a new class say REF STACK [X ], which would
have a single attribute of type STACK [X ]. Fur-
thermore, the queries and commands (including
creation commands) of the new class would ex-
actly match our remodelling of STACK in �gure
4, where the queries would invoke their counter-
parts of the value attribute; similarly for com-
mands, which would have the e�ect of changing
the value held by the attribute as required. This
process seems to be prescriptive enough to be
automatic. If so, we would propose to incorpo-
rate a new keyword in Ei�el, namely reference

to complement expanded.

This still needs to be fully worked out and
tested, and applied to more sophisticated data
types.

The work described here also forms part of a
general program of research which uses Ei�el as
a platform for bringing the perceived bene�ts of
formal speci�cation and development techniques
to the practising software engineer. This strand
has resulted in the extension of Ei�el with quan-
ti�cation [Kent and Maung, 1995b] and for mod-
elling value types (this paper). Another strand
has considered how more run-time support can
be given to checking of contracts as they cur-
rently exist in Ei�el [Mitchell et al., 1995]. We
have also begun to look at how higher level de-
sign concepts could be brought into the language
[Kent and Maung, 1995a]. Attention will now
focus on the provision of tool support (for exam-
ple, how do our proposals a�ect contract check-
ing), and on furthering the import of concepts
from design methods, such as Syntropy [Cook
and Daniels, 1994].

References

[Cook and Daniels, 1994] S. Cook and
J. Daniels. Designing Object Systems. The
Object-Oriented Series. Prentice Hall, 1994.

[Costa et al., 1990] M.C. Costa, J. Cunning-
ham, and J.P. Booth. Logical Animation. In
Proceedings of the International Conference
on Software Engineering, 1990.

[Guttag et al., 1985] J.V. Guttag, J.J. Horning,
and J.M. Wing. The Larch Family of Speci-
�cation Languages. IEEE Software, 2(5):24{
36, 1985.

[Jones et al., 1991] C. B. Jones, K.D. Jones,
P.A. Lindsay, and R. Moore. Mural: A For-
mal Development Support System. Springer
Verlag, 1991.

[Kent and Maung, 1995a] S. Kent and
I. Maung. Object Ownership and Aggrega-
tion. In Proceedings of TOOLS Paci�c 95.
Prentice Hall, 1995.

[Kent and Maung, 1995b] S. Kent
and I. Maung. Quanti�ed Assertions in Ei�el.
In Proceedings of TOOLS Paci�c 95. Prentice
Hall, 1995.

[Lano and Haughton, 1994] K. Lano and
H. Haughton, editors. Object-Oriented Spec-
i�cation Case Studies. The Object-Oriented
Series. Prentice Hall, 1994.

[McKim and Mondou, 1993]

J. McKim and D. Mondou. Class Interface
Design: Designing for Correctness. Journal
of Systems and Software, 23(2):85{92, 1993.

[Meyer, 1988] B. Meyer. Object-Oriented Soft-
ware Construction. Prentice Hall, 1988.

[Meyer, 1992] B. Meyer. Ei�el: The Language.
The Object-Oriented Series. Prentice Hall,
1992.

[Mitchell et al., 1995] R. Mitchell, I. Maung,
J. Howse, and T. Heathcote. Checking Soft-
ware Contracts. In Proceedings of TOOLS
USA 95. Prentice Hall, 1995.

[Wald�en and Nerson, 1994] K. Wald�en and
J. Nerson. Seamless Object-Oriented Software
Architecture: Analysis and Design of Reliable
Systems. The Object-Oriented Series. Pren-
tice Hall, 1994.


