/O Considered Harmful
(At Least for the First Few Weeks)

John Rosenberg

Basser Department of Computer Science
University of Sydney, NSW 2006
Australia

johnr@cs.usyd.edu.au

Abstract

One of the major difficultiesvith teaching the
first programming course is input/output. It is
desirable toshow students how to inpudata
and output results early in the courseoider to
motivate the studentsnd sothat theycan see
the results of their programs. Output is also a
useful toolfor testing programs.However, in
most programmindanguagesnput and output
are esotericand the techniques for performing
input and output must be learnt by tstedents
at an early stage, precisely when tteegtrying

to understandhe basics of programming. We
arguethat input/output operationseednot be
taught in theearly stages of a course if the
language environmentprovides appropriate
tools for testing programs. This assertion is
demonstrated by reference tbe Blue object-
oriented language and environment.

1 Introduction

There are anumber of issues thaarise in relation to
teaching the first programming language to students
Often these conflict in terms of therder in which the
concepts andonstructsaretaught. Ofparticular interest

in this paper isthe teaching ofnput andoutput and the
decision as to when these are taught within the course.

It is often argued that it is essential to teach output, at

least,very early inthe course, probably in the first or
second week. Output is essential in order to seisille
result from a program. Output of results allows a
program to be testeénd it provides motivation for
studentsbecausehey can sedhe results of their efforts.
Hencethe use of the seemingly popular "Heheorld"
program. Input may beelayed alittle longer, but is
required assoon as we wish students to wrjteograms
which have some controlling parameters.

Proceedings ofthe SecondAustralasian Conference on
Computer Sciencé&ducation, ACM, Melbourne, 216-
223, July 1997.

Michael Kolling

Basser Department of Computer Science
University of Sydney, NSW 2006
Australia

mik@cs.usyd.edu.au

While there are strong arguments for teaching abugaut
and output early, there are equally strong arguments
against this. By itsrery nature I/Odoesnot fit in well
with programminglanguage design. Everianguage
designerhas encounteredthe problem that the task of
including usable I/O facilities invariably seems to make it
necessary to breadome of the rules adesign principles
of the language. In many languages wilean and
simple concepts 1/O is the "odd one out".

Of particular difficulty seems to baput. Struggling
with buffering, end-of-line characters and, mosiatf the
necessaryconversion fromcharacterstreams into data
types in atyped languagehas lead to mechanisms as
bizarre as the infamous "scanf" routine in the C language.
Output as well, although conceptually easier, has its
problems. The problemsangefrom students forming
incorrect models through the generalisation of special I/O
constructs (e.g. thencorrect assumption thatPascal
routines mayhave a variable number giarameters as
allowed in the "write" procedure) tothe introduction of
advancedconceptstoo early, with the result that the
students camot relate a new concept tanything else
they know about the language.g. the use obverloaded

(infix operators for output in C++).

The result is typically one of two situations:

e the instructor isforced to discuss concepts that do
not relate well to the rest of the language principles
and advancedoncepts thatvould not normally be
discussed at that point are introduced, or

e the instructor employs some sort lofnd waving,
hoping the students will somehow bble tofigure
out which part of their work constitutes the
important conceptsand which part corresponds to
idiosyncrasies whichare better ignored for the
moment.

All of these issuegletractfrom the teaching of the
basic concepts of programmirand increasestress and
learning difficulties for students.

In this paper weshow how, with anappropriate
program development environment, it is possiblalay
the teaching of 1/O until quite late in a first programming
course. The result is that the instructor is abléetrh
the basic concepts of the languaged develop the
students' skills to a point where they can wréasonably
sized programs before they have to deal with the
intricacies of I/O.

The approach described utilisém Blue programming

system developed bthe authors [1, 2, 3].Blue is both
an object-orienteghrogramming languagand aprogram
developmenenvironmentandwas developedspecifically

for use as a teaching system in the first programmingsecond issue is the buffering of output.

course. It isexpectedhat students willdrop Blue after
the first courseand will then learn industry standard
programming languages such as C++ and Java.

Since Blue is only to beused inteaching the first
course, conceptual elegance is able to take precedgace
issues such as performance. Blue is a pbject-oriented
language [2]with very clean syntax, a strong and
statically checked type systeand support forinheritance
and genericity. However, it isnot the Blue language
which providesthe support fordelayingthe use of 1/O,
but rather the environment.

The Blue environment [3provides directsupport for
the creation obbject-orientechpplications. Itprovides a

graphical interface for the specification of classes and their

relationships, anntegrated editorand compiler and a
symbolic debugger. In additiorthe Blue environment
provides an interactivéesting facility [4] which allows
the interactive creation of objects of any clasdcalling
of the methods of these objects. It is this tesfawility

the difference betweeradandreadinand thenotion of an
end ofline character. This is difficult to avoid, even in
simple exercisesand is asource of greatonfusion. A
A comneaior
amongst students is to leave owvidteln. Depending on
the compilerandrun-time system this may result in no
output, or outputmixed with the nextcommandline
prompt.

2.2 C

Surprisingly perhaps, C [6] is also a popular language for

teaching the first programming course. /O is nqtag
of the formal language definition for C, however, a
standard1/O library is supported by virtually every
implementation. The library isiccessedvia standard
procedurecalls whichadhere tothe syntaxand semantics
of the language.

There are amumber of difficultieswith C 1/O which
make it extremely cryptiand confusing for students.
Considering input first, thetandardinput statement is
scanf This takes a description of the format of thput

data as a string and a series of pointers to the variables in

which the inputdatashould be stored.There are several

problems that arise with this approachirst, thesyntax
of the format string is notchecked until run-time,
delayingany error messages. Seconthere is no type
checking. Thescanf will happily attempt to format
anything as anything, often with surprising results.
Third, theaddresse®f the locations in which thenput

which allows the delay in teaching 1/O.

In the following section we examine the facilities
provided for 1/0O in some common languagesed in
teaching the first programmingourse in order to
demonstrate the complexities and idiosyncrasies
introduced by these features. We then brid#égcribe the . .
Blue languagendenvironment. This idollowed by a datashould beplaced must bepassed,i.e. &location.
description of how Blue may besed todevelop,test and ~ Forgetting theaddresperator is an extremely common
interactwith substantial applications without the use of error for students (and professionals!).

1/O. Output is only marginally better. Agaimryptic

. . format strings must bepecified and the programmer
2. 1/0 in Existing Languages must ensurethat anend-of-line charactef\n) is included,
In this section weexamine the support for /0 in some

otherwise no output may appear.
common programming languagesd describesome of 2 3 C++
the traps and complications oftencountered bwtudents)
learning their first language. We ontpnsidertext input ~ Many computerscience departments have moved to
and output. It isassumedhat code tosupportgraphical ~ teaching an object-oriented languagethieir first course.
user interfaces would be even more complex for students. Probably the most populdanguage at present is C++
[7]. Although C++ isessentially an extension of C, a
2.1 Pascal different model ofi/O is supported. Thisnodel isbased
Until recently Pascal [5] was clearthe most popular on streamsand insome senses is an improvemener
language for teaching the first programming courses atl/O in C.
universities. Pascagrovides speciakonstructs within However, the strearmodelhas a majordrawback in
the language to suppoitiput and output from a text that it introduces the concept oferloading of operators.
consoleandfiles. These facilitiesare integratednto the As an exampleconsiderthe following C++ code which
languageandreasonably consistent in terms of the type outputs an integes, to the console:
system. However, there are some difficulties.

The standardstatements fomput and output are read
(readIn) andwrite (writeln). A major conceptual problem
with these is that, although theppearsyntactically to
be procedure calls, they break the syntax rules for norm
calls in that they allow aarbitrary number oparameters
of arbitrary types. This may seem to be a simple
extension. However, when studentre grappling with
the concept of procedure calls and parameters itcause
of considerable confusion.

There are anumber of other issues whichre of
particular concermegardingthe semantics of Pascal I/O.
The first relates toinput and the notion of lines.
Students always have considerable difficultyderstanding

cout<<a

The interpretation of thisode isthat the integea is
sent to the output streacout The result of thicode is
n output stream, which allows these operations to be
oncatenated. For example
cout<<a<<b

wherea andb areintegers, will output the value cd
followed by the value ob. Since thesareexpressions,
parentheses may be used and the following code is exactly
equivalent to the above.

(cout<<a)<<b

However, the studemhust beextremelycarefulwith the
placement of the parentheses.For example, the

following code has a quite different meaning:
cout<< (a<<b)

The code outputs a single integer valutormed by
shifting the value left b binary places! Explaining this
to a student who isstill trying to understand basic
concepts of programming is extremely difficult.

2.4 Java

Java [8] is becoming an increasingly poputandidate for
teaching an object-oriented language in a fiesir course.
While still not heavilyusedfor teaching at present, all
signs indicate that it will be widely usedfor teaching
within a very short time.

Java, beingbased onC++, eliminates many of the
problemsexperiencedvith C++ and is inmany respects
nicer and cleanerthan C++. In the context of I/O,
however, it hasits own problems. Consider the
following code fragment (taken from [8], page 191):

int ch;
int total;
int spaces = 0;
for (total = 0; (ch = in.read(0) != -1, total++) {
if (Character.isSpace((char)ch)
spaces+t;

directly aware of the underlying operatiagstem, thdile
system, the command language, etc. All interaction with
the system takeglaceusing agraphical interface. It is
not envisagedhat there will ever be aversion ofBlue
with a textual interface.

Blue is a purenbject-orientedorogramming language.
By this we mean that the only compilable construct is a
class and all dataitems (including built-in types) are
represented asbjects. Syntactic sugar iprovided to
allow a familiar syntax for thebuilt-in types such as
integers. The notion of program can beepresented by
having an initial class with a single methqgagrhaps
called “run”. All objects are manipulatedusing reference
semantics.

Each Blue class defines some internal data (and
possibly internal routines), a creation routine
(constructor) and a set of methods. There are no
destructors. These are unnecessary since Bluganbage
collection. Only the constructoand the methods are
visible from outside of the class.

Figure 1 shows @lue class definition fothe class
Person

In this code (which counts the number apaces in
the input stream) thevariable in (which is declared
somewhere beforéhe code fragment we have shown)
refers to an input stream. Itsethodreadis used toread
in charactersfrom that stream. This is thetandard
method in Java to procesharacterstreams. Several
problems which are potentially confusing for students ca
be noted:

The variablech, which is used toreadcharacters,
is declared as annteger. This isnecessary
becausethe stream'sread function returns an
integer type, although it logically reads
characters.

An explicit cast must besed toprocessch as a
character. (If the processingdf involved access
to ch more than once, itvould have to be cast
each time, or aecondvariable oftype char must
be used).

The end ofthe stream isnarked byreturning -1.
This makes itnecessary touse ch first as an

class Person is
== The Person class
internal

var
_firstName : String
_lastName : String
_yearOfBirth : Integer

interface
creation (firstName : String, lastName : String,
yearOfBirth: Integer)
== Create a person object
do
_firstName := firstName
_lastName := lastName
_yearOfBirth := yearOfBirth
end creation

is

routines
name ->(nm: Stnng) is
= Return person's first and last name
do

nm := str (_firstName, "
end name

", _lastName)

changeName (firstName : String,
lastName : String)
== Change person's first and last name
do

_firstName := firstName
_lastName := lastName
end changeName
end class

integer before casting it to char and prevents
casting at the time it is read in.
It is clearly unfortunatghat aconcept such as type
casting must béntroducedearly in the course to beble
to use character input.

2.5 Summary

The facilities provided to support inputand output in
most common programmingnguages bring with them
considerable baggagewhich causes complications,
confusion and difficulties for students new to
programming. In the next section we brieflgscribe the
Blue languagendenvironment which is the vehicle we
use to avoid I/O in the first few weeks of a course.

3 The Blue Language and Environment

Figure 1: A sample Blue class

There arethree internal data items, _firstName
_lastNameand_yearOfBirth (by convention allinstance
variable begin with the underscore character). The
constructor has twparameters. Constructoese called

when thecreateoperation is executed..
Thus, an instance of a person maydoeated by the
following code:

aPerson := create Person (“John", "Rosenberg”, 1953)

The variable "aPerson" is raference to arobject of
type Person The clasersonhas two methodsvhich
may be called using the familiar "dot" notation as
follows:

aPerson.changeName ("Michael", "Kolling")

It is difficult to separate the language and the environment

in Blue since it is arintegratedsystem. Usersare not

Gptions Programs Help

Project Edit Tools Testing Wiew Group

[_Seq |

Figure 2: Blue project window

Returnparameters (themmay be more than one) are
listed after the "->" symbol. Theseare accessedsing
assignment notation, e.g.

theName := aPerson.name

Blue routines can also optionally specgte and post
conditionsandclasses mayave classnvariants. These
have been omittedhere for simplicity.The Blue
environment is based around the notion of projegach
program istreated as a separgieject. Students begin
by defining the classes for the project.

This is done graphically with icons on thescreen
representing classesExisting classes from thébrary
may beincluded inthe project using araphical class
browser.

A sample project is shown in figure 2. Lines
betweenthe classeidicaterelationships. Double lines
indicate inheritancewhile the single linesrepresent

inclusion. These relationships may be defined graphically4 . 1

using the mouse.

The code associatedvith a class may bedited by
doubleclicking on the class icon. This starts taéitor
(known as “Red”). Therare noheadeffiles. Instead the
code may either beviewed asthe interfaceonly or the
implementation.

Blue automatically maintains the relationships
between classeand asingle buttoncauses recompilation
of those classes which have bewadified andall classes
which depend on these.

The region of the projeavindow atthe bottom is
known as the Object Bench and is the key to avoiding I/O
in the early stages of a course.

4 . An Alternative to 1/O

It is instructive toreview the reasons forequiring /O
during the first few weeks. First, weedoutput so that
we can examine the results of the execution of scode.
We may also want to displajntermediate values of
execution inorder totest ordebug. Second, weeed
input so that wecan provideinput data orparameters to
programs, usually to thoroughly test them. It should be
notedthat input can often beavoided by "hard coding"
input values and changing thesedrecompiling inorder
to testdifferent values. However,this is inconvenient
and inefficient in terms of computing resources.

The mechanismslescribed inthis section support
both the display of results and the inputpafameters and
therefore avoid the need for speciali$&d facilities to be
taught in the first few weeks.

The Basic Mechanisms

The Blue systenprovides thredasic mechanismahich
eliminate theneedfor 1/0O during the early stages of a
course. Thesarethe ability to interactivelycreate an
instance of a class, the ability to interactively call the
methods of an objecand the ability to examine the
internal state of an object.

An instance of a class may beeated byselecting a
class in the projeandclicking the Createbutton which
results in adialoguebox beingdisplayed. The dialogue
includes the definition of the creation header and allows

creatbos Nirssbame o Sirieeg, BstMame ; Siring. yearOftih ; inkeger)
= GRS & TS st

[Enfer paranelor(s):
creaty Parson || “Jahn®, “Revmberg”, 1950 |
Marme of imstance | Persan_2
| Rely | E-mﬂl lh.-l

Figure 3: Object creation dialogue

by the projectwindow in figure 2. The database is
implementedusing a library class which implements a
simple sequence as a linkkst. There areoperations to
addpeople to thedatabase and tecan througtall of the
entries in the database.

The base class akcords inthe database iPerson
There aretwo specialised categories gqfeople, namely
staff andstudents. This ismplemented by defining two
new classessStaff and Student which inherit from the
classPerson

The code fothe classPersonwas shown in figure 1.
The creation routingequiresthat the first name, last
nameand date ofbirth are providedand there are two
routines, one which returns the complete name and
another which allows the name to be changed.

The code for class Staff and class Studerghiswn in
figures 5 and 6 respectively. Both of these clagsdsde
additional internal data, changethe signature of the
constructor and add new routines.

entry of thecreation parameter@ required) and axame
for the instance(see figure 3). Previous creation
parameters aravailable for reuse irthe areaabove the
entry field. AfterOK is clickedthe object iscreated and
is represented on the Object Bench by an icon.

Selection of the object icon with the right mouseg
button displays a popup menu of theethods of the
corresponding class as well as inspect and reroptiens
(see figure 4). Methods may lsalled byselecting them
from the menu. Again, dialoguebox is displayed for
parameter entry and returnegbsultsare displayed after the
method has beecalled. The internaldata of anobject
may beviewed by selectinginspect from the pop-up
menu.

class Staff is Person
== The Staff class
internal

var
_roomNumber : String
_position : String

interface
creation (firstName : String, lastName : String,
yearOfBirth : Integer,
roomNumber : String, position : String) is
== Create a Staff object

do
superlcreation (firstName, lastName, yearOfBirth)
_roomNumber := roomNumber
_position := position
end creation

routines
room -> (roomNumber: String) is
= Return the room information for this person
do
roomNumber := _roomNumber
end room

changeRoom (newRoom : String) is
== Change the room information for this person
do
_roomNumber := newRoom
end changeRoom
end class

Figure 5: The code for the classStaff

changeMame (...}
Callecting garba inspect

Figure 4: Method menu

There are additionafacilities provided for handling
objectreferencesvhich cannotsimply be displayed as a
value and for following these references. These are
beyond the scope of this paper and are described in [4].

4.2 An Example

In this section we show how the mechanistescribed
above may be used to test a fairly compddject-oriented

application without any use of input/output statements

class Student is Person
== The Student class
internal

var
_studentld: String
_accountName: String

interface
creation (firstName : String, lastName : String,
yearOfBirth : Integer, studentld : String,
accountName : String) is
== Create a Student object
di

o
superlcreation (firstName, lastName, yearOfBirth)
_studentld := studentld
_accountName := accountName

end creation

routines
studentld-> (sid : String) is
== Return student id
do
sid := _studentld
end studentld
end class

The code has been simplified bythe removal of
comments and pre and post conditions.
The example is a database of pecgid is represented

Figure 6: The code for the classStudent

Finally, thecode ofthe classDatabase isshown in
figure 7. This classcreates a sequence &frson and

providesroutines toadd Persors andscan through the
database. It uses the cl&sq(the codefor which is not
shown) from the library.

class Database is
uses Seq, Person

internal
var
personSeq : Seq<Person>

interface
creation is
== Create a Database object
do
personSeq := create Seq<Person>
end creation

routines
add (p : Person)
== Add a Person to the database

do
personSeq.add(p)
end add

initScan is
== Initialise a scan of the database
do
personSeq.initScan
end initScan

getNext -> (p : Person) is
== Get the next Person in the database
do
p := personSeq.getNext
end getNext
end class

Figure 7: The code for the classDatabase

Had we been developingthis system in another
object-oriented languagend environment, sayC++, we
would havealmost certainlyincluded routines on the
interfaces ofPerson Staff and Studentto print out the
details ofthe objects. The clad3atabasewould have
usedthese toprovide aroutine to print all entries in the
database.Finally, wewould neededsome input routines
to be able to entesomePerson Staff and Studentdata.
This would have added considerable complexity landth

Frojact EdN Teols Tewting Viw OGroig Opllond Progeams

to the application.

With the toolsdescribedabove, whichare provided as
part of the Blue system, this applicatioan bedeveloped
and fully tested without including a single line adde to
support I/O. The testing could proceed as follows.

First, aPerson object can becreated asshown in
figure 3. The constructgrarameters arentered and the
object appears as aiton on the ObjecBench at the
bottom of the project window as shown in figure 4. The
routines of the clagBersonmay then bdestedusing the
pull-down menu also shown in figure 4. Thernal
data ofthe object may beexaminedusing theinspect
option on thepull-down menu. Severaldifferent Person
objects may bereated tothoroughly test the class. The
Staff and Studentclasses may beested in asimilar way
and objects of these classes maycisated orthe Object
Bench. Note that we haweatedseveral different classes
of object without the use of input statements.

An object of the clas®atabasecan also becreated.
The constructor has nparametersand sothe object is
immediately created and the corresponding icon appears on
the Object Bench. The situation may, at this stage look
like that shown in figure 8with a number ofPerson
Studentand Staff objects, plus &atabaseobject on the
Object Bench.

We would now like to create a database éferson
objects. Wecan dothis using theadd routine of the
Databaseobject. The dialogushown in figure Sappears
and we areequired topass to the routine an object of
classPerson We havemany objects of clasBersonon
the ObjectBench(including all objects of clasStaff or
Studentsince, through inheritance, these are alsolads
Persor). We canpass one of the objects on tkbject
Bench by clicking on its icon, agnteringits name. By
repeated use of tregldroutine we can createdatabase of
Personobjects.

Hrip

el

nn
!

T

e |
)
b
Il

L

L

““E

C al - Dionie.

Figure 8: A number of Person objects

add {p : Person)

== Add a Person to the database

Enter parameter(s):

Database 1.add (| Student 1])

Figure 9: Add a Person to the database

Finally, we would like to scan through tldatabase to
ensure that it has been created correciiis is achieved
in two steps. First, we select titScanroutine of the
Databaseobject. This routine has nparameters and
simply initialises atraversal of the database. Each
subsequent call of trgetNextroutine returns an object of
classPerson

Let us assume that the first object to dh&ced in the
databasavas Student_1 Figure 10 shows thdialogue
displayed as aesult of the first call ongetNext It
indicates that a reference to an object of cReasonwas
returned. (If the end of the databdwel beenreachedhen
a nil referencewould have beershown.) Theobject
reference returnedhay beinspected byselecting it and
clicking on the inspect button in thdialogue. The
window shown in figure 11 is themisplayed. This
shows theactualclass of the object (in thisaseStudent
and the internal data. Note that we havanaged to view
the contents of thedatabasewithout writing a single
output statement.

getiext —= (p : Person)
== Gel the next Person in the database

Database 1.getMext —=

p: Person = <object reference= et
EEF

mspeet

g |l

ok |

Figure 10: The first Person in the database

Help

object of class Student

instance variahles:

_firstame: String = "John”
_lastMame: String = "Rosenberqg”
_yearOfBirth: Integer = 1953

_studentld: String = "512345" o
_accounthame: String = "johnr” Ml

& o

Figure 11: Inspection of the Person details

OTH |

5 Conclusions

As educators weoften underestimatethe difficulties
encountered bystudents as they try téearn their first
programming language. It is important that wmake
this experience as less painful as possible. Clearly one of
the stumbling block$or beginners isinput and output.
This is evidenced bythe numerous examples shown
above in several different common programming
languages.

In this paper we havdescribed aelatively simple set
of mechanisms, included as part of the Blue programming
system, which allow complex programs to developed
and testedvithout using any input or output statements.
This allows students tooncentrate on understanding the
basic concepts of programmimngithout having to deal
with the particular idiosyncrasies of I/O in tHanguage
they arelearning. Of course, I/O must betroduced at
some point, but thigan bedelayeduntil severalweeks
into the course when students have numefidencewith
the constructs of the language.

The Blue languageand program development
environmentare being usedfor the first time starting in
March 1997 to teach object-oriente¢gprogramming to
approximately seven hundred afitly first year computer
science students. Although at the timepa#paration of
this paper weareonly two weeksinto the courseinitial
indicationsare that the studentfind the Blue facilities
both intuitive and valuable as ad to understanding and
testing programs.

References

[1] Kdlling, M., Koch, B. and Rosenberg, J.
“Requirements for aFirst Year Object-Oriented
Teaching Language”ACM SIGCSE Bulletin27,
1, March 1995, pp. 173-177.

[2] Kadlling, M.. and Rosenberg, J. “Blue - Banguage
for Teaching Object-Oriented Programming",
Proceedings ACM SIGCS&ymposium1996, pp.
190-194.

[3] Kadalling, M.. and Rosenberg, J. “A@bject-Oriented
Program Development Environment for tlérst
Programming Course'RroceedingsACM SIGCSE
Symposium1996, pp. 83-87.3.

[4]

[5]
[6]
[7]
[8]

Rosenberg, J.and Kdlling, M. “Testing Object-
Oriented Programs: Making It SimpleProceedings
ACM SIGCSESymposium, San Jose, 1997, pp.
77-81.

Jensen, KandWirth, N. "PascalJser Manual and
Report", Springer-Verlag, 1975.

Kernighan, B. and Ritchie, D. "The C Programming
Language", Prentice_Hall, 1978.

B. Stroustrup: TheC++ ProgramminglLanguage,
2nd edition, Addison-Wesley, 1991.

Arnold, K., Gosling, J."The Java Programming
Language", Addison Wesley, 1996.

