
The ς-Semantics: A Comprehensive Semantics for

Functional Programs

Olaf Chitil

Lehrstuhl für Informatik II, Aachen University of Technology
Ahornstraße 55, 52056 Aachen, Germany

chitil@informatik.rwth-aachen.de

http://www-i2.informatik.RWTH-Aachen.de/~chitil

Abstract

A comprehensive semantics for functional programs is presented, which gen-
eralizes the well-known call-by-value and call-by-name semantics. By permitting
a separate choice between call-by value and call-by-name for every argument
position of every function and parameterizing the semantics by this choice we ab-
stract from the parameter-passing mechanism. Thus common and distinguishing
features of all instances of the ς-semantics, especially call-by-value and call-by-
name semantics, are highlighted. Furthermore, a property can be validated for
all instances of the ς-semantics by a single proof. This is employed for proving
the equivalence of the given denotational (fixed-point based) and two operational
(reduction based) definitions of the ς-semantics. We present and apply means for
very simple proofs of equivalence with the denotational ς-semantics for a large
class of reduction-based ς-semantics. Our basis are simple first-order constructor-
based functional programs with patterns.

Keywords: functional programming language, denotational and operational se-
mantics, call-by-value, call-by-name, strictness, pattern-matching.

1 Introduction

Two essentially different parameter-passing-mechanisms exist for the evaluation of func-
tional programs: call-by-value (cbv) and call-by-name (cbn) (Call-by-need evaluation is
only a more efficient semantic equivalent of cbn evaluation. This efficiency aspect will
just be touched in Chapter 10). Unfortunately, formal definitions of the two arising se-
mantics are generally rather independent of each other: Firstly, the leftmost-innermost
and the leftmost-outermost reduction strategy, which are often associated with cbv and
cbn evaluation, respectively, look rather incomparable. Secondly, denotational defin-
itions of cbv semantics are usually inelegant modifications of their cbn counterpart
([11]). This independence is in contrast with the fact that many modern functional
programming languages even use a mixture of both parameter-passing-mechanisms.
Scheme for instance is based on cbv evaluation but includes constructs (delay and

force) for simulating call-by-need evaluation and the cbn language Haskell permits
cbv annotations for efficiency reasons ([6, 25]).

Therefore we define one unifying, generalized semantics by permitting a separate
choice between cbv and cbn for every parameter position of every function and every
data constructor. This semantics, named ς-semantics1, is parameterized by this choice
(ς) and thus includes the well-known cbv and cbn semantics as special instances.

Hereby we see that the mentioned association with leftmost-innermost and leftmost-
outermost reduction is rather misleading. Instead we will see that the two semantics
use different instances of the program for their operational semantics and that leftmost-
innermost reduction is even a kind of outermost-reduction. The ς-semantics highlights
the true differences between cbv and cbn evaluation. Even more important is that com-
mon features are stressed. This improves our understanding of the mentioned prevailing
mixtures of cbv and cbn semantics in existing languages. Furthermore, abstracting from
the parameter-passing-mechanism provides the means for stating, analysing, and prov-
ing validity of semantic properties of functional programs in general. Here we use this to
prove the well-definedness and the equivalence of the three definitions, one denotational
and two operational, which we give for the ς-semantics (hence in particular cbv and cbn
semantics are dealt with by the same proofs). In the proof of equivalence we employ
rather general techniques which even provide the means for simple proofs of equivalence
with the denotational semantics for operational, reduction based ς-semantics which may
be defined in the future, for instance for increased efficiency.

1.1 Functional Programs and Data-Types

For ease of presentation (see also the Conclusion) our basis are simple first-order
constructor-based functional programs with patterns like the following:

add(x,Zero) → x

add(x,Succ(y)) → Succ(add(x,y))

mult(x,Zero) → Zero

mult(x,Succ(y)) → add(x,mult(x,y))

We regard a program as a specification of a data-type, which in the first-order case
is simply an algebra consisting of a carrier set and a set of operations. One part of the
data-type is already defined by the signature and the semantics of the programming
language and not by the particular program. In the example we assume the carrier
set to contain the constructor terms Zero, Succ(Zero), . . ., and the constructor symbols
to denote term construction operations (free interpretation). Only the meaning of the
symbols add and mult is given by the program. Consequently, the semantics of a
programming language defines a base data-type BDT = 〈carrier, base operations〉, and
the semantics of a particular program P is the extension of this data-type by additional
operations: DT(P) = 〈carrier, base operations∪ defined operations〉 The ς-semantics is
modular, that is extending a program does not modify but only extend its data-type.

1.2 Constructors and Pattern Matching

We use constructor-based (also called algebraic) data-types, because on the one hand
only potentially non-flat data-types fully expose the relationship between cbv and cbn

1ς is a variation of the Greek letter sigma.

2

parameter-passing, and on the other hand all data-types used in modern functional pro-
gramming languages are covered2. These languages permit the user only to define new
constructor-based data-types and also the predefined data-types like lists, characters
and numbers can be regarded as constructor-based (with some additional base oper-
ations which are not considered here), being implemented in a special, more efficient
way.

If a function is defined by several reduction rules, then common functional program-
ming languages use priority rules for selecting one rule (first-fitting with left-to-right
argument matching in Haskell, best-fitting in Hope; [11]) This leads to complicated
semantic definitions and makes equational reasoning rather difficult ([30, 31]). We avoid
this problem by taking the term rewriting approach of confluent reduction rules.

1.3 Related Work

An implementation of a cbn language represents an argument of an operation as a boxed
value, that is as a pointer to the (unboxed) actual value or to a delayed computation.
If an operation is strict in an argument, then the unboxed value can be passed directly.
Launchbury and others ([26, 19]) developed a typed higher-order language to express
this kind of optimizations inside a cbn language. The language handles both boxed and
unboxed values, unfortunately with several syntactic restrictions: unboxed expressions
as arguments have to be in head normal-form, recursive types like lists cannot be
unboxed, and polymorphic expressions cannot be unboxed. In contrast, we give a
uniform presentation of cbv and cbn evaluation. Our basis is the abstract notion of
strictness instead of the representation of values in an implementation. However, the
resulting denotational semantics are quite similar.

Danvy and Hatcliff describe an implementation technique for a λ-calculus with
mixed strictnesses ([8]). They define a transformation which maps such programs to
an evaluation order independent λ-calculus code in continuation-passing-style. The
transformation is based on the simulation of cbn evaluation in a cbv language by using
explicit suspensions. Then the well-known cbv continuation-passing-style transforma-
tion is applied. For the purpose of implementation it does not make a difference that
their strictness annotations are meant to be the result of a strictness analysis while our
choice of parameter-passing mechanism, ς , affects the semantics. However, the trans-
formation is not intended for comparing cbv and cbn parameter passing and giving a
uniform semantic framework.

1.4 Starting-Points

The denotational semantics we define is a fixed-point semantics like those for recursive
applicative program schemes ([32, 33, 23, 10, 4, 12, 7]). While the concept of a base data-
type is central to this field, viewing the semantics of a whole program as a data-type is
inspired by algebraic specifications ([35]). We define reduction semantics as operational
semantics, but due to pattern-matching we cannot use the simple reduction semantics
of recursive applicative program schemes. Instead, we apply notions and results from
term rewriting systems ([9, 18, 13, 15, 14]), especially for proving the equivalence of
the denotational and operational ς-semantics. For proving the equivalence of the two

2However, some non-free data-types like for example sets cannot be completely modelled by
constructor-based data-types.

3

operational ς-semantics we generalize the proofs in [24] and [2] that parallel-outermost
and leftmost-outermost reductions are terminating whenever possible.

1.5 Structure of the Paper

In Section 2 we introduce preliminary concepts and notations. Afterwards, the syntax of
our programs is defined in Section 3. Subsequently, we consider in Section 4 properties
we expect any semantics to possess, and, to prepare the generalization, we define the
standard cbv and cbn semantics for our programs in Section 5. In Section 6 the ς-
semantics is defined. Then we prove in Section 7 the equivalence of the three given
definitions of the ς-semantics. Subsequently we prove in Section 8 some properties of
our ς-semantics, especially those we consider desirable in Section 4. In Section 9 we
discuss the use of ς-semantics for modelling the mixed strictnesses of modern functional
programming languages and in Section 10 we consider more efficient reduction strategies
than those given, as basis for realistic implementations. We conclude with a summary
and some remarks in Section 11.

To avoid tiresome details many proofs are only sketched. Full proofs and additional
examples are given in [5].

2 Basic Definitions and Properties

We denote the natural numbers by IN, the positive natural numbers by IN+ and the set
{1, 2, . . . , n} by [n] for any n ∈ IN. IB = {tt,ff} is the set of boolean values. If M is a
set, then M ∗ denotes the set of words over M with ε as empty word.

The notions partial order, mapping over partial orders, algebra, ordered algebra,
and finite and infinite term are standard and may be found for example in [34].

Both [9] and [18] give comprehensive surveys of term rewriting systems, the latter
also of almost orthogonal term rewriting systems. However, our presentation is quite
different in order to introduce the concept of an instance of a term rewriting system,
which will be the basis of our operational ς-semantics, in a simple way.

2.1 Partial Orders

A partial order A = 〈A,≤A〉 consists of a non-empty set A and a reflexive, antisymmet-
ric, and transitive relation ≤A ⊆ A × A. We use various symbols like ≤,⊆,�,⊑, and
� for different partial order relations.

Let T be a subset of A. In case of their existence, the least element of T is denoted
by LeastA(T) and the least upper bound of T by

⊔A T . T is an (ω-)chain iff it is
non-empty,finite or countably infinite, and totally ordered. We often write chains as
sequences T = (ai)i∈IN such that a0 ≤ a1 ≤ a2 ≤ The partial order A is an (ω-)
complete partial order (a cpo) iff every chain T ⊆ A and the empty set have a least
upper bound. Then A has the least element ⊥A :=

⊔

∅.
A subset T ⊆ A is cofinal in a subset T ′ ⊆ A iff for all t ∈ T there exists a t′ ∈ T ′

such that t ≤ t′. If A is a cpo, T, T ′ ⊆ A are chains, and T is cofinal in T ′, then
⊔

T ≤
⊔

T ′.
Let A be a cpo. An element a of A is ω-compact iff for every chain T ⊆ A the

property a ≤
⊔

T implies the existence of an a′ ∈ T such that a ≤ a′. A cpo A is ω-
inductive iff for every element a ∈ A there exists a chain T ⊆ A of ω-compact elements
such that a =

⊔

T .

4

2.2 Mappings over Partial Orders

If A is a set and B = 〈B,≤B〉 a partial order, then the canonical partial order of the
mapping space, 〈(A→B),�〉, is defined by ϕ � ψ :⇐⇒ ∀a ∈ A. ϕ(a) ≤B ψ(a).

Assuming A and B are partial orders, a mapping ϕ : A→B is monotonic iff a ≤A a′
implies ϕ(a) ≤B ϕ(a′).

Let A andB be cpos. A mapping ϕ : A→B is strict iff ϕ(⊥A) = ⊥B. A mapping ϕ is
(ω-)continuous iff for every chain T ⊆ A the least upper bound of ϕ(T) := {ϕ(t) | t ∈ T}
exists and

⊔

ϕ(T) = ϕ(
⊔

T). The set of (ω-)continuous mappings is denoted by [A→B].
The canonical partial order of (ω-)continuous mappings, 〈[A→B],�〉, is complete.

Let ϕ be a mapping from a set A to itself. A fixed-point of ϕ is an element a ∈ A
such that ϕ(a) = a. The well-known fixed-point theorem of Knaster and Tarski states
that if A is a cpo and ϕ : A→A is continuous, then ϕ has a least fixed point given by
Fix(ϕ) :=

⊔

i∈IN ϕ
i(⊥A).

Until here we considered only mappings with one argument. However, for ϕ, ψ :
A1 × . . . × An→A we define ϕ � ψ :⇐⇒ ∀a1 ∈ A1, . . . , an ∈ An. ϕ(a1, . . . , an) ≤A
ψ(a1, . . . , an) and then the generalization of other previously defined notions is straight-
forward.

2.3 Algebras

A signature Σ is a set of operation symbols. Associated with every f ∈ Σ is a natural
number denoting its arity. We write f (n) for an operation symbol f of arity n and
Σn ⊆ Σ is the subset of all such operation symbols. A constant is an operation symbol
of arity 0.

A (Σ-)algebra A = 〈A,α〉 consists of a non-empty set A and a mapping α :
⋃

n∈IN Σn→(An→A) which assigns a total mapping (an operation) of arity n to every op-
eration symbol of arity n. We generally write fA for α(f). The class of all (Σ-)algebras
is denoted by AlgΣ.

Let A and B be Σ-algebras. A mapping h : A→B is a homomorphism from A toB iff it preserves operations, that is h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) for all
a1, . . . , an ∈ A and f (n) ∈ Σ. A and B are isomorphic iff such a homomorphism h and
its inverse h−1 exist.

Let K be a class of Σ-algebras and X ⊆ A for an algebra A ∈ K. A is free in
K relative to X iff every mapping ϕ from X to an algebra B of K can uniquely be
extended to a homomorphism from A to B. In the case X = ∅ we say that A is initial
in K. Since all algebras relatively free in K to X are isomorphic, we do not distinguish
them in the following and just speak of the relatively free to X and the initial algebra in
K (if any exists at all). For K = AlgΣ we speak of the absolutely free and the absolutely
initial Σ-algebra.

2.4 Ordered Algebras

The triple A = 〈A,≤, α〉 is an ordered (Σ-)algebra iff 〈A,≤〉 is a partial order and 〈A,α〉
a Σ-algebra such that all operations α(f) are monotonic w.r.t. the partial order. An
ordered algebra may be viewed both as algebra and as partial order by ignoring ≤ and
α, respectively.

The set of all ordered Σ-algebras with partial order 〈A,≤〉 is denoted by AlgΣ〈A,≤〉.
Its canonical partial order 〈AlgΣ〈A,≤〉,⊑〉 is given by A ⊑ B :⇐⇒ ∀f ∈ Σ. fA � fB.

5

An ordered Σ-algebra 〈A,≤, α〉 is (ω-)complete (also called (ω-)continuous) iff 〈A,≤〉
is complete and the operations fA are continuous for all f ∈ Σ. The class of all complete
Σ-algebras is denoted by Alg∞

Σ,⊥. Let A and B be complete ordered Σ-algebras. An
(ω-)morphism from A to B is a strict continuous homomorphism from A to B. For
complete algebras the notions of isomorphism, freedom and initiality are defined w.r.t.
morphisms instead of homomorphisms.

2.5 Finite and Infinite Terms

In the following Σ is a signature with at least one constant and X a finite or countably
infinite set of variables with X ∩ Σ = ∅.

We define the Σ-term algebra TΣ(X) = 〈TΣ(X), τ〉 to be the free Σ-algebra in AlgΣ

relative to X. The Σ-ground term algebra TΣ = 〈TΣ, τ〉 := TΣ(∅) is the initial Σ-
algebra in AlgΣ. Similarly we define the algebra of infinite partial Σ-terms T ∞

Σ,⊥(X) =
〈T∞

Σ,⊥(X),�, τ∞〉 to be the free (ω-complete) Σ-algebra in Alg∞
Σ,⊥ to X, and T ∞

Σ,⊥ =
〈T∞

Σ,⊥,�, τ
∞〉 := T ∞

Σ,⊥(∅) is the initial Σ-algebra in Alg∞
Σ,⊥ .

These abstract definitions make us independent of any concrete term representa-
tions. However, we generally write terms in the common prefix notation with paren-
thesis, for example: f(g(x), a). Infinite partial terms may be visualized as particular
partial mappings IN∗

+ 9 Σ ∪̇ X ∪̇ {⊥} (cf. positions below).
In the following we use the meta symbols t, f, x, and their variations for respectively

terms (T∞
Σ,⊥(X)), signature symbols and variables. We often write tuples of terms

(t1, . . . , tn) ∈ (T∞
Σ,⊥(X))n as vectors ~t, using the same meta symbol (here t) for the

vector ~t and its indexed elements ti. Moreover we abbreviate terms f(t1, . . . , tn) by
f(~t).

The freeness of T ∞
Σ,⊥(X) in Alg∞

Σ,⊥ guarantees unique decomposability of terms, that

is t = ⊥ or t = x or there exist f (n) ∈ Σ and terms t1, . . . , tn so that t = f(~t).
The order 〈T∞

Σ,⊥(X),�〉 of infinite partial terms is characterized by the properties

⊥� t and t′1 � t′′1, . . . , t
′
n � t′′n =⇒ f(~t′) � f(~t′′).

Due to the existing unique homomorphism from TΣ(X) to T ∞
Σ,⊥(X) the set of terms

TΣ(X) can be considered as subset of T∞
Σ,⊥(X). Defining the set of finite partial Σ-

terms TΣ,⊥(X) := TΣ ∪̇ {⊥}(X) we have TΣ(X) ⊂ TΣ,⊥(X) ⊆ T∞
Σ,⊥(X). The terms of

TΣ,⊥(X) are exactly the ω-compact elements of T∞
Σ,⊥(X) and T ∞

Σ,⊥(X) is ω-inductive.
Let t, t′ ∈ T∞

Σ,⊥(X) be terms. The set of variables appearing in a term t, that is
the least subset Y of X with t ∈ T∞

Σ,⊥(Y), is denoted by Var(t). A list u ∈ IN∗
+ of

positive integers is called position. The set of positions of a term t is the least subset
Pos(t) of IN∗

+ with ε ∈ Pos(t) and t = f (n)(~t), u ∈ Pos(ti), i ∈ [n] =⇒ i.u ∈ Pos(t).
The symbol at a position u ∈ Pos(t) in a term t, t(u), is defined by3 ⊥(ε) := ⊥,
x(ε) := x, f(~t)(ε) := f and f(~t)(i.u) := ti.u. The subterm of a term t at a position
u ∈ Pos(t), t/u, is given by t/ε := t and f(~t)/i.u := ti/u. The term t[u ← t′], created
by inserting the term t′ at the position u ∈ IN∗

+ in t, is defined by t[ε ← t′] := t′,

f (n)(~t)[i.u ← t′] := f(t1, . . . , ti[u ← t′], . . . , tn) if i ∈ [n], and t[i.u ← t′] := t otherwise.
Finally the set of positions of a term t with a symbol g ∈ Σ ∪̇ X ∪̇ {⊥} is defined by
Pos(g, t) := {u ∈ Pos(t) | t(u) = g}. A term t is linear iff it does not contain multiple
occurrences of the same variable, that is |Pos(x, t)| ≤ 1 for all x ∈ X. We employ the
operations just defined for tuples as well. Since Pos(~t) := {i.ui ∈ IN∗

+ | ui ∈ Pos(ti)},

we have ε /∈ Pos(~t) and hence T∞
Σ,⊥(t) and (T∞

Σ,⊥(t))1 have to be distinguished.

3This notation is inspired by the interpretation of terms as partial mappings IN∗

+ 9 Σ ∪̇ X ∪̇ {⊥}.

6

We define two partial orders over positions: The prefix order 〈IN∗
+,≤〉 is given by

u ≤ v :⇐⇒ ∃w ∈ IN∗
+. u.w = v. and the lexicographic order 〈IN∗

+,≤lex〉 by u ≤lex v :⇐⇒
u ≤ v ∨ ∃w, u′, v′ ∈ IN∗

+. ∃i, j ∈ IN+. i < j ∧ u = w.i.u′ ∧ v = w.j.v′. Two positions u
and v are independent, written u ‖ v, iff neither u ≤ v nor v ≤ u.

A mapping σ : X→TΣ(X) with σ(x) 6= x for only finitely many x ∈ X is a
substitution. We write [t1/x1, . . . , tn/xn] for σ if σ(xi) = ti for all i ∈ [n], and similarly
[t/Y] if σ(x) = t for all x ∈ Y ⊆ X, under the condition that σ(x) = x for all other
x ∈ X. Its unique extension to a homomorphism from TΣ(X) to TΣ(X) is denoted by
σ as well and we usually write tσ for the instance σ(t) of t. If tσ is a ground term, that
is contains no variables, it is called ground instance of t.

With regard to operational semantics, the reader should note that we define substi-
tutions only for finite terms and that applying a substitution is therefore an effective
operation.

2.6 Term Rewriting Systems

A rewrite rule l→r is a pair of terms with l ∈ TΣ(X) and r ∈ TΣ(Var(l)). A term
rewriting system (TRS) is a finite set of rewrite rules R. A left-hand side of a rule is
called redex scheme and the set of all redex schemes of a TRS R is denoted by RedSR.
If l ∈ RedSR and σ : Var(t)→TΣ, then lσ is a redex of the TRS R. RedR is the set
of all redexes of R and RedPos(t) := {u ∈ Pos(t) | t/u ∈ RedR} is the set of all redex
positions of a term t ∈ TΣ.

A term t ∈ TΣ is rewritable at a position u ∈ Pos(t) by a rewrite rule l→r ∈ R
in a single step to a term t′ ∈ TΣ iff there exists a substitution σ : Var(l)→TΣ with
t/u = lσ and t′ = t[u ← rσ]. Both t′ and σ are uniquely determined by t, u, and l→r.
Hence a (simple) reduction is a tuple A = 〈t, u, l→r〉, written as A = (t u−−→

l→r
t′) or just

A = (t u−−→
R

t′).

Let ̺ be a set of reductions, the ̺-reductions. If ̺ is a proper subset of all
reductions, then we mark ̺-reductions by ̺, that is we write A = t u−−→

l→r,̺
t′ or

A = t u−−→
R,̺

t′. The ̺-reduction relation −−→
R,̺

⊆ TΣ × TΣ is defined by t −−→
R,̺

t′ :⇐⇒

∃u ∈ RedPosR(t).∃(l→r) ∈ R : (t u−−→
l→r

t′ is a ̺-reduction). A sequential ̺-reduction

strategy is a deterministic ̺-reduction relation, that is where for every t ∈ TΣ there is
at most one t′ ∈ TΣ such that t −−→

R,̺
t′. We write A = t1 −−→R,̺

t2 −−→R,̺
t3 −−→R,̺

. . . for

a (finite or infinite) ̺-reduction sequence A = t1 −−→R,̺
t2, t2 −−→R,̺

t3, t3 −−→R,̺
t4,

A′ := 〈t, {〈ui, li→ri〉 | i ∈ [n]}〉 is a (parallel) reduction, written as A′ = t U−−→→
R

t′, iff

A = (t = t1
u1−−→

l1→r1
t2

u2−−→
l2→r2

. . . tn = t′) is a reduction sequence and U := {u1, . . . , un} ⊆

RedPosR(t) a set of mutually independent redex positions of t. This implies t′ =
t[u1 ← r1σ1] . . . [un ← rnσn] with the order of the replacement being irrelevant due
to the independence of the redex positions. The definitions of parallel ̺-reduction,
A′ = t U−−→→

R,̺
t′, parallel ̺-reduction relation −−→→

R,̺
, and parallel ̺-reduction sequence

and strategy are straightforward.

Let −−→
̺
⊆ T×T be an arbitrary relation over a set T . The reflexive and transitive

closure of −−→
̺

is denoted by ∗−−→
̺

. The relation −−→
̺

is confluent iff for all elements

t, t′, t′′ ∈ T with t ∗−−→
̺

t′ and t ∗−−→
̺

t′′ there exists a t̂ ∈ T such that t′ ∗−−→
̺

t̂ and

t′′ ∗−−→
̺

t̂. An element t ∈ T is a ̺-normal-form iff there is no t′ ∈ T with t′ 6= t

7

and t −−→
̺

t′. An element t′ ∈ T is a ̺-normal-form of t ∈ T iff t ∗−−→
̺

t′ and t′ is

a ̺-normal-form. It follows that if −−→
̺

is confluent, then the ̺-normal-form of an

element t ∈ T is unique (if it exists).
We use the properties just defined for the relations −−→

R,̺
and −−→→

R,̺
. A unique

̺-normal-form of a term t ∈ TΣ is denoted by t↓R,̺. A term t ∈ TΣ is a normal-form
iff RedPosR(t) = ∅.

We overload notation in that respect that for instance t −−→
R,̺

t′ may denote both

a proposition concerning the relation −−→
R,̺

and a reduction (a tuple). The meaning

should be clear from the context.

2.7 Almost Orthogonal TRS

An almost orthogonal TRS R is a TRS which is left-linear, that is all its redex schemes
are linear, and which fulfills the following condition of uniqueness concerning overlays
of redexes:

If l→r, l′→r′ ∈ R, u ∈ Pos(l) with l/u /∈ X and σ, σ′ : X→TΣ, then (l/u)σ =
l′σ′ implies u = ε and rσ = r′σ′.

Almost orthogonal TRSs have the important property that in a reduction t u−−→
l→r

t′ the

term t and the position u determine uniquely — not l→r and σ, but — the rewrite rule
instance lσ→rσ and thereby t′. Let R be an almost orthogonal TRS. The following
rather technical lemma is used in many proofs. It states that two redex schemes which
are above each other in a term do not overlap.

Lemma 2.1

Let t ∈ TΣ, u, v ∈ RedPosR(t) with u < v, and l ∈ RedSR with t/u = lσ for a
substitution σ. Then there exists a unique w ∈ IN∗

+ such that u ≤ u.w ≤ v and
l/w ∈ X.

Proof idea: Show that l/w /∈ X for all w with u ≤ u.w ≤ v contradicts the condition
of uniqueness of almost orthogonal TRSs. 2

Almost orthogonal TRSs were introduced by Rosen ([29]) and were treated in detail
by O’Donnell ([24]). However, both references actually do not consider TRSs but so
called subtree replacement systems which are special, generally infinite sets of rewrite
rules without variables. Nonetheless, all ground instances of all reduction rules of an
almost orthogonal TRS R together, that is all lσ→rσ with l→r ∈ R and lσ, rσ ∈ TΣ,
form such a subterm replacement system. Subterm replacement systems suggest to use
almost orthogonal TRSs in a more general way than usual.

An instance I of an almost orthogonal TRS R is a subset of the set of all ground
instances of the rewrite rules of R. It is uniquely determined by the set of redexes
of the instance RedR,I ⊆ RedR, because variables which occur in a right-hand side
occur also in the left-hand side and because of the condition of uniqueness (cf. instance
predicate Q of rule schemata in [24]). For RedR,I = RedR we obtain the commonly
considered canonical instance of a TRS. For a term t ∈ TΣ we define its I-redex positions
RedPosR,I(t) := {u ∈ RedPosR(t) | t/u ∈ RedR,I}. A reduction A = t u−−→

R
t′ is an

I-reduction, that is a reduction in the instance I, iff u ∈ RedPosR,I(t). I-reductions
are a special kind of ̺-reductions defined in the previous subsection. Consequently we

8

write A = t u−−→
R,I

t′ and have the notions of sequential and parallel I-reduction relation,

I-reduction strategy and I-reduction sequence.
For the study of many properties of reduction sequences it is important to follow

how redexes are rearranged in a reduction. The residual map maps a redex position v
of a term t to its residuals, that is redex positions of a term t′ which are copies of t/v
under the rearrangement caused by the reduction t u−−→

l→r
t′ (cf. [14]):

v \ (t u−−→
l→r

t′) :=







∅ , if v = u;
{v} , if v ‖ u or v < u;
{u.w′.v′ | v = u.w.v′, r/w′ = l/w ∈ X} , if v > u.

Example 2.1

Let R := {f(x, y)→x, g(x)→f(x, x), b→a} and consider the reduction A :=

f(g(b), g(a)) 1−−→ f(f(b, b), g(a)).
The redex positions of the first term are ε, 1, 1.1, 2 and those of the second term are

ε, 1, 1.1, 1.2, 2. The rearrangement of redex positions is described by ε\A = {ε}, 1\A =
∅, 1.1 \ A = {1.1, 1.2}, 2 \ A = {2}. 2

Although the definition uses the rewrite rule l→r, it actually depends only on v, t
and u:

Lemma 2.2

If A = t u−−→
l→r

t̂ and A′ = t u−−→
l′→r′

t̂ are reductions and v ∈ RedPosR(t), then v \ A =

v \ A′.

Proof idea: Simple but tiresome, using Lemma 2.1. 2

Reductions preserve the independence of redex positions:

Lemma 2.3

If t w−−→ t′ is a reduction and u, v ∈ RedPosR(t), then u ‖ v implies (u \ t w−−→ t′) ‖
(v \ t w−−→ t′).

Proof idea: Case analysis on the relative order of u, v and w, using Lemma 2.1. 2

Because of this lemma the following extension of the residual map to parallel reduc-
tions is well-defined:

u \ t V−−→→ t′ :=

{

{u} , if for all v ∈ V either v ‖ u or u < v;
u \ t v−−→ t′′ , if v ∈ V exists such that v ≤ u.

Furthermore we define the residual map for sets of redex positions:

U \ t −−→
R,I

t′ :=
⋃

{u \ t −−→
R,I

t′ | u ∈ U},

U \ t −−→→
R,I

t′ :=
⋃

{u \ t −−→→
R,I

t′ | u ∈ U}.

A set of I-redexes RedR,I is residually closed iff for all I-reductions t −−→
R,I

t′ and all

positions u ∈ RedPosR,I(t) the inclusion u \ t −−→
R,I

t′ ⊆ RedPosR,I(t
′) holds. Obviously

this property is not fulfilled for arbitrary sets of I-redexes. However, without it the
notion of residual map is rather useless.

9

Lemma 2.4 Residual closure of RedR

The set of all redexes of an almost orthogonal TRS R, RedR, is residually closed. In
particular we have t/v = t′/v′ for all reductions t u−−→ t′ and v ∈ RedPosR(t) with
v 6< u and all v′ ∈ v \ t u−−→ t′.

Proof idea: Case analysis on the relative order of u and v, using Lemma 2.1. 2

Lemma 2.5 Parallel moves lemma
Let RedR,I be residually closed. If t U−−→→

R,I
t′ and t V−−→→

R,I
t′′ are reductions, then exists a

unique t̂ ∈ TΣ such that t′ V ′

−−→→
R,I

t̂ and t′′ U ′

−−→→
R,I

t̂ are reductions with U ′ := U\t V−−→→
R,I

t′′

and V ′ := V \ t U−−→→
R,I

t′, that is:

t

�� ��

U

R,I��
��

��
�

����

V

R,I >>
>>

>>
>

t′

����

V ′

R,I <<
<<

<<
< t′′

�� ��

U ′

R,I
��

��
��

�

t̂

Proof: [24, 5]. 2

Consequently −−→
R,I

and RPR,I are confluent for residually closed redex sets RedR,I .

Finally an I-redex position of a term is innermost/outermost iff it is max-
imal/minimal w.r.t. the prefix order 〈IN∗

+,≤〉 in the set of all I-redex positions of the
term. The leftmost-innermost/leftmost-outermost I-redex position of a term is its least
innermost/outermost I-redex position w.r.t. the lexicographic order 〈IN∗

+,≤lex〉. We
write t −−→

R,I,li
t′, t −−→

R,I,lo
t′, t −−→

R,I,no
for a reduction t −−→

R,I
t′ where u is the leftmost-

innermost, the leftmost-outermost, not an outermost I-redex position of t, respectively,
and we use corresponding notation for the associated I-reduction relations.

3 Abstract Syntax

Here we define the syntax of simple constructor-based first-order functional programs.
Since we later define numerous different semantics for this syntax, we obtain numerous
different functional programming languages.

We use a signature which distinguishes between constructor and (definable) function
symbols.

Definition 3.1

Let C be a signature of constructor symbols with C0 6= ∅ and F be a signature of function
symbols so that C ∩ F = ∅. Then Σ = (C,F) is a program signature. 2

We often regard the program signature plainly as signature Σ = F ∪̇ C with every
operation symbol g ∈ Σ nevertheless uniquely identifiable as constructor or function
symbol. In all our examples constructor symbols start with a capital letter and function
symbols with a small one, as in Miranda

4 and Haskell. We use the same convention

4
Miranda is a trademark of Research Software Ltd.

10

for meta variables denoting signature symbols, using small letters for meta variables
ranging over the whole program signature.

Definition 3.2

Let Σ be a program signature. An ordered pair of terms

f(p1, . . . , pn) → r

with fn ∈ F , p1, . . . , pn ∈ TC(X), f(p1, . . . , pn) linear, and r ∈ TΣ(Var(~p)) is a program
rule and ~p is called a pattern. A finite set P of program rules which fulfills the condition
of uniqueness

l1→r1, l2→r2 ∈ P, l1σ1 = l2σ2 =⇒ r1σ1 = r2σ2

(σ1, σ2 : X→TΣ) is a program. We sometimes write PΣ to state that P is a program
over the signature Σ, since this information cannot be deduced from the pure set of
program rules. The set of all programs over Σ is denoted by ProgΣ. 2

An example of a program was already given in the introduction. As explained there,
we do not want to use any priority rule for pattern matching. Using the first-fitting
rule would even be impossible since it assumes an order which is supplied by a concrete
program text but not by our abstract definition of a program as a set of rules.

Under these circumstances the condition of uniqueness is needed to guarantee that
a program specifies (deterministic) functions. Its significance and that of the left-
linearity condition become fully clear in the proof of well-definedness of the semantics
in Subsections 6.2 and 6.4.

The reader should notice that patterns do not need to be exhaustive in the sense
that for all fn ∈ F and t1, . . . , tn ∈ TC there would be f(~p)→r ∈ P and a substitution
σ with f(~t) = f(~p)σ. There may even be function symbols without any program rule.

Obviously the definition of programs implies:

Corollary 3.1

A program is an almost orthogonal TRS. 2

This gives us a confluent reduction relation −−→
P

for the operational semantics and

enables us to exploit many further known properties and proof methods.

In the following P is an arbitrary program over an arbitrary program signature Σ =
(C,F).

4 Kinds of Semantics

4.1 Defining Semantics

For defining a semantics we first define a base data-type BDTC. Then we use it and
the rules of a program P ∈ ProgΣ for defining the data-type DT(P) of the program.

The principal idea of a denotational fixed-point semantics is to associate a trans-
formation ΦP : AlgΣ→AlgΣ with the program, which fixes the function operators by
doing the pattern matching and interpreting the right-hand sides of the program rules.
Due to the recursive nature of the program rules the transformation ΦP needs an algebra
as input and the data-type is defined as a fixed-point of ΦP .

11

As usual all operators are continuous mappings over cpos, which is justified by in-
terpreting the partial order as an order of information content (cf. Appendix B.2 of
[11]). Hence all used algebras are complete. Since the data-type shall be an extension of
the base data-type, the transformation ΦP is actually only defined over a set of admiss-
ible data-types, the interpretations IntΣ := {A ∈ Alg∞

Σ,⊥ | A|(C,∅) = BDTC}. Together
with the canonical partial order ⊑ of complete algebras we get the cpo 〈IntΣ,⊑〉. The
data-type DT(P) is defined as the least fixed-point of the continuous transformation
ΦP .

An operational reduction semantics is based on the computation on terms using
a reduction relation −−→

P
. Therefore it does not (directly) assign a data-type to a

program but a term semantics [[·]]P : TΣ→A, a mapping from program terms TΣ to a
computation domain A. This computation domain shall be identical with the carrier
set of the data-type DT(P) = 〈A,α〉.

A data-type fixes a term semantics as well: If A = 〈A,α〉 ∈ AlgΣ, Y ⊆ X, and β :
Y→A is a valuation, then the algebraic term semantics [[·]]algA,β : TΣ(Y)→A is the unique
homomorphism from TΣ(Y) to A which extends β. Conversely, an algebra A[[·]] = 〈A,α〉
is a data-type of the term semantics [[·]] : TΣ→A, if fA[[·]] (a1, . . . an) = [[f(t1, . . . , tn)]] for
all f (n) ∈ Σ, t1, . . . , tn ∈ TΣ, and a1, . . . , an ∈ A with [[t1]] = a1, . . . , [[tn]] = an. Evidently
we have [[·]] = [[·]]algA[[·]]

.

In general there are several data-types for one term semantics, because there may
not be for every a ∈ A a t ∈ TΣ with [[t]] = a. We see in Section 7 that for the
ς-semantics there is a one-to-one relationship though, that is the ς-data-type could
be defined using only the ς-term semantics. Nonetheless, there exist many reduction
semantics for one fixed-point semantics, since many different reduction strategies fix
the same term semantics.

4.2 Properties of Semantics

A term semantics [[·]] : TΣ→A is compositional (or invariant) iff for all t′, t′′ ∈ TΣ and
t ∈ TΣ({2}) we have [[t′]] = [[t′′]] =⇒ [[t[t′/2]]] = [[t[t′′/2]]]. Compositionality reflects
the nature of terms as compound objects and only a compositional term semantics
engenders a semantic equality (t ≃ t′ ⇐⇒ [[t]] = [[t′]]) which is a congruence. Algebraic
term semantics are compositional, because they are homomorphisms. Likewise, data-
types of term semantics [[·]] exist only for compositional [[·]], since otherwise the fA[[·]] are
not well-defined. Hence, an operational semantics needs to be compositional so that an
equivalent denotational semantics can exist.

The following term semantics [[·]]nf
P : TΣ→TC ∪̇ {⊥}, näıvely defined on the basis of

normal-forms, is not compositional:

[[t]]nf
P :=

{

t↓P , if t↓P exists and t↓P ∈ TC;
⊥ , otherwise.

Example 4.1

In this and several further examples we use the well-known ‘sugared’ syntax for lists
instead of Nil(0) and Cons(2).

list1 → []:list1

list2 → [[]]:list2

head(x:xs) → x

12

The term head([]) which is in normal-form but shall denote ⊥ demonstrates the
necessity of the condition t↓P ∈ TC in the definition of [[·]]nf

P .
We see that neither list1 nor list2 have a normal-form and hence [[list1]]nf

P =
[[list2]]nf

P = ⊥. Nonetheless we have

head(list1) −−→
P

head([]:list1) −−→
P

[]

head(list2) −−→
P

head([[]]:list2) −−→
P

[[]]

and hence [[head(list1)]]nf
P = [] 6= [[]] = [[head(list2)]]nf

P . This shows that [[·]]nf
P is

not compositional. 2

Finally a property deserves attention although it is guaranteed by every (reasonable)
reduction or fixed-point semantics: modularity. Any program can be extended by
new function symbols together with respective program rules. We expect the data-
type assigned to the extended program to be an extension of the data-type of the
original program, just as that one is an extension of the base data-type (cf. hierarchical
specifications in Subsection 5.4 of [35]). This also reveals the natural characterization
of the base data-type as the data-type of the empty program: BDTC = DT(∅C).

Formally we call a program P(C,F ′) an extension of a program P(C,F) iff P(C,F) ⊆
P(C,F ′) and for all rules f(~p)→r ∈ P(C,F ′) \ P(C,F) we have f ∈ F ′ \ F . A semantics
DT : ProgΣ→AlgΣ is modular iff DT(P(C,F ′))|(C,F) = DT(P(C,F)) for all programs P(C,F)

and all its extensions P(C,F ′).
A compositional reduction semantics defines modular data-types, because the term

semantics of a term is not changed by additional program rules for new function symbols.
Similarly, any semantics defined as least fixed-point of a transformation ΦP which uses
only the program rules f(~p)→r ∈ P for fixing the operation of the function symbol f
is modular.

A well-known semantics which is not modular is the quotient algebra semantics ([9]),
which defines the data-type of a program to be the free term algebra TΣ modulo the
equations (rules) of the program. Extending a program may even not only change the
(old) operations of the data-type but also the carrier set.

5 Cbv and Cbn Semantics

Preparing the generalization to ς-semantics in the next section, we define here the well-
known cbv and cbn semantics. Some amendments are necessary due to the constructors
and the pattern-matching.

We do not give any statement about well-definedness or equivalence of the reduction
and fixed-point semantics, because that is done for the more general ς-semantics in
Sections 6 and 7.

5.1 Cbv Reduction Semantics

We start with the reduction semantics, since cbv and cbn are rather operational notions.

Definition 5.1

Let t ∈ TΣ be a term.

• An position u ∈ RedPosP (t) is an innermost∗ redex position of the term t iff
t/u = f(c1, . . . , cn) with c1, . . . , cn ∈ TC.

13

• The leftmost-innermost∗ (li∗) redex position of the term t is the least innermost∗

redex position of t w.r.t. the lexicographical order.

• A reduction A = t u−−→
l→r

t′ is a leftmost-innermost∗ reduction, written A =

t −−→
P,li∗

t′, iff u is the li∗redex position of t. Hereby the leftmost-innermost∗ reduc-

tion strategy −−→
P,li∗

is defined as well.

2

Definition 5.2

The li∗ reduction or cbv reduction semantics [[·]]redP,cbv : TΣ→TC ∪̇ {⊥} is defined by

[[t]]redP,cbv :=

{

t↓P,cbv , if t↓P,cbv exists and t↓P,cbv ∈ TC;
⊥ , otherwise.

2

We avoid the name leftmost-innermost reduction, since the li∗reduction strategy is
not identical with the leftmost-innermost reduction strategy. The leftmost-innermost
redex position of a term is not always a li∗redex position (the converse is true), due to
the possibility of patterns which are not exhaustive.

Example 5.1

Let P = {f(x)→A} be a program with the function symbols f(1) and a(0). Then the
term f(a) is still reducible by leftmost-innermost reduction5: f(a) −−→

li
A, but f(a)

does not contain any li∗redex. Hence [[f(a)]]redP,cbv = ⊥. 2

In contrast to the normal-form semantics the cbv semantics is compositional:

Example 5.2

Using the program of Example 4.1 we still have [[list1]]redP,cbv = [[list2]]redP,cbv = ⊥, but
also

head(list1) −−→
P,li∗

head([]:list1) −−→
P,li∗

. . .

head(list2) −−→
P,li∗

head([[]]:list2) −−→
P,li∗

. . .

and hence [[head(list1)]]redP,cbv = ⊥ = [[head(list2)]]redP,cbv 2

5.2 Cbv Fixed-Point Semantics

Definition 5.3

The ordered C-algebra BDTC,cbv := T ⊥
C := 〈T⊥

C ,�, τ〉 with τ given by 〈TC,�, τ〉 = TC
and T⊥

C := TC ∪̇ {⊥} is the cbv base data-type over the constructor symbols C. 2

To distinguish syntax and semantics we underline meta-variables ranging over the
carrier set of base types6, for example t ∈ T⊥

C .

5We underline the redexes reduced in a reduction.
6In a few cases like the reduction cbv semantics of Subsection 5.1 this distinction is not possible or

too awkward.

14

Definition 5.4

The set IntΣ,cbv := {A ∈ Alg∞
Σ,⊥ | A|(C,∅) = BDTC,cbv} is the set of cbv interpretations

and 〈IntΣ,cbv,⊑〉 is the canonical cpo of cbv interpretations with least element ⊥cbv :=
⊥IntΣ,cbv

. 2

Note that ⊥cbv and BDTC,cbv are not identical but ⊥cbv|(C,∅) = BDTC,cbv.

Definition 5.5

The cbv transformation of P ∈ ProgΣ, ΦP,cbv : [IntΣ,cbv→IntΣ,cbv], is defined by

fΦP,cbv(A)(~t) :=











[[r]]algA,β , if f(~p)→r ∈ P and β : Var(~p)→TC exist

with [[p1]]
alg
(BDTC,cbv),β = t1, . . . , [[pn]]alg

(BDTC,cbv),β = tn;

⊥ , otherwise;

for all f (n) ∈ F , ~t ∈ (T⊥
C)n, and A ∈ IntΣ,cbv. 2

In the cbv transformation pattern-matching is performed by the equations
[[pi]]

alg
(BDTC,cbv),β = ti. Since patterns consist only of constructor symbols, the base data-

type BDTC,cbv suffices here; using A instead is possible but would suggest a non-existing
dependence. Restricting the range of the valuation β to TC instead of T⊥

C assures that
pattern matching never succeeds if ti = ⊥ for some i ∈ [n]. This reflects the fact that
all operations are strict in the cbv semantics.

Definition 5.6

The cbv fixed-point data-type DTfix
cbv(P) ∈ IntΣ,cbv is defined by

DTfix
cbv(P) := Fix(ΦP,cbv) =

⊔

i∈IN

(ΦP,cbv)
i(⊥cbv)

and the cbv fixed-point (term) semantics [[·]]fix
P,cbv : TΣ→T⊥

C by

[[t]]fix
P,cbv := [[t]]alg

DTfix
cbv(P)

2

Example 5.3 Determining a cbv fixed-point data-type
Taking the program of Example 4.1, its cbv fixed-point data-type is determined by
means of the following table. Let Ai := (ΦP,cbv)

i(⊥cbv) for all i ∈ IN and A∞ :=
DTfix

cbv(P).

i = 0 i = 1 . . . i =∞

list1Ai() ⊥ [[[]:list1]]alg
⊥cbv,(list17→⊥) = ⊥ . . . as for i = 1

list2Ai() ⊥ [[[[]]:list2]]alg
⊥cbv,(list27→⊥) = ⊥ . . . as for i = 1

headAi t 7→ ⊥





⊥ 7→ ⊥
[] 7→ ⊥

t1:t2 7→ t1



 . . . as for i = 1

with t ∈ T⊥
C and t1, t2 ∈ TC. 2

15

5.3 Cbn Fixed-Point Semantics

While the cbv semantics enforces strictness of all operations, the cbn semantics defines
non-strict constructor operations, thus permitting partial and infinite data structures.

Definition 5.7

The ordered C-algebra BDTC,cbn := T ∞
C,⊥ is the cbn base data-type over the constructor

symbols C. 2

Definition 5.8

The set IntΣ,cbn := {A ∈ Alg∞
Σ,⊥ | A|(C,∅) = BDTC,cbn} is the set of cbn interpretations

and 〈IntΣ,cbn,⊑〉 is the canonical cpo of cbv interpretations with least element ⊥cbn :=
⊥IntΣ,cbn

. 2

Definition 5.9

The cbn transformation of P ∈ ProgΣ, ΦP,cbn : [IntΣ,cbn→IntΣ,cbn], is defined by

fΦP,cbn(A)(~t) :=











[[r]]algA,β , if f(~p)→r ∈ P and β : Var(~p)→T∞
C,⊥ exist

with [[p1]]
alg
(BDTC,cbn),β = t1, . . . , [[pn]]alg

(BDTC,cbn),β = tn;

⊥ , otherwise;

for all f (n) ∈ F , ~t ∈ (T∞
C,⊥)n and A ∈ IntΣ,cbn. 2

Note that the valuation β, which is used for pattern matching in the cbn transform-
ation, ranges over the full computation domain T∞

C,⊥, so that function operations can
be non-strict.

Definition 5.10

The cbn fixed-point data-type DTfix
cbn(P) ∈ IntΣ,cbn is defined by

DTfix
cbn(P) := Fix(ΦP,cbn) =

⊔

i∈IN

(ΦP,cbn)
i(⊥cbn)

and the cbn fixed-point (term) semantics [[·]]fix
P,cbn : TΣ→T∞

C,⊥ by

[[t]]fix
P,cbn := [[t]]alg

DTfix
cbn(P)

2

Example 5.4 Determining a cbn fixed-point data-type
Taking anew the program of Example 4.1, its cbn fixed-point data-type is determined
by means of the following table. Let Ai := (ΦP,cbn)

i(⊥cbn) for all i ∈ IN and A∞ =
DTfix

cbn(P).

i = 0 i = 1 i = 2 . . . i =∞
list1Ai() ⊥ []:⊥ []:[]:⊥ . . . []:[]:[]:. . .
list2Ai() ⊥ [[]]:⊥ [[]]:[[]]:⊥ . . . [[]]:[[]]:[[]]:. . .

headAi t 7→ ⊥





⊥ 7→ ⊥
[] 7→ ⊥

t1:t2 7→ t1



 as for i = 1 . . . as for i = 1

with t, t1, t2 ∈ T∞
C,⊥.

The equations [[head(list1)]]fix
P,cbn = [] and [[head(list2)]]fix

P,cbn = [[]] do not viol-

ate compositionality, because [[list1]]fix
P,cbn and [[list2]]fix

P,cbn differ. 2

16

5.4 Cbn Reduction Semantics

In general the leftmost-outermost (lo) reduction strategy is associated with cbn se-
mantics, but due to the patterns and the non-flat base data-type this strategy is not
complete for our cbn semantics:

Example 5.5 Incompleteness of lo reduction
Considering the program

f(x, A) → A

a → A

undef → undef

we have [[f(undef,a)]]fix
P,cbn = fDTfix

cbn(⊥, A) = A, but

f(undef,a) −−→
P,lo

f(undef,a) −−→
P,lo

. . . .

2

In Haskell the patterns of function definitions are translated into case expres-
sions for which lo reduction is applicable. However, such a translation does not only
complicate the semantics but is unfeasable for our language, since our language per-
mits the definition of non-sequential operations (see Sections 8 and 10). We use the
parallel-outermost (po) reduction strategy.

Definition 5.11

A reduction A = t U−−→→
P

t′ is a po reduction, written A = t −−→
P,po

t′, iff U is the set of

all outermost redex positions of t. This also defines the po reduction strategy −−→→
P,po

.
2

Example 5.6

Using the program of Example 5.5 above, we obtain

f(undef,a) −−→→
P,po

f(undef,A) −−→→
P,po

A

as desired. 2

Simply using the po normal-form to define the cbn reduction semantics — analog-
ously to the cbv semantics — is not sufficient, due to the computation domain T∞

C,⊥.
Obviously an infinite constructor term can never be the result of a computation, but it
can be approximated to arbitrary precision.

Definition 5.12

The algebraic term semantics with respect to the algebra ⊥cbn,

[[·]]alg
⊥cbn

: TΣ→T∞
C,⊥,

is called semantic cbn approximation. 2

17

Definition 5.13

The po reduction or cbn reduction semantics [[·]]po
P,cbn : TΣ→T∞

C,⊥ is defined by

[[t]]po
P,cbn :=

⊔

{[[t′]]alg
⊥cbn
| t ∗−−→

P,po
t′}.

2

Example 5.7 Approximating a cbn reduction semantics
Using the program of Example 5.5, we have the following approximation

list1 ////
P,po

��

_

[[·]]alg
⊥cbn

[]:list1 ////
P,po

��

_

[[·]]alg
⊥cbn

[]:[]:list1 ////
P,po

��

_

[[·]]alg
⊥cbn

[]:[]:[]:list1 ////
P,po

��

_

[[·]]alg
⊥cbn

. . .

⊥ []:⊥ []:[]:⊥ []:[]:[]:⊥ . . .

2

The reader should notice that the semantic cbn approximation is computable, be-
cause it is characterized by

[[G(t1, . . . , tn)]]alg
⊥cbn

= G([[t1]]
alg
⊥cbn

, . . . , [[tn]]alg
⊥cbn

)

[[f(t1, . . . , tn)]]alg
⊥cbn

= ⊥

for all G(n) ∈ C and f (n) ∈ F .
Also, if for a t ∈ TΣ we have [[t]]po

P,cbn = t ∈ TC, then the po normal-form t↓P,po exists
and t = t↓P,po, as we prove in Section 8.

6 Definition of the ς-Semantics

Looking at the definitions of the cbv and the cbn fixed-point semantics the fact stands
out that both definitions consist of two almost independent parts: the base data-type
and the transformation. The idea to exchange these between cbv and cbn semantics
immediately suggests itself. The cbn transformation can be applied to cbv interpreta-
tions with only little adaptions, likewise the cbv transformation can be applied to cbn
interpretations.

The two resulting mixed semantics are not even that unusual. The first one is more
closely related to the cbn semantics of recursive applicative program schemes than our
cbn semantics. In the theory of recursive applicative program schemes ‘cbn’ refers just
to the evaluation of function operations. The major part of the literature ([32, 21, 23,
10, 20]) considers only flatly ordered base data-types (interpretations), because the flat
order permits simpler proofs.

The second mixture has even been implemented in versions of the functional pro-
gramming language Hope ([11]), thereby combining the expressiveness of infinite data
structures with the efficiency of cbv evaluation.

However, defining these additional semantics would have the unpleasant consequence
that we would have to prove all properties of semantics four times, for example the
equivalence of fixed-point and reduction semantics. Besides, finding reduction semantics
for the two new semantics would not be easy.

The solution is a further generalization, blurring the dividing-lines. We introduce a
new parameter ς which states for every argument position of every operation symbol,
if the operation shall be strict at that argument position.

18

Definition 6.1

A mapping ς :
⋃

n∈IN Σn→IBn is a forced strictness for the signature Σ. For g ∈ Σ the
boolean vector ς(g) is called forced strictness of g. The symbol g(n) ∈ Σ is forcedly strict
in ~t ∈ (T∞

C,⊥)n iff there exists an i ∈ [n] with ς(g)i = tt and ti = ⊥. 2

The forced strictness ς gives us an arbitrary number of semantics, depending on the
signature, but they can be handled simultaneously in a simple, uniform way.

In all the following sections ς is an arbitrary forced strictness.

6.1 ς-Fixed-Point Semantics

The definition is completely analogous to that of the cbv and cbn fixed-point semantics.
The exact relationship is discussed in Subsection 6.5.

Definition 6.2

The ordered algebra BDTC,ς := TC,ς := 〈TC,ς ,�, τ〉 with

• TC,ς being the least subset of T∞
C,⊥ satisfying

– G(n) ∈ C, ~t ∈ (TC,ς)
n, G not forcedly strict for ~t =⇒ G(~t) ∈ TC,ς and

– T ⊆ TC,ς is a chain =⇒
⊔

T ∈ TC,ς , and

• τ defined by

τ(G)(~t) =

{

G(~t) , if G is not forcedly strict for ~t;
⊥ , otherwise;

for all G(n) ∈ C, ~t ∈ (TC,ς)
n

is the ς-base data-type over the constructor symbols C. 2

Using simply T∞
C,⊥ instead of TC,ς is an alternative but would disagree with our aim

that the cbv semantics shall be an instance of the ς-semantics. Besides, the elements
of T∞

C,⊥ \ TC,ς could never be denoted by syntactic terms.

Definition 6.3

The set IntΣ,ς := {A ∈ Alg∞
Σ,⊥ | A|(C,∅) = BDTC,ς} is the set of ς-interpretations and

〈IntΣ,ς ,⊑〉 is the canonical cpo of ς-interpretations with least element ⊥ς := ⊥IntΣ,ς . 2

Since pattern matching is more complicated in the context of forced strictness, we
define it separately.

Definition 6.4

A term tuple ~t ∈ (TC,ς)
n is semantically ς-matchable with a redex scheme f (n)(~p) ∈

RedSP by a variable mapping β : Var(~p)→TC,ς iff

(i) f is not forcedly strict for ~t,

(ii) p1[⊥/Var(p1)] � t1, . . . , pn[⊥/Var(pn)] � tn, and

(iii) [[p1]]
alg
(BDTC,ς),β

= t1, . . . , [[pn]]alg
(BDTC,ς),β

= tn.

2

19

The necessity of the new order condition (ii) is explained in the next subsection.

Definition 6.5

The ς-transformation of P ∈ ProgΣ, ΦP,ς : [IntΣ,ς→IntΣ,ς], is defined by

fΦP,ς(A)(~t) :=















[[r]]algA,β , if ~t is semantically ς-matchable with

the left-hand side of a program rule f(~p)→r ∈ P
by a valuation β : Var(~p)→TC,ς ;

⊥ , otherwise;

for all f (n) ∈ F , ~t ∈ (TC,ς)
n and A ∈ IntΣ,ς . 2

Definition 6.6

The ς-fixed-point data-type DTfix
ς (P) ∈ IntΣ,ς is defined by

DTfix
ς (P) := Fix(ΦP,ς) =

⊔

i∈IN

(ΦP,ς)
i(⊥ς)

and the ς-fixed-point (term) semantics [[·]]fix
P,ς : TΣ→TC,ς by

[[t]]fix
P,ς := [[t]]alg

DTfix
ς (P)

2

6.2 Well-Definedness of the ς-Fixed-Point Semantics

When proving the well-definedness of the ς-fixed-point semantics we also justify some
details of the given definition which are not straightforward or where alternatives are
feasible.

Lemma 6.1 Continuity of forced strictness
Let g(n) ∈ Σ, T = (~tj)j∈IN a chain with ti,j ∈ TC,ς and~t =

⊔

T . The symbol g is forcedly

strict for ~t iff g is forcedly strict for all ~tj ∈ T .

Proof idea: Case analysis on g being forcedly strict and g not being forcedly strict for
~t. 2

Corollary 6.2

The constructor operations of the ς-base data-type are continuous, that is BDTC,ς ∈
Alg∞

Σ,⊥. 2

Lemma 6.3

The canonically ordered set of ς-interpretations 〈IntΣ,ς ,⊑〉 is a cpo.

Proof idea: Every ς-interpretation is a cpo and all have the same carrier set and order.
2

20

Now we prove that — similar to operational confluence — the function operations
resulting from an application of the ς-transformation are true mappings, that is exactly
one result term is respectively associated with every argument term tuple. Here the
order condition of semantic ς-matching proves to be necessary. The following example
illustrates this.

Example 6.1

We regard the program

f(G(x)) → A

f(H(x)) → B

Since

G(x)[⊥/x] = G(⊥) 5 ⊥ and H(x)[⊥/x] = H(⊥) 5 ⊥
the order condition assures that ⊥ cannot semantically ς-match neither f(G(x)) nor
f(H(x)). However, with the forced strictness ς(f) := (ff) and ς(G) := ς(H) := (tt) and
the valuation β(x) := ⊥ we have

[[G(x)]]alg
(BDTC,ς),β

= GBDTC,ς (⊥) = ⊥ and [[H(x)]]alg
(BDTC,ς),β

= HBDTC,ς (⊥) = ⊥.

Therefore, without the ordering condition ⊥ would semantically ς-match both redex
schemes. We would get the contradiction

A = [[A]]alg
⊥ς ,β = fΦP,ς(⊥ς)(⊥) = [[B]]alg

⊥ς ,β = B

because f is not forcedly strict for the argument term ⊥. 2

Lemma 6.4 Semantic unification implies syntactic unification
Let p, p′ ∈ TC(X) be linear patterns with Var(p) ∩ Var(p′) = ∅, β : Var(p)→TC,ς , and
β′ : Var(p′)→TC,ς valuations, and t ∈ TC,ς . If

p[⊥/Var(p)] � t, p′[⊥/Var(p′)] � t and [[p]]alg
(BDTC,ς),β

= t = [[p′]]alg
(BDTC,ς),β

then exist two substitutions

σ : Var(p)→TC(Var(p) ∪̇ Var(p′)) and σ′ : Var(p′)→TC(Var(p) ∪̇ Var(p′)),

and a valuation

β̂ : (Var(p) ∪̇ Var(p′))→TC,ς

so that

∀x ∈ Var(p). β(x) = [[xσ]]alg

(BDTC,ς),β̂

∀x ∈ Var(p′). β′(x) = [[xσ′]]alg

(BDTC,ς),β̂

pσ = p′σ′.

Proof idea: Parallel structural induction on p and p′. 2

21

Corollary 6.5

The function operations resulting from a ς-transformation are well-defined, that is if
~t ∈ (TC,ς)

n with n ∈ IN and ~t is semantically ς-matchable with the left-hand side of
a reduction rule f (n)(~p)→r ∈ P by β : Var(~p)→TC,ς and with the left-hand side of

a reduction rule f (n)(~p′)→r′ ∈ P by β′ : Var(~p′)→TC,ς , then [[r]]algA,β = [[r′]]algA,β′ for allA ∈ IntΣ,ς . 2

Finally, we have to prove that the algebras resulting from a ς-transformation are con-
tinuous, that is they are ς-interpretations, and that the ς-transformation is continuous.
First we show the continuity of semantic ς-matching.

Lemma 6.6 Characterization of semantic ς-matching
The term tuple ~t ∈ (TC,ς)

n is semantically ς-matchable with f(~p) ∈ RedSP by β :
Var(~p)→TC,ς iff conditions (i) and (ii) of semantic ς-matchability (Def. 6.4) are fulfilled
and β(x) =~t/u with u given by {u} = Pos(x, ~p) for all x ∈ Var(~p).

Proof idea: Structural induction on the patterns ~p. 2

The reader should notice that u is well-defined only because patterns are linear.

Lemma 6.7 Continuity of semantic ς-matching
Let f (n)(~p) ∈ RedSP , T = (~tj)j∈IN a chain with ti,j ∈ TC,ς , and ~s :=

⊔

T .

• The term tuple ~s is semantically ς-matchable with f(~p) iff a tk ∈ T exists which
is semantically ς-matchable with f(~p).

• If all ~tj ∈ T are semantically ς-matchable with f(~p) by corresponding βj :
Var(~p)→TC,ς then ~s is semantically ς-matchable with f(~p) by β =

⊔

j∈IN βj.

Proof idea: Straightforward, using the previous lemma. 2

The following two rather general lemmas are the basis for the last two lemmas of
this subsection.

Lemma 6.8 Continuity of the algebraic term semantics w.r.t. the valuation
Let Σ be a signature, 〈A,≤〉 a cpo, A ∈ Alg∞

Σ,⊥(〈A,≤〉) and t ∈ TΣ(X). Then the al-

gebraic term semantics [[t]]algA,· : (X→A)→A is continuous w.r.t the canonical (pointwise)
cpo on valuations 〈(X→A),≤〉.

Proof idea: Structural induction on t. 2

Lemma 6.9 Continuity of the algebraic term semantics w.r.t the algebra
Let Σ be a signature and 〈A,≤〉 a cpo. Let I ⊆ Alg∞

Σ,⊥(〈A,≤〉) such that the canonical
partial order 〈I,⊑〉 is continuous. Let β : X→A and t ∈ TΣ(X). Then the algebraic
term semantics [[t]]alg

·,β : I→A is continuous w.r.t. the cpo of algebras 〈I,⊑〉.

Proof idea: Structural induction on t. 2

Lemma 6.10 Continuity of the results of a ς-transformation
ΦP,ς(A) ∈ IntΣ,ς for all A ∈ IntΣ,ς .

Proof idea: Show continuity of the function operations of ΦP,ς(A) by using Lemma
6.8. 2

22

Lemma 6.11 Continuity of the ς-transformation
The ς-transformation is continuous, that is ΦP,ς : [IntΣ,ς→IntΣ,ς].

Proof idea: Show that f
F

ΦP,ς(T)(~t) exists and f
F

ΦP,ς(T)(~t) = fΦP,ς(
F

T)(~t) for all f (n) ∈
F , ~t ∈ (TC,ς)

n, and chains T = (Aj)j∈IN ⊆ IntΣ,ς using Lemma 6.9. 2

Looking at the definition of the ς-transformation the question arises, why we set the
result of a function operation to ⊥, when the argument terms are not semantically
ς-matchable with any left-hand side. Simply leaving this value unchanged is an obvious
alternative. We define Φ∗

P,ς by

fΦ∗
P,ς

(A)(~t) :=















[[r]]algA,β , if ~t is semantically ς-matchable with

the left-hand side of a program rule f(~p)→r ∈ P
by a valuation β : Var(~p)→TC,ς ;

fA(~t) , otherwise.

It is easy to prove that
⊔

Φ∗
P,ς(⊥ς) exists and even equals the least fixed-point of

ΦP,ς . However, Φ∗
P,ς does not map ς-interpretations to ς-interpretations; the resulting

algebra may be more general. To remedy this, we can define Int∗Σ,ς just like IntΣ,ς , with
the exception that operations do not need to be continuous. Using Int∗Σ,ς as domain
and range of Φ∗

P,ς solves the problem, but then Φ∗
P,ς is no longer continuous and we

cannot apply the fixed-point theorem of Tarski. Actually
⊔

Φ∗
P,ς(⊥ς) = Fix(ΦP,ς) exists

as mentioned and can even be proved to be the least fixed-point of Φ∗
P,ς , but simple

proofs of this repeatedly refer to ΦP,ς , so that we better persevere with it.

6.3 ς-Reduction Semantics

For the cbv and the cbn semantics we were able to fall back on the well-known inner-
most and outermost reduction strategies. However, ς-semantics mixes the two argument
evaluation mechanisms and hence there is no obvious suitable reduction strategy. Espe-
cially the variable strictness of the constructor operations are irritating, because there
are no reduction rules for constructor symbols.

We approach the problem by examining which kinds of reductions are sound w.r.t.
the ς-fixed-point semantics.

Definition 6.7

A reduction t u−−→
l→r

t′ is sound w.r.t. a term semantics [[·]] : TΣ→A iff [[t]] = [[t′]]. 2

Example 6.2

Using the program

positive(Succ(x)) → Succ(Zero)

inf → Succ(inf)

the outermost reduction positive(Succ(inf)) −−→ Succ(Zero) is not sound w.r.t.

the cbv fixed-point semantics: [[positive(Succ(inf))]]fix
P,cbv = ⊥ 6= Succ(Zero) =

[[Succ(Zero)]]fix
P,cbv. 2

23

The example illustrates what can easily be gained from the definition of the ς-
transformation: Only forced strictness may cause a reduction to be unsound w.r.t. a
ς-fixed-point semantics.

Obviously, reducing a redex f(~t) is sound if [[ti]]
fix
P,σ 6= ⊥ for all forcedly strict argu-

ment positions i. Naturally this condition is sufficient but not necessary; the instanti-
ated right-hand side of a program rule may have the value ⊥ as well and for general
reductions the context of the redex is moreover relevant. For our purposes considering
only redexes suffices.

Unfortunately [[ti]]
fix
P,σ 6= ⊥ cannot be decided and therefore cannot be used for defin-

ing a sound reduction strategy. However, a sufficient approximation of the value [[ti]]
fix
P,σ

is easy to find:

Definition 6.8

The algebraic term semantics with respect to the algebra ⊥ς , [[·]]alg
⊥ς

: TΣ→TC,ς , is called
semantic ς-approximation. 2

Since the semantic ς-approximation has a purely syntactic definition (cf. the cbn
approximation in Subsection 5.4), it can be employed in an operational semantics.

Due to the monotonicity of the algebraic term semantics w.r.t. the algebra in ac-
cordance with Lemma 6.9, t� [[t]]alg

⊥ς
implies t� [[t]]fix

P,ς . Hence we can define a meaningful
notion of syntactic ς-matching in analogy to semantic ς-matching (Def. 6.4). Using
that, we define the set of ς-redexes, whose reduction is sound w.r.t. the ς-fixed-point
semantics. This soundness is proved in Subsection 7.2.

Definition 6.9

A term tuple ~t ∈ (TΣ)n is syntactically ς-matchable with a redex scheme f (n)(~p) ∈ RedSP

by a substitution σ : Var(~p)→TC,ς iff

(i) f is not forcedly strict for ([[t1]]
alg
⊥ς
. . . [[tn]]alg

⊥ς
),

(ii) p1[⊥/Var(p1)] � [[t1]]
alg
⊥ς
, . . . , pn[⊥/Var(pn)] � [[tn]]alg

⊥ς
, and

(iii) f(~t) = f(~p)σ.

2

Definition 6.10 (Cf. V- and N-redexes in [7])
A term f(~t) ∈ TΣ is a ς-redex of a redex scheme f(~p) ∈ RedSP iff ~t is syntactically
ς-matchable with f(~p) by some substitution σ. The set of all ς-redexes of a program P
is denoted by RedP,ς . 2

The set of ς-redexes defines an instance of a program viewed as TRS. This instance
is denoted by ς as well. Thus we obtain notions like ς-redex position, ς-reduction and
ς-reduction relation.

We employ these for a very simple definition of ς-reduction semantics. We define our
ς-reduction semantics like the po reduction semantics as least upper bound of results
of finite reduction sequences. Only, instead of po reduction sequences all ς-reduction
sequences are considered.

24

Definition 6.11

The global ς-reduction semantics, [[·]]redP,ς : TΣ→TC,ς , is defined by

[[t]]redP,ς :=
⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′}.

2

The global ς-reduction semantics will be of central importance in the equivalence
proofs of the next section. However, it is not suitable for practical purposes, since it
does not give a deterministic reduction strategy.

Example 6.3 Non-determinism
Taking the program of Example 4.1 we compute the global cbn semantics of
head(list1):

head(list1) //
P, cbn

head([]:list1) //
P, cbn

��

P,cbn

head([]:[]:list1) //
P, cbn

��

P,cbn

. . .

[] []

2

Since efficient implementations require deterministic reduction strategies, we define
a generalization of the po reduction semantics.

Definition 6.12

The po ς-reduction semantics, [[·]]po
P,ς : TΣ→TC,ς , is defined by

[[t]]po
P,ς :=

⊔

{[[t′]]alg
⊥ς
| t ∗−−→→

P,ς,po
t′}.

2

6.4 Connection with the Previously Defined Cbv and Cbn Semantics

By a simple trick of notation we can make fully explicit that the cbv and cbn semantics
defined in the previous section are special instances of the ς-semantics.

Definition 6.13

The forced strictnesses cbv, cbn ∈
⋃

n∈IN Σn→IBn are defined by

cbv(g)i := tt and cbn(g)i := ff

for all g(n) ∈ Σ and i ∈ [n]. 2

For the fixed-point semantics it is quite clear that the definitions of Section 5 are
special instances of those given for the ς-semantics, for instance the definition of the
ς-base data-type gives BDTC,cbv = T ⊥

C and BDTC,cbn = T ∞
C,⊥. Just semantic cbv and

cbn matching was not defined in Section 5. Nonetheless it is simple to prove that in
the special cases of ς = cbv and ς = cbn the ς-matching conditions (i) and (iii) imply
the order condition (ii), and that therefore semantic cbv/cbn matching is equivalent to
the conditions given in the definition of the cbv/cbn transformation in Section 5.

25

The case of the reduction semantics is slightly more complicated. Obviously all
redexes are cbn redexes (RedP,cbn = RedP) and therefore the po reduction semantics
and the po cbn reduction semantics are identical.

There is no similar correspondence for the cbv semantics. Cbv redexes, outermost
cbv redexes, and innermost∗ redexes are the same. Also, using normal-forms for defining
the li∗ reduction semantics does not matter since

⊔

{[[t′]]alg
⊥ς
| t ∗−−→→

P,ς,po
t′} =

{

t↓P,ς,po , if t↓P,ς,po exists and t↓P,ς,po ∈ TC,ς ;
⊥ , otherwise;

for all flatly ordered ς-base data-types BDTC,ς . However, the li∗ reduction semantics
reduces only the leftmost of the generally several redexes which are reduced in parallel
by the po cbv reduction semantics. Consequently, we call the li∗ reduction also lo
cbv reduction. A lo ς-reduction semantics is not defined, because in general it is not
complete as was shown for ς = cbn in Example 5.5. However, for ς = cbv it is, and we
prove this in Subsection 7.7.

From the perspective of the ς-semantics we see that the difference between the re-
duction semantics of the cbv and of the cbn semantics is only seemingly based on the
positions of redexes. Instead, the fundamental difference is the kind of redexes which
are reduced.

6.5 Well-Definedness of the ς-Reduction Semantics

We start with a property needed in the proof of the subsequent lemma.

Lemma 6.12 Commutativity of semantic approximation and replacement of subterms

[[t[u← t′]]]alg
⊥ς

= [[t]]alg
⊥ς

[u← [[t′]]alg
⊥ς

]

for all t, t′ ∈ TΣ and u ∈ Pos(t). Note that [[t]]alg
⊥ς

[u← [[t′]]alg
⊥ς

] = [[t]]alg
⊥ς

, if u /∈ Pos([[t]]alg
⊥ς

).

Proof idea: Structural induction on u. 2

Besides proving the well-definedness of the ς-reduction semantics, the next two
lemmas are of major importance for the ς-semantics.

Already in Subsection 5.4 we employed repeated reduction to approximate the se-
mantic value of a term. The next lemma proves that reduction can only lead to a gain
of information (w.r.t the cpo 〈TC,ς ,�〉) and never to a loss of it.

Lemma 6.13 Gain of information by reduction

t −−→
P

t′ =⇒ [[t]]alg
⊥ς

� [[t′]]alg
⊥ς

t −−→
P,no

t′ =⇒ [[t]]alg
⊥ς

= [[t′]]alg
⊥ς

Proof: The existence of a reduction t u−−−−→
f(~p)→r

t′ implies t/u = f(~p)σ and t′/u = rσ for

some substitution σ. We have [[f(~p)σ]]alg
⊥ς

= ⊥ς � [[rσ]]alg
⊥ς

. Using the previous lemma we
obtain

[[t]]alg
⊥ς

= [[t[u← f(~p)σ]]]alg
⊥ς

= [[t]]alg
⊥ς

[u← [[f(~p)σ]]alg
⊥ς

]

� [[t]]alg
⊥ς

[u← [[rσ]]alg
⊥ς

] = [[t′]]alg
⊥ς
.

26

If u /∈ OuterP (t), then there is a position v < u with t(v) ∈ F . Hence [[t/v]]alg
⊥ς

= ⊥ς

and therefore u /∈ Pos([[t]]alg
⊥ς

). This implies

[[t]]alg
⊥ς

= [[t]]alg
⊥ς

[u← [[f(~p)σ]]alg
⊥ς

] = [[t]]alg
⊥ς

[u← [[rσ]]alg
⊥ς

] = [[t′]]alg
⊥ς
.

2

This lemma is also valid for simple and parallel ς-reduction, since for example t −−→
P,ς,no

t′

implies t −−→
P,no

t′.

Lemma 6.14

The set of ς-redexes RedP,ς is residually closed.

Proof: Let t u−−→ t′ be a reduction and v ∈ RedPosP,ς(t). Due to Lemma 2.4 we have
v \ t u−−→ t′ ⊆ RedPosP (t′).

v ‖ u, u ≤ v: t/v = t/v̂ for all v̂ ∈ v \ t u−−→ t′ and hence v \ t u−−→ t′ ⊆ RedPosP,ς(t
′).

v < u: Then u = v.k.u′ for some k ∈ IN+ and u′ ∈ IN∗
+. Since v ∈ RedPosP,ς(t),

we have t/v = f(~t) and t′/v = f(~t′) with tk
u′

−−→ t′k and ti = t′i for all other
i ∈ [n]. Hence we can deduce from ~t being syntactically ς-matchable with some
f(~p) ∈ RedSP that ~t′ is syntactically ς-matchable with f(~p) as well. Therefore
v \ t u−−→ t′ = {v} ⊆ RedPosP,ς(t

′).

2

According to Section 2 this residual closure implies the confluence of the ς-reduction
relations −−→

P,ς
and −−→→

P,ς
.

Lemma 6.15 Well-definedness of the ς-reduction semantics
The sets Tred := {[[t′]]alg

⊥ς
| t ∗−−→

P,ς
t′} and Tpo := {[[t′]]alg

⊥ς
| t ∗−−→→

P,ς,po
t′} have respective least

upper bounds for all t ∈ TΣ.

Proof: Since TΣ is countable, Tred, Tpo ⊆ {[[t]]
alg
⊥ς
| t ∈ TΣ} are countable as well.

Tred: Let [[t′]]alg
⊥ς
, [[t′′]]alg

⊥ς
∈ Tred. Consequently t ∗−−→

P,ς
t′ and t ∗−−→

P,ς
t′′. Due to the con-

fluence of the ς-reduction relation there is a t̂ ∈ TΣ with t′ ∗−−→
P,ς

t̂ and t′′ ∗−−→
P,ς

t̂.

Together with Lemma 6.13 about the gain of information by reduction we get
[[t′]]alg

⊥ς
� [[t̂]]alg

⊥ς
and [[t′′]]alg

⊥ς
� [[t̂]]alg

⊥ς
. Hence Tred is directed.

Tpo: From the lemma about gain of information we deduce immediately that Tpo is even
a chain.

Since Tred and Tpo are countable directed subsets of TC,ς , their respective least upper
bounds exist. 2

7 Equivalence of the Definitions of the ς-Semantics

We prove in this section that the three definitions of the ς-semantics, that is those of
the ς-fixed-point semantics, the global ς-reduction semantics, and the po ς-reduction
semantics, are equivalent. We do this by proving separately soundness and complete-
ness.

27

Definition 7.1

A term semantics [[·]] : TΣ→TC,ς is sound w.r.t. another term semantics [[·]]
′

: TΣ→TC,ς
iff [[·]] � [[·]]

′

and complete iff [[·]]
′

� [[·]]. 2

Subsections 7.1 and 7.2 establish basic properties which are used subsequently. Af-
terwards, the soundness of the two ς-reduction semantics w.r.t. the ς-fixed-point se-
mantics and the soundness of the po w.r.t. the global ς-reduction semantics are shown
in Subsection 7.3. Subsection 7.4 contains the proof of completeness of the global ς-
reduction semantics w.r.t. the ς-fixed-point semantics. In Subsection 7.5 we give a
comprehensive method for proving the completeness of any reduction semantics based
on a so called Π-fair reduction strategy w.r.t. a global reduction semantics. We apply
this in Subsections 7.6 and 7.7 to show respectively the completeness of the po w.r.t.
the global ς-reduction semantics and that of the li∗ w.r.t. the global cbv reduction
semantics. The overall result of this section is:

Proposition 7.1 Equivalence of the definitions of the ς-semantics

[[·]]fix
P,ς = [[·]]redP,ς = [[·]]po

P,ς .

Proof: [[·]]redP,ς � [[·]]fix
P,ς and [[·]]po

P,ς � [[·]]fix
P,ς proved by Lemma 7.8.

[[·]]fix
P,ς � [[·]]redP,ς proved by Lemma 7.10.

[[·]]redP,ς � [[·]]po
P,ς proved by Lemma 7.19. 2

Hence we can define:

Definition 7.2

The ς-interpretation DTς(P) := DTfix
ς (P) is called ς-data-type and the mapping [[·]]P,ς :=

[[·]]fix
P,ς = [[·]]redP,ς = [[·]]po

P,ς is called ς-(term) semantics. 2

7.1 Syntactic and Semantic ς-Matching

First, we need to prove some basic properties.

Lemma 7.2 Characterization of syntactic ς-matching (cf. Lem. 6.6)
The term tuple ~t ∈ (TΣ)n is syntactically ς-matchable with f(~p) ∈ RedSP by a

substitution σ : Var(~p)→TΣ iff conditions (i) and (ii) of semantic ς-matchability (Def.
6.4) are fulfilled for the semantically approximated term tuple ([[t1]]

alg
⊥ς
, . . . , [[tn]]alg

⊥ς
) and

xσ = ~t/ux with ux given by {ux} := Pos(x, ~p) for all x ∈ Var(~p).

Proof idea: Structural induction on ~p. 2

The reader should notice again that the linearity of patterns is crucial for the well-
definedness of ux.

Lemma 7.3 Commutativity of term semantics and forming of subterms
Let c ∈ TC(X), β : Var(c)→TC,ς , and u ∈ Pos(c) ∩ Pos([[c]]alg

(BDTC,ς),β
). Then

[[c]]alg
(BDTC,ς),β

/u = [[c/u]]alg
(BDTC,ς),β

.

Proof idea: Structural induction on u. 2

28

The next proposition is of fundamental importance for the equality of the ς-fixed-
point and the ς-reduction semantics.

Proposition 7.4 Syntactic and semantic ς-matching
Let f (n)(~p) ∈ RedSP and ~t ∈ (TΣ)n.

1. The following three statements are equivalent.

a) ~t is syntactically ς-matchable with f(~p) (by a substitution σ : X→TΣ).

b) ([[t1]]
alg
⊥ς
, . . . , [[tn]]alg

⊥ς
) is semantically ς-matchable with f(~p).

c) For all interpretations A ∈ IntΣ,ς the tuple ([[t1]]
algA , . . . , [[tn]]algA) is semantically

ς-matchable with f(~p) (by a respective valuation βA : X→TC,ς).

2. If the statements above are fulfilled, then βA(x) = [[xσ]]algA for all x ∈ Var(~p) and

even [[t]]algA,βA = [[tσ]]algA for all t ∈ TΣ(Var(~p)).

Proof idea:

1. a)⇐⇒ b) follows from the characterization of syntactic and semantic ς-matching
(Lemmas 7.2 and 6.6). b) =⇒ c) employs the monotonicity of semantics ς-
matching which is valid according to Lemma 6.7 and c) =⇒ b) is trivial.

2. Follows from Lemmas 7.2 and 6.6 as well, using the previous lemma about com-
mutativity.

2

The reader should note that ~t is not necessarily syntactically ς-matchable with f(~p), if
([[t1]]

algA , . . . , [[tn]]algA) is only semantically ς-matchable with f(~p) for some A ∈ IntΣ,ς .

7.2 Soundness of ς-Reduction

Here we prove in several steps the soundness of ς-reduction w.r.t. the ς-fixed-point
semantics which was already claimed in Subsection 6.3.

Lemma 7.5

In fixed-points of the ς-transformation simple ς-reduction is sound, that is if f(~p)→r ∈
P , σ : X→TΣ, A = ΦP,ς(A) ∈ IntΣ,ς , and f(~p)σ is a ς-redex, then:

[[f(~p)σ]]algA = [[rσ]]algA .

Proof: Since f(~p)σ is a ς-redex, the term tuple (p1σ, . . . , pnσ) is syntactically ς-
matchable with f(~p) by σ.

Due to Proposition 7.4 about syntactic and semantic ς-matching we know that
([[p1σ]]algA , . . . , [[pnσ]]algA) is semantically ς-matchable with f(~p) by βA : X→TC,ς , which is

defined by βA(x) := [[xσ]]algA for all x ∈ X; hence

fΦP,ς(A)([[p1σ]]algA , . . . , [[pnσ]]algA) = [[r]]algA,βA (1)

and also (Prop. 7.4, item 2):
[[r]]algA,βA = [[rσ]]algA . (2)

29

Since A is a fixed-point of ΦP,ς , we have

[[f(~p)σ]]algA = fA([[p1σ]]algA , . . . , [[pnσ]]algA) = fΦP,ς(A)([[p1σ]]algA , . . . , [[pnσ]]algA). (3)

Altogether:

[[f(~p)σ]]algA (3)
= fΦP,ς(A)([[p1σ]]algA , . . . , [[pnσ]]algA)

(1)
= [[r]]algA,βA (2)

= [[rσ]]algA .

2

Corollary 7.6

In fixed-points of the ς-transformation ς-reduction is sound, that is if A = ΦP,ς(A) ∈
IntΣ,ς , then for all t, t′ ∈ TΣ:

t ∗−−→
P,ς

t′ =⇒ [[t]]algA = [[t′]]algA .

Proof: Follows from the preceding lemma by the invariance of algebraic term semantics.
2

Corollary 7.7

ς-reduction is sound w.r.t. the ς-fixed-point semantics, that is

t ∗−−→
P,ς

t′ =⇒ [[t]]fix
P,ς = [[t′]]fix

P,ς .

2

7.3 Soundness of the ς-Reduction Semantics

Lemma 7.8

The ς-reduction semantics are sound w.r.t. the ς-fixed-point semantics:

[[·]]redP,ς � [[·]]fix
P,ς and [[·]]po

P,ς � [[·]]fix
P,ς .

Proof: Let t, t′ ∈ TΣ with t ∗−−→
P,ς

t′. According to the soundness of ς-reduction se-

quences (Cor. 7.7) [[t]]fix
P,ς = [[t′]]fix

P,ς . Since ⊥ς ⊑ DTfix
ς (P) and since the algebraic term

semantics is monotonic (Lemma 6.9), we have [[t′]]alg
⊥ς

� [[t′]]alg

DTfix
ς (P)

= [[t′]]fix
P,ς . Together

[[t′]]alg
⊥ς

� [[t]]fix
P,ς and therefore

[[t]]redP,ς =
⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′}� [[t]]fix

P,ς

and
[[t]]po

P,ς =
⊔

{[[t′]]alg
⊥ς
| t ∗−−→→

P,ς,po
t′}� [[t]]fix

P,ς .

2

Lemma 7.9

The po ς-reduction semantics is sound w.r.t. the global ς-reduction semantics:

[[·]]po
P,ς � [[·]]redP,ς .

Proof:

{t′|t ∗−−→→
P,ς,po

t′} ⊆ {t′|t ∗−−→
P,ς

t′}

=⇒ {[[t′]]alg
⊥ς
|t ∗−−→→

P,ς,po
t′} ⊆ {[[t′]]alg

⊥ς
|t ∗−−→

P,ς
t′} =⇒ [[t]]po

P,ς � [[t]]redP,ς .

2

30

7.4 Completeness of the Global ς-Reduction Semantics

Lemma 7.10

The global ς-reduction semantics is complete w.r.t. the ς-fixed-point semantics:

[[·]]fix
P,ς � [[·]]redP,ς

Proof: Let t ∈ TΣ and Ai := (ΦP,ς)
i(⊥ς) ∈ IntΣ,ς for all i ∈ IN. According to the

next lemma {[[t]]algAi
| i ∈ IN} is cofinal in {[[t′]]alg

⊥ς
| t ∗−−→

P,ς
t′} which implies

⊔

i∈IN[[t]]algAi
�

⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′}. Hence we have

[[t]]fix
P,ς = [[t]]alg

DTfix
ς (P)

= [[t]]algF
i∈IN Ai

L. 6.9
=

⊔

i∈IN

[[t]]algAi
�

⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′} = [[t]]redP,ς .

2

The following lemma contains the heart of the completeness proof.

Lemma 7.11

The approximations of the ς-fixed-point semantics are cofinal in those of the global
ς-reduction semantics, that is if t ∈ TΣ and Ai := (ΦP,ς)

i(⊥ς) ∈ IntΣ,ς for all i ∈ IN,

then for every i ∈ IN there is a t′ ∈ TΣ with t ∗−−→
P,ς

t′ and [[t]]algAi
� [[t′]]alg

⊥ς
.

Proof:

i = 0: With t′ := t we have t ∗−−→
P,ς

t′ and [[t]]algAi
= [[t]]alg

⊥ς
= [[t′]]alg

⊥ς
.

i⇒ i+ 1:

t = f(t1, . . . , tn): (f (n) ∈ F).

Case 1: ([[t1]]
algAi+1

, . . . , [[tn]]algAi+1
) is semantically ς-matchable with the left-hand

side of f(~p)→r ∈ P by β : X→TC,ς .
Then

[[t]]algAi+1
= fAi+1([[t1]]

algAi+1
, . . . , [[tn]]algAi+1

) = [[r]]algAi,β
. (1)

In accordance with the hypotheses of the structural induction there exist
t′1, . . . , t

′
n ∈ TΣ with

tl
∗−−→

P,ς
t′l (2)

and
[[tl]]

algAi+1
� [[t′l]]

alg
⊥ς

(3)

for all l ∈ [n].
Equation (2) implies

t = f(t1, . . . , tn) ∗−−→
P,ς

f(t′1, . . . , t
′
n) (4)

The monotonicity of algebraic term semantics w.r.t. the algebra (Lemma
6.9) gives us

[[t′l]]
alg
⊥ς

� [[t′l]]
algA (5)

for all A ∈ IntΣ,ς and l ∈ [n].

31

From (3) and (5) and the monotonicity of semantic ς-matching (Lemma
6.7) we conclude that for all ς-interpretations A ∈ IntΣ,ς , especially Ai,

([[t′1]]
algA , . . . , [[t′n]]algA) is semantically ς-matchable with f(~p) by respective

valuations βA, and
β � βA. (6)

With Proposition 7.4 about syntactic and semantic ς-matching follows,
that (t′1, . . . , t

′
n) is syntactically ς-matchable with f(~p) by a substitution

σ and
[[t̂σ]]algAi

= [[t̂]]algAi,βAi
(7)

for all t̂ ∈ TΣ(Var(~p)).
The syntactic ς-matchability implies

f(t′1, . . . , t
′
n) −−→

P,ς
rσ. (8)

Equation (7) is especially valid for t̂ = r:

[[rσ]]algAi
= [[r]]algAi,βAi

. (9)

From (6) and the monotonicity of algebraic term semantics w.r.t. the
valuation (Lemma 6.8) we deduce

[[r]]algAi,β
� [[r]]algAi,βAi

. (10)

Finally the hypotheses of the induction over i assures the existence of a
t′ ∈ TΣ with

rσ ∗−−→
P,ς

t′ (11)

and
[[rσ]]algAi

� [[t′]]alg
⊥ς
. (12)

Together (4), (8) and (11) give

t = f(t1, . . . , tn) ∗−−→
P,ς

f(t′1, . . . , t
′
n) −−→

P,ς
rσ ∗−−→

P,ς
t′ (13)

and we have

[[t]]algAi+1

(1)
= [[r]]algAi,β

(10)

� [[r]]algAi,βAi

(9)
= [[rσ]]algAi

(12)

� [[t′]]alg
⊥ς
. (14)

Case 2: Otherwise, that is there exists no matching reduction rule.
Let t′ := t. Then

t ∗−−→
P,ς

t′

and
[[t]]algAi+1

= fAi+1([[t1]]
algAi+1

, . . . , [[tn]]algAi+1
) = ⊥� [[t′]]alg

⊥ς
.

t = G(t1, . . . , tn): (G(n) ∈ C).

According to the hypotheses of the structural induction there exist
t′1, . . . , t

′
n ∈ TΣ with

tl
∗−−→

P,ς
t′l (1)

32

and
[[tl]]

algAi+1
� [[t′l]]

alg
⊥ς

(2)

for all l ∈ [n].

Together with the monotonicity of all operations of a ς-interpretation (2)
implies

GAi+1([[t1]]
algAi+1

, . . . , [[tn]]algAi+1
) �GAi+1([[t′1]]

alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
). (3)

Furthermore, the operation of a constructor symbol is the same in all ς-
interpretations:

GAi+1 = GA0 = G⊥ς . (4)

Let t′ := G(t′1, . . . , t
′
n). Then (1) gives us

t = G(t1, . . . , tn) ∗−−→
P,ς

G(t′1, . . . , t
′
n) = t′

and (3) and (4) imply

[[t]]algAi+1
= GAi+1([[t1]]

algAi+1
, . . . , [[tn]]algAi+1

)

(3)

� GAi+1([[t′1]]
alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
)

(4)
= G⊥ς ([[t′1]]

alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
)

= [[t′]]alg
⊥ς
.

2

Unfortunately it is not possible to use the same proof method for the po ς-reduction
semantics, since the step from (2) to (4) is not valid for po ς-reduction.

7.5 Completeness of Π-Fair Reduction Semantics

We do not prove the completeness of the po ς-reduction semantics directly, as has been
done in detail in [5]. The proof there is based on O’Donnell’s proof that eventually
outermost sequences terminate whenever possible (Lemma 10 and Theorem 17 in [24]).
Bergstra and Klop extend O’Donnell’s proof to so called Π-fair reduction sequences
([2]). By using that extended version we obtain a more general result, showing that
any semantics based on Π-fair reduction is complete. This is subsequently applied in
Subsections 7.6 and 7.7 to the po ς- and the li∗ semantics, respectively.

In this and the following subsections I is an arbitrary instance of an almost ortho-
gonal TRS R over a signature Σ, so that RedR,I is residually closed. 〈A,�〉 is a cpo
(with A 6= ∅) and [[·]]⊥ : TΣ→A a mapping such that t −−→

R,I
t′ =⇒ [[t]]⊥ � [[t′]]⊥.

For having a concrete example, the reader may keep in mind that later R will be
our program P , I an instance ς, and [[·]]⊥ a semantic ς-approximation [[·]]⊥ς

.
Due to its complexity, Bergstra’s and Klop’s proof is not reproduced here but only

outlined and cited as far as necessary for our extension. Unfortunately it considers only
the smaller class of orthogonal TRSs. Nonetheless, the generalization to instances of
almost orthogonal TRSs with residually closed redex sets is straightforward, because
the proof is based on a variation of the parallel moves lemma (2.5), as already remarked
in [2].

33

Definition 7.3 (Cf. Definition 7.2 in [2])
A predicate Π ⊆ IN∗×TΣ with (u, t) ∈ Π =⇒ u ∈ RedPosR,I(t) is gaining iff it has the
following three properties:

I) Preservation of a Π-redex-position.

For all I-reductions
t0 ////

u1

R,I

����

u2R,I

t1

����

V2R,I

t2 ////
V1

R,I
t3

with V1 = u1\t0
u2−−→
R,I

t2, V2 = u2\t0
u1−−→
R,I

t1, and all wi ∈ RedPosR,I(ti) (i ∈ [4])

with
w1 ∈ w0 \ t0 −−→ t1, w2 ∈ w0 \ t0 −−→ t2,
w3 ∈ w1 \ t1 −−→ t3, w3 ∈ w2 \ t2 −−→ t3,

we have
Π(w0, t0),Π(w2, t2),Π(w3, t3) =⇒ Π(w1, t1).

II) ¬Π-reductions do not create new Π-redex-positions.

For every reduction t u−−→
R,I

t′ such that ¬Π(u, t), every v′ such that Π(v′, t′) has

a respective predecessor, that is a v with v′ ∈ v \ t u−−→
R,I

t′ such that Π(v, t).

III) ¬Π-reductions do not change the semantic approximation.

For every t u−−→
R,I

t′ such that ¬Π(u, t), we have [[t]]⊥ = [[t′]]⊥.

We write t u−−→
Π

t′ and t u−−→
¬Π

t′ for a reduction t u−−→
R,I

t′ with Π(u, t) and ¬Π(u, t),

respectively. 2

The definition of the first property is slightly different from that given by Bergstra
and Klop who use the transitive-reflexive closure ∗−−→ instead of the parallel −−→→ .
Since that would require introducing the supplementary concepts of development and
diagram we use our equivalent definition. Property III is added for our extension
towards semantics.

Definition 7.4 (Def. 7.5 in [2])

1. Let A = t1
v1−−→
R,I

t2
v2−−→
R,I

. . . be a (finite or infinite) reduction sequence such that

uj ∈ RedPosR,I(tj) and ui+1 ∈ ui \ ti
vi−−→

R,I
ti+1 for all i ≥ j as far as ui is defined.

Then the sequence uj, uj+1, uj+2, . . . is called a trace in A.

2. Let A be as in 1. and let Π ⊆ IN∗ × TΣ be a predicate. Then a trace uj, uj+1, . . .
in A is a Π-trace iff for all i ≥ j we have Π(ui, ti).

3. Let A be a reduction and Π ⊆ IN∗ × TΣ be a predicate. Then A is Π-fair iff A
contains no infinite Π-traces.

2

34

t1 ////
v1

����

∗Π

t2 ////
v2

����

∗Π

t3 ////
v3

����

∗Π

. . .

s3 ////∗

����
¬Π ∗

. . .

s2 ////∗

����

¬Π ∗

ŝ3

����

∗s1 ////∗

����

¬Π ∗

ŝ2

����

∗

t′1 ////∗ t′2 ////∗ t′3 ////∗ . . .

Figure 1: The Π-fair reduction construction.

Lemma 7.12

If Π is a gaining predicate, A = t1
v1−−→
R,I

t2
v2−−→
R,I

. . . a Π-fair reduction sequence, and

t1 −−→R,I
t′1 a reduction, then there exists a Π-fair reduction construction as shown in

figure 1 such that

1. the sequence s1, ŝ2, s2, ŝ2, s3, . . . converges to A, that is there exists a j ∈ IN with
ti = si for all i ≥ j, and

2. the residual reduction sequence t′1
∗−−→

R,I
t′2

∗−−→
R,I

. . . of the Π-fair reduction con-

struction is Π-fair.

Proof: Theorem 7.8 in [2] (see also Lemma 17 in [24]). 2

Lemma 7.13 Semantic cofinality of Π-fair reduction sequences I
Let A = t1 −−→R,I

t2 −−→R,I
. . . be a Π-fair reduction sequence and B = t1 −−→R,I

t′1 a

reduction. Then exists an l ∈ IN+ with [[t′1]]⊥ � [[tl]]⊥.

Proof: We consider the Π-fair reduction construction of A and B with the identifiers
used in Lemma 7.12 and prove by induction that [[t′1]]⊥ � [[si]]⊥ for all i ∈ IN+.

i = 1: By property III the reduction s1
∗−−→
¬Π

t′1 implies [[t′1]]⊥ = [[s1]]⊥.

i⇒ i+ 1: We have si
∗−−→ ŝi+1 and si+1

∗−−→
¬Π

ŝi+1. Our prerequisite concerning [[·]]⊥
and property III imply [[si]]⊥ � [[ŝi+1]]⊥ = [[si+1]]⊥. Together with the induction
hypotheses we get [[t′1]]⊥ � [[si+1]]⊥.

According to Lemma 7.12 there exists an l ∈ IN+ with tl = sl. Hence we have [[t′1]]⊥ �

[[sl]]⊥ = [[tl]]⊥. 2

Lemma 7.14 Semantic cofinality of Π-fair reduction sequences II
Let A = t1 −−→R,I

t2 −−→R,I
. . . be a Π-fair reduction sequence and B = t1

∗−−→
R,I

t′ a

reduction. Then exists a k ∈ IN+ with [[t′]]⊥ � [[tk]]⊥.

35

t1

��

// t2

��

∗

// t3

��

∗

// t4

��

∗

// · · · · · · // tk

◦

��
∗

//∗ ◦

��
∗

//∗ ◦

��
∗

//∗ ◦

��
∗

//∗ · · ·

...
...

...
...

...

��
◦

��

//∗ · · · · · · //∗ ◦ //
�

∗ ◦

�

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

◦

��

//∗ · · · · · · //∗ ◦

��

∗

�

◦

��

//∗ · · · · · · //∗ ◦ //
�

∗ ◦

t′
�

Figure 2: Proof idea of Lemma 7.14

Proof idea: Induction over the length of B, employing the preceding lemma for the
induction step; see Figure 2. 2

Thus we finally obtain:

Proposition 7.15 Completeness of Π-fair reduction semantics
Let a global reduction semantics [[·]]redR,I : TΣ→A be defined by

[[t]]redR,I :=
⊔

{[[t′]]⊥ | t
∗−−→

R,I
t′}

and let a ‘successor’-function F : TΣ→TΣ, fixing a unique Π-fair reduction sequence
t ∗−−→

R,I
F (t) ∗−−→

R,I
F 2(t) ∗−−→

R,I
. . . for every term t, define a Π-fair reduction semantics

[[·]]ΠR,I : TΣ→A by

[[t]]ΠR,I :=
⊔

i∈IN

[[F n(t)]]⊥

Then the Π-fair reduction semantics is complete w.r.t. the global reduction semantics,
that is

[[·]]redR,I � [[·]]ΠR,I .

2

7.6 Completeness of the Po ς-Reduction Semantics

To apply the result of the last subsection we just have to prove that Πo
P,ς is a gaining

predicate, where Πo
R,I(u, t) holds iff u is an outermost I-redex position of t. Since this

proof is only tedious it was moved to the appendix.

36

Lemma 7.16

The predicate Πo
P,ς is gaining.

Proof: Property I: Lemma A.1. Property II: Lemma A.4 and Lemma A.2. Property
III: Lemma 6.13 (gain of information). 2

Corollary 7.17

The po ς-reduction semantics is complete w.r.t. the global ς-reduction semantics, that
is [[·]]redP,ς � [[·]]po

P,ς .

Proof: The po ς-reduction semantics is a Πo
P,ς-fair reduction semantics. 2

7.7 Completeness of the Lo Cbv Reduction Semantics

Analogously to the previous subsection we define a predicate Πlo
R,I by Πlo

R,I(u, t) :⇐⇒
u is the leftmost-outermost I-redex position of t. Proving Πlo

P,cbv to be gaining was
moved to the appendix as well. We finally obtain:

Lemma 7.18

The predicate Πlo
P,cbv is gaining.

Proof: Property I: Lemma A.5. Property II: Lemma A.6. Property III: Lemma A.7.
2

Corollary 7.19

The lo cbv reduction semantics (li∗ reduction semantics) is complete w.r.t. the global
cbv reduction semantics, that is [[·]]redP,cbv � [[·]]loP,cbv. 2

8 Properties of the ς-Semantics

In Section 4 we discussed some properties which we expect our semantics to have.
We record that since [[·]]P,ς = [[·]]alg

DTς(P) is an algebraic semantics, the ς-semantics is
compositional. The ς-semantics is modular as well; the broad reasoning of Section 4
can easily be transformed into a formal proof for the ς-semantics.

We mentioned in Section 4 that the ς-term semantics uniquely determines the ς-data
type although the equation

fDTς(P)(~t) = [[f(~t)]]P,ς

(for all f (n) ∈ Σ, ~t ∈ (TC,ς)
n, ~t ∈ (TΣ)n with [[t1]]P,ς = t1, . . . , [[tn]]P,ς = tn) does not give

a complete definition of the ς-data type DTς(P) by [[·]]P,ς , because there may not be for
every t ∈ TC,ς \ TC a t ∈ TΣ with [[t]]P,ς = t.

The problem can be remedied, because the ς-semantics is modular and the data
type 〈TC,ς ,�〉 is ω-inductive. If there is a term t⊥ with [[t⊥]]P,ς = ⊥, then for any
finite partial data term t ∈ (TC,ς ∩ TC,⊥) \ TC a program term t ∈ TΣ with [[t]]P,ς = t
is constructible by using t⊥ and constructor symbols. If there is no such t⊥, then we
extend our program P by a new function symbol c⊥ to a program P ′, without giving a
rule for c⊥. Consequently [[c⊥]]P ′,ς = ⊥. If we can solve the problem for the infinite data
terms as well, then we have DTς(P) = DTς(P

′)|Σ due to modularity. Since 〈TC,ς ,�〉

37

is ω-inductive, there exist for all tuples of (possibly infinite) terms ~t ∈ (TC,ς)
n chains

T1, . . . , Tn ⊆ TC,ς ∩ TC,⊥ of finite terms with t1 =
⊔

T1, . . . , tn =
⊔

Tn and these finite
terms can be denoted by program terms as just observed. Since all operations are
continuous we have

fDTς(P)(~t) = fDTς(P)(
⊔

T1, . . . ,
⊔

Tn)

=
⊔

fDTς(P)(T1, . . . , Tn) =
⊔

{[[f(~t)]]P,ς | ~t ∈ (T1, . . . , Tn)}

and the ς-data type is completely defined.
It should be noted that a similar reasoning using furthermore the fact that our

programs are only of first order shows that the ς-semantics is fully abstract ([22, 16]).
As mentioned in Section 5.4, our language permits the definition of non-sequential

operations — in contrast to common functional programming languages. By restricting
the form of admissible patterns the definable operations can be restricted to the usual
sequential one (cf. Section 10). The issue of sequentiality is discussed further in [5].

We noticed already w.r.t. the cbn semantics in Subsection 5.4 that since the reduction
semantics is defined as least upper bound of semantic approximations, data terms are
possibly only approximated to arbitrary precision, but never actually reached as final
results. Obviously this is unavoidable for infinite data terms and many partial data
terms, but we do expect an operational semantics to compute all finite, total data
terms.

Lemma 8.1 Computability of the ς-reduction semantics
Let t ∈ TΣ.

1. If [[t]]redP,ς = t ∈ TC, then t↓P,ς exists and [[t]]redP,ς = t = t↓P,ς .

2. If [[t]]po
P,ς = t ∈ TC, then t↓P,po,ς exists and [[t]]po

P,ς = t = t↓P,po,ς .

Proof:

1. Let t = [[t]]redP,ς =
⊔

{[[t′]]alg
⊥ς
| t ∗−−→

P,ς
t′} ∈ TC. Since 〈TC,ς ,�〉 is ω-inductive and t is

ω-compact, there exists [[t̂]]alg
⊥ς
∈ {[[t′]]alg

⊥ς
| t ∗−−→

P,ς
t′} with t = [[t̂]]alg

⊥ς
. Then t ∈ TC

implies t̂ = t. Moreover t ∗−−→
P,ς

t̂ = t and hence t is the ς-normal-form of t.

2. Analogously.

2

As an aside we remark that together with the equality of the general and the po
ς-reduction semantics the equality of the ς-normal-form and the po ς-normal-form of a
term follows.

9 Applications of ς-Semantics

Not only do ς-semantics provide a uniform framework for cbv and cbn semantics, but
also the mixed strictnesses permit a natural description of real functional programming
languages which rarely have a pure cbv or cbn semantics.

38

The functional programming language Hope with its strict functions and non-strict
constructors has already been mentioned. All basically strict languages like (the func-
tional subsets of) ML and Scheme have a predefined set of non-strict functions: a
form of conditional (if), various others like sequential logical and and or, and delay

in Scheme for simulating cbn evaluation.

For non-strict functional programming languages strictness is an issue, because cbv
evaluation proves to be more efficient than cbn evaluation and also facilitates parallel im-
plementations ([11], Chapter 13 in [27]). Therefore, many modern non-strict functional
programming languages provide various kinds of strictness annotations which may be
generated automatically by a strictness analysis or supplied by the user ([26, 25, 27]).
These annotations may be for arguments and/or results of functions and/or construct-
ors in type declarations and/or at individual application points.

Strictness annotations at argument positions in type declarations coincide with our
forced strictness. Hence one may prove the equivalence of the cbn semantics and a
particular ς-semantics for a particular program and then use a ς-reduction strategy for
a correct implementation.

Strictness annotations at individual application points are useful when information
about contexts is included. For example in the program

even(Zero) → Succ(Zero)

even(Succ(Zero)) → Zero

even(Succ(Succ(x))) → even(x)

evenDTcbn(P)(t) is only unequal to ⊥ for total terms t ∈ TC. Notions like structure strict-
ness (our strictness), spine strictness, and normalization strictness describe this kind
of dependency on the (non-)partiality of arguments. This information can be trans-
ferred to strictness annotations at individual applications of constructors, for instance
in even(Succ(a)) the position of Succ may be considered strict in its argument.

This kind of annotation is not expressible by ς-semantics. It is not the aim of this
paper but would even contradict a uniform presentation of cbv and cbn semantics,
since varying forced strictnesses of constructors would require T∞

C,⊥ as carrier set of the
data-type, excluding the true cbv semantics. However, continuing in this direction is
straightforward.

10 Efficient ς-Reduction Strategies

The po ς-reduction strategy is too costly to be used in actual implementations. Sharing
common subterms yields an improvement. Even in the case of cbv semantics it saves
space and time of copying complex data structures. However, since this technique is
orthogonal to and at a different level than the concept of reduction strategy, it is not
discussed here. The step from ς-reduction semantics to a ς-graph reduction semantics
in the spirit of Raoult and Kennaway ([17]) should be small.

Obviously a complete ς-reduction strategy does not need to reduce all ς-redexes which
are reduced by the po ς-reduction strategy. Many approximations of a subset of needed
ς-redexes will spring to the reader’s mind. The concept of gaining predicates enables
easy proofs of completeness of such ς-reduction strategies.

Restricting the set of admissible patterns of a program can lead to considerably
simpler ς-reduction strategies. In Berry’s example ([3])

39

h(True, False, x) → True

h(False, x, True) → True

h(x, True, False) → True

all three arguments in the term h(t1, t2, t3) have to be reduced in parallel (altern-
ately)7, since the term’s semantics may not be ⊥ even if any one argument denotes
⊥. Hence, one may only permit sequential sets of patterns (cf. strong sequentiality in
[14]), that is those which are translatable into explicit tests; for example:

add(x, y) → caseZero,Succ(y, x, Succ(add(x, selSucc,1(y))))

The semantics of caseC1,...,Cn
and selCj ,i is given by

caseC1,...,Cn
(Cj(~t), t1, . . . , tn) → tj

selCj ,i(Cj(~t)) → ti

with C = {C1, . . . , Cn}, C
(m)
j ∈ C, i ∈ [m].

This transfers some complexity from the reduction strategy to the case expressions
which replace the patterns. Locating a ς-redex in a term is still not trivial though, due
to the possible forced strictness of functions and constructors. Moreover, while patterns
form a natural part of the ς-semantics, case is a special function since it needs to be
non-strict in all its arguments but the first, even in the cbv semantics.

As an aside should be noted that for programs with tests instead of patterns the lo
cbn reduction strategy is normalizing ([24, 2]) but not complete: With undef → undef

reducing [A, B, undef, C] does not yield its cbn semantics [A, B, ⊥, C] but
A:B:⊥. However, this is exactly the result any interpreter of a modern non-strict
functional programming language gives. The lo reduction strategy becomes complete,
when we define the list constructor Cons (:) of the output list to be strict in its first
argument (Any output of a real-world functional program is either a list of characters
(string) or a list of commands for the operating system).

11 Conclusion

In this paper we defined and studied the ς-semantics, a comprehensive semantics for
functional constructor-based programs with patterns.

By introducing the forced strictness ς as a parameter we obtained a single definition
for both cbv and cbn semantics. Thus the true common and distinguishing features
of these two standard semantics were highlighted. We established that the usual op-
erational definition by innermost, respectively outermost reduction is rather deceptive.
Instead, a forced strictness ς fixes an instance of the program characterized by a set of
ς-redexes. Reductions in this instance are sound w.r.t. the ς-semantics and therefore
serve as basis for operational ς-semantics.

We defined a denotational ς-semantics which assigns a data-type to a program in
a modular way and moreover ensures the compositionality of the ς-semantics. We
defined two operational ς-semantics. The general ς-reduction semantics is elementary
and the means by which the completeness of arbitrary Π-fair reduction semantics was
proved. This result was applied to the po ς-semantics. Furthermore, it provides a tool
for proving the soundness and completeness of other, future ς-reduction semantics. In

7Surprisingly, a complete sequential reduction strategy exists nonetheless ([1]). It is practically
useless due to its inefficiency though.

40

general, we are able to validate a property for all instances of the ς-semantics by a single
proof.

We saw that, although implementations may translate patterns into explicit tests,
the ς-semantics is naturally defined on the basis of patterns. Finally, the ς-semantics
gives a simple formal foundation for the prevailing mixed strictnesses of modern func-
tional programming languages.

We did not give a declarative ς-semantics, that is a semantics which views reduction
rules as equations and uses models, in which all equations are valid, as data-types.
The reason is that generally ς-data-types are not models, due to the forced strictness
ς which does not appear in the program. Only the cbn data-type is a model. The cbn
data-type can even be uniquely characterized as the minimal interpretation which is
a model (DTP,cbn(P) = Least〈IntΣ,cbn,⊑〉(IntΣ,cbn ∩Mod(P))). For the cbv data-type an
analogous characterization exists, if partial algebras (with true partial operations) are
used instead of Alg∞

Σ,⊥. Nonetheless, a simple declarative ς-semantics seems not to be
attainable ([5]).

We considered only first-order functional programs without sorts or types. Thus
the essential points were well exposed. Higher-order functional programs require more
complicated semantic domains than simple algebras, and the introduction of a type
system, at least to distinguish base data elements formed by constructors and functions
of different orders, would be unavoidable. The concept of ς-semantics should carry
over to higher-order functional programs without principal difficulties. Due to the
definability of non-sequential operations this semantics would be fully abstract as well
([28]). Nonetheless, it may be worthwhile to put this into effect, since new issues may
arise and further insights may be gained. The work on unboxed values ([26, 19]) may
be a good guide for the definition of the semantic domains and the type system.

Formal semantics are not only the prerequisite for the implementation of correct
interpreters and compilers and the verification of programs, but also lead us to a con-
tinuously improving understanding of the nature of programming languages.

Acknowledgement. The author is especially indebted to Thomas Noll for many
fruitful discussions.

References

[1] S. Antoy and A. Middeldorp. A sequential reduction strategy. In Proceedings of
the 4th International Conference on Algebraic and Logic Programming, LNCS 850,
pages 168–185, Madrid, September 1994.

[2] J.A. Bergstra and J.W. Klop. Conditional rewrite rules: Confluence and termina-
tion. Journal of Computer and System Sciences, 32:323–362, 1986.

[3] G. Berry. Stable models of typed λ-calculi. In Proceedings of the 5th ICALP
Conference, LNCS 62, pages 73–89, Udine, Italy, 1978.

[4] G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive programs.
In Fourth ACM Symposium on Principles of Programming Languages, pages 215–
226, 1977.

41

[5] O. Chitil. Denotationelle und operationelle Semantiken für konstruktorbasierte
funktionale Programmiersprachen erster Ordnung. Master’s thesis, Aachen Uni-
versity of Technology, 1995.

[6] W. Clinger and J. Rees (eds.). Revised4 report on the algorithmic language Scheme,
November 1991.

[7] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 459–492. Elsevier,
Amsterdam, 1990.

[8] O. Danvy and J. Hatcliff. Cps-transformation after strictness analysis. ACM
Letters on Programming Languages and Systems, 1(3):195–212, September 1992.

[9] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 243–320. Elsevier,
Amsterdam, 1990.

[10] P.J. Downey and R. Sethi. Correct computation rules for recursive languages.
SIAM J. Comput., 5(3):378–401, September 1976.

[11] A.F. Field and P.G. Harrison. Functional Programming. Addison-Wesley, 1988.

[12] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra se-
mantics and continuous algebras. JACM, 24(1):68–95, January 1977.

[13] G. Huet. Confluent reductions: Abstract properties and applications to term re-
writing systems. JACM, 27(4):797–821, 1980.

[14] G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems I + II. In
J.-L. Lassez and G. Plotkin, editors, Computational Logic – Essays in Honor of
Alan Robinson, pages 395–443. MIT Press, 1991. Original version: Call by Need
Computations in Non-Ambiguous Term Rewriting Systems, Report 359, INRIA,
1979.

[15] G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In R. Book,
editor, Formal Language Theory: Perspectives and Open Problems, pages 349–405.
Academic Press, 1980.

[16] A. Jung et al. Domains and denotational semantics: History, accomplishments
and open problems. Technical Report CSR-96-2, University of Birmingham, 1996.
http://www.cs.bham.ac.uk/∼axj/papers.html.

[17] R. Kennaway. On ”On graph rewritings”. Theoretical Computer Science, 52:37–58,
1987.

[18] J.W. Klop. Term rewriting systems. In S. Abramsky, Dov. M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages 1–116.
Oxford University Press, 1992.

[19] J. Launchbury and R. Paterson. Parametricity and unboxing with unpointed types.
In Programming Languages and Systems — ESOP’96, LNCS 1058, pages 204–218,
1996.

42

[20] J. Loeckx and K. Sieber. The Foundations of Program Verification, Part B. Wiley–
Teubner, 1987.

[21] Z. Manna. Mathematical Theory of Computation, chapter 5. MCGraw Hill, 1974.

[22] R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science,
4:1–22, 1977.

[23] M. Nivat. On the interpretation of recursive polyadic program schemes. In Sympo-
sia Mathematica 15 – Convegni del Febbraio e dell’ Aprile del 1973, pages 255–281,
Rom, 1975.

[24] M.J. O’Donnell. Computing in Systems Described by Equations. LNCS 58.
Springer, 1977.

[25] J. Peterson, K. Hammond, et al. Report on the programming language Haskell,
version 1.3. Technical Report YALEU/DCS/RR-1106, Yale University, 1996.
http://haskell.cs.yale.edu/haskell-report/haskell-report.html.

[26] S.L. Peyton-Jones and John Launchbury. Unboxed values as first class citizens in
a non-strict functional language. In Conf. on Functional Programming Languages
and Computer Architecture, LNCS 523, pages 636–666, 1991.

[27] R. Plasmeijer and M. van Eekelen. Concurrent Clean language report, version 1.0,
April 1995.

[28] G.D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

[29] B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. JACM,
20:160–187, 1973.

[30] S.J. Thompson. A logic for Miranda. Formal Aspects of Computing, 1:339–365,
1989.

[31] S.J. Thompson. A logic for Miranda, revisited. Formal Aspects of Computing,
7:412–429, 1995.

[32] J. Vuillemin. Correct and optimal implementations of recursion in a simple pro-
gramming language. Journal of Computer and System Sciences, 9:332–354, 1974.

[33] J. Vuillemin. Syntax, sémantique et axiomatique d’un langage de programmation
simple. Thèse, Université Paris VI, 1974.

[34] W. Wechler. Universal Algebra for Computer Scientists. Springer, 1992.

[35] M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B: Formal Models and Semantics, pages 675–
788. Elsevier, Amsterdam, 1990.

43

A Predicates Πo
P,ς and Πlo

P,cbv Are Gaining

Here we give the proofs which were omitted in Subsections 7.6 and 7.7.
As there, I is an arbitrary instance of an almost orthogonal TRS R over a signature

Σ, so that RedR,I is residually closed, 〈A,�〉 is a cpo with A 6= ∅, and [[·]]⊥ : TΣ→A a
mapping with t −−→

R,I
t′ =⇒ [[t]]⊥ � [[t′]]⊥.

A.1 Πo
P,ς Is Gaining

We show that Πo
R,I has property I and Πo

P,ς has property II of gaining redexes. Property
III is already proved for Πo

P,ς by Lemma 6.13 about gain of information.

Lemma A.1 Preservation of an outermost redex-occurrence
Πo

R,I has property I of gaining redexes.

Proof: (Cf. Example 7.4 (ii) in [2])
Let (v] := {v′ ∈ IN∗

+ | v
′ ≤ v} for arbitrary v ∈ IN∗

+. We use the same identifiers as in
definition 7.3.

a) Show: (w1] ∩ V2 = ∅.

Suppose w′
1 ∈ (w1] ∩ V2. From w1 ≤ w1, w

′
1 ∈ u2 \ t0

u1−−→ t1 and w1 ∈
w0 \ t0

u1−−→ t1 the definition of residuals gives us u2 ≤ w0. However, w0 = u2

contradicts w1 ∈ w0 \ t0
u2−−→ t2 and u2 < w0 contradicts Πo

R,I(w0, t0).

b) Show: Πo
R,I(w1, t1).

Suppose ¬Πo
R,I(w1, t1). Then exists w′

1 with Πo
R,I(w

′
1, t1) and w′

1 < w1. Since

(w′
1] ⊆ (w1] property a) gives us (w′

1] ∩ V2 = ∅. This implies w′
1 \ t1

V2−−→→ t3 =
{w′

1} ∈ RedPosR,I(t3). Since w′
1 < w1 and by a) we know that {w3} = w1 \

t1
V2−−→→ t3 = {w1}, we get Πo

R,I(w3, t3) in contradiction to the assumptions.

2

Verifying property II of gaining predicates takes more effort.

Definition A.1 (Cf. Def. 32 in [24])
RedR,I is outer iff

t w−−→
R,I

t′ is a reduction,

u < v < w, v ∈ RedPosR,I(t), u ∈ RedPosR,I(t
′)

=⇒ u ∈ RedPosR,I(t).

2

Lemma A.2 (Lemma 14 in [24])
If RedR,I is outer, then Πo

R,I satisfies property II of gaining redexes.

Proof: Let t u−−→
R,I

t′ be a reduction with ¬Πo
R,I(u, t) and Πo

R,I(v
′, t′).

a) Show: There is no w < v′ with w ∈ RedPosR,I(t).

Suppose such a w exists. Without loss of generality Πo
R,I(w, t). Then w \

t u−−→ t′ = {w} ⊆ RedPosR,I(t
′) in contradiction to Πo

R,I(v
′, t′).

44

b) Show: v′ ∈ RedPosR,I(t).

u < v′ contradicts a) and u = v′ together with a) contradicts ¬Πo
R,I(u, t), leaving:

v′ ‖ u: Then t/v′ = t′/v′ and therefore v′ ∈ RedPosR,I(t).

v′ < u: Since ¬Πo
R,I(u, t) there is a w ∈ RedPosR,I(t) with w < u, and even v′ ≤

w < u according to a). The outer property finally gives v′ ∈ RedPosR,I(t).

Together a) and b) imply Πo
R,I(v, t) and v \ t u−−→

R,I
t′ = {v′} for v := v′. 2

It only remains to show that our redex sets are outer.

Lemma A.3 ([24])
The redex set RedR is outer.

Proof: Let t w−−→
l→r

t′ be a reduction, u < v < w, v ∈ RedPosR(t), and u ∈ RedPosR(t′).

Hence exist v′, w′ ∈ IN∗
+ with v = u.v′ and w = v.w′ = u.v′.w′. The reduction implies

the existence of a substitution σ with

t/u = t′/u[v′.w′ ← lσ] and t′/u = t/u[v′.w′ ← rσ] (1)

Since u ∈ RedPosR(t′), there exists a redex scheme l̂ ∈ RedSR and a substitution
[t1/x1, . . . , tn/xn] : Var(l̂)→TΣ with

t′/u = l̂[t1/x1, . . . , tn/xn] (2)

Since RedR is residually closed and v \ t w−−→
l→r

t′ = {v}, we have v ∈ RedPosR(t′).

According to Lemma 2.1 there exist v1, v2 ∈ IN∗
+ with v = u.v1.v2 and l̂/v1 ∈ X, that is

l̂/v1 = xk for a k ∈ [n].
Altogether we obtain

t/u
(1)
= t′/u[v′.w′ ← lσ]
(2)
= (l̂[t1/x1, . . . , tn/xn])[v′.w′ ← lσ]

= l̂[t1/x1, . . . , tk[v2.w
′ ← lσ]/xk, . . . , tn/xn].

Hence t/u ∈ RedR and therefore u ∈ RedPosR(t). 2

Lemma A.4

The redex set RedP,ς is outer.

Proof: Let t w−−→
l→r,ς

t′ be a ς-reduction, u < v < w, v ∈ RedPosP,ς(t), and u ∈

RedPosP,ς(t
′). Hence exist v′, w′ ∈ IN∗

+ and k ∈ IN+ with v = u.k.v′ and w = v.w′ =
u.k.v′.w′. Since RedP,ς ⊆ RedP , the previous lemma gives us u ∈ RedPosP (t), that is

t/u = f(t1, . . . , tn) and t′/u = f(t′1, . . . , t
′
n)

for an f (n) ∈ F and some t1, . . . , tn, t
′
1, . . . , t

′
n ∈ TΣ with

ti = t′i (1)

for all i ∈ [n] with i 6= k, and

tk
v′.w′

−−→
l→r,ς

t′k.

45

Since v′ ∈ RedPosP,ς(t), we have tk
v′.w′

−−→
P,ς,no

t′k. Then by Lemma 6.13 about gain of

information
[[tk]]

alg
⊥ς

= [[t′k]]
alg
⊥ς
. (2)

Since u ∈ RedPosP,ς(t
′), the function symbol f is not forcedly strict for

([[t′1]]
alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
), and ([[t′1]]

alg
⊥ς
, . . . , [[t′n]]alg

⊥ς
) is semantically ς-matchable with the pat-

tern ~p of a redex scheme f(~p) ∈ RedSP . Due to (1) and (2) this is valid for
([[t1]]

alg
⊥ς
, . . . , [[tn]]alg

⊥ς
) as well. Hence u ∈ RedPosP,ς(t). 2

A.2 Πlo
P,cbv Is Gaining

We show that Πlo
R,I has property I and Πlo

P,cbv has property II and property III of gaining
redexes.

Lemma A.5 Preservation of an lo redex occurrence
Πlo

R,I has property I of gaining redexes.

Proof: Using the identifiers of definition 7.3 we have Πo
R,I(w1, t1) due to Lemma A.1.

Let w′
1 be the lo I-redex position of t1 and suppose that w1 6= w′

1. Analogously to
the proof of Lemma A.1 we conclude w′

1 ∈ RedPosR,I(t3) with w′
1 <lex w1 = w3 in

contradiction to the assumption Πlo
R,I(w3, t3). 2

Lemma A.6

Πlo
P,cbv has property II of gaining redexes.

Proof: Let t u−−→
P,cbv

t′ be a reduction with ¬Πlo
P,cbv(u, t). Let v and v′ be the lo cbv

redex positions of t and t′, respectively. Obviously t u−−→
P,cbv

t′ = {v} ⊆ RedPosP,cbv(t
′).

To show that v = v′ suppose:

v <lex v
′: Contradicts v′ being lo in t′.

v′ <lex v:

v′ < v: Contradicts v′ being a cbv redex, because cbv redexes never contain any
redexes as proper subterms.

v′ ‖ v: v′ > u: Together with v′ <lex v this implies u <lex v in contradiction to v
being lo in t.

v′ ‖ u: Because of t/v′ = t′/v′ we have v′ ∈ RedPosP,cbv(t). Together with
v′ <lex v this contradicts v being lo in t.

v′ < u: All three ordering assumptions together imply u <lex v in contradic-
tion to v being lo in t.

2

Lemma A.7

Πlo
P,cbv has property III of gaining redexes.

Proof: Let o be the lo cbv redex position of t. t u−−→
P,cbv

t′ with ¬Πlo
P,cbv(u, t) implies

o := LOuterP,cbv(t) 6= u so that o \ t u−−→
P,cbv

t′ = {o} ⊆ RedPosP,cbv(t
′). Consequently t

and t′ still contain redexes and we have [[t]]alg
⊥cbv

= ⊥ = [[t′]]alg
⊥cbv

. 2

46

