
I/O Considered Harmful
(At Least for the First Few Weeks)

John Rosenberg Michael Kölling
Basser Department of Computer Science Basser Department of Computer Science

University of Sydney, NSW 2006 University of Sydney, NSW 2006
Australia Australia

johnr@cs.usyd.edu.au mik@cs.usyd.edu.au

Abstract

One of the major difficulties with teaching the
first programming course is input/output. It is
desirable to show students how to input data
and output results early in the course in order to
motivate the students and so that they can see
the results of their programs. Output is also a
useful tool for testing programs. However, in
most programming languages input and output
are esoteric and the techniques for performing
input and output must be learnt by the students
at an early stage, precisely when they are trying
to understand the basics of programming. We
argue that input/output operations need not be
taught in the early stages of a course if the
language environment provides appropriate
tools for testing programs. This assertion is
demonstrated by reference to the Blue object-
oriented language and environment.

1 Introduction
There are a number of issues that arise in relation to
teaching the first programming language to students.
Often these conflict in terms of the order in which the
concepts and constructs are taught. Of particular interest
in this paper is the teaching of input and output and the
decision as to when these are taught within the course.

It is often argued that it is essential to teach output, at
least, very early in the course, probably in the first or
second week. Output is essential in order to see a visible
result from a program. Output of results allows a
program to be tested and it provides motivation for
students because they can see the results of their efforts.
Hence the use of the seemingly popular "Hello world"
program. Input may be delayed a little longer, but is
required as soon as we wish students to write programs
which have some controlling parameters.

Proceedings of the Second Australasian Conference on
Computer Science Education, ACM, Melbourne, 216-
223, July 1997.

While there are strong arguments for teaching about input
and output early, there are equally strong arguments
against this. By its very nature I/O does not fit in well
with programming language design. Every language
designer has encountered the problem that the task of
including usable I/O facilities invariably seems to make it
necessary to break some of the rules or design principles
of the language. In many languages with clean and
simple concepts I/O is the "odd one out".

Of particular difficulty seems to be input. Struggling
with buffering, end-of-line characters and, most of all, the
necessary conversion from character streams into data
types in a typed language has lead to mechanisms as
bizarre as the infamous "scanf" routine in the C language.
Output as well, although conceptually easier, has its
problems. The problems range from students forming
incorrect models through the generalisation of special I/O
constructs (e.g. the incorrect assumption that Pascal
routines may have a variable number of parameters as
allowed in the "write" procedure) to the introduction of
advanced concepts too early, with the result that the
students can not relate a new concept to anything else
they know about the language (e.g. the use of overloaded
infix operators for output in C++).

The result is typically one of two situations:
• the instructor is forced to discuss concepts that do

not relate well to the rest of the language principles
and advanced concepts that would not normally be
discussed at that point are introduced, or

• the instructor employs some sort of hand waving,
hoping the students will somehow be able to figure
out which part of their work constitutes the
important concepts and which part corresponds to
idiosyncrasies which are better ignored for the
moment.

All of these issues detract from the teaching of the
basic concepts of programming and increase stress and
learning difficulties for students.

In this paper we show how, with an appropriate
program development environment, it is possible to delay
the teaching of I/O until quite late in a first programming
course. The result is that the instructor is able to teach
the basic concepts of the language and develop the
students' skills to a point where they can write reasonably
sized programs before they have to deal with the
intricacies of I/O.

The approach described utilises the Blue programming

system developed by the authors [1, 2, 3]. Blue is both
an object-oriented programming language and a program
development environment and was developed specifically
for use as a teaching system in the first programming
course. It is expected that students will drop Blue after
the first course and will then learn industry standard
programming languages such as C++ and Java.

Since Blue is only to be used in teaching the first
course, conceptual elegance is able to take precedence over
issues such as performance. Blue is a pure object-oriented
language [2] with very clean syntax, a strong and
statically checked type system and support for inheritance
and genericity. However, it is not the Blue language
which provides the support for delaying the use of I/O,
but rather the environment.

The Blue environment [3] provides direct support for
the creation of object-oriented applications. It provides a
graphical interface for the specification of classes and their
relationships, an integrated editor and compiler and a
symbolic debugger. In addition, the Blue environment
provides an interactive testing facility [4] which allows
the interactive creation of objects of any class and calling
of the methods of these objects. It is this testing facility
which allows the delay in teaching I/O.

In the following section we examine the facilities
provided for I/O in some common languages used in
teaching the first programming course in order to
demonstrate the complexities and idiosyncrasies
introduced by these features. We then briefly describe the
Blue language and environment. This is followed by a
description of how Blue may be used to develop, test and
interact with substantial applications without the use of
I/O.

2 . I/O in Existing Languages
In this section we examine the support for I/O in some
common programming languages and describe some of
the traps and complications often encountered by students
learning their first language. We only consider text input
and output. It is assumed that code to support graphical
user interfaces would be even more complex for students.

2 . 1 Pascal
Until recently Pascal [5] was clearly the most popular
language for teaching the first programming courses at
universities. Pascal provides special constructs within
the language to support input and output from a text
console and files. These facilities are integrated into the
language and reasonably consistent in terms of the type
system. However, there are some difficulties.

The standard statements for input and output are read
(readln) and write (writeln). A major conceptual problem
with these is that, although they appear syntactically to
be procedure calls, they break the syntax rules for normal
calls in that they allow an arbitrary number of parameters
of arbitrary types. This may seem to be a simple
extension. However, when students are grappling with
the concept of procedure calls and parameters it is a cause
of considerable confusion.

There are a number of other issues which are of
particular concern regarding the semantics of Pascal I/O.
The first relates to input and the notion of lines.
Students always have considerable difficulty understanding

the difference between read and readln and the notion of an
end of line character. This is difficult to avoid, even in
simple exercises and is a source of great confusion. A
second issue is the buffering of output. A common error
amongst students is to leave out a writeln. Depending on
the compiler and run-time system this may result in no
output, or output mixed with the next command line
prompt.

2 . 2 C
Surprisingly perhaps, C [6] is also a popular language for
teaching the first programming course. I/O is not a part
of the formal language definition for C, however, a
standard I/O library is supported by virtually every
implementation. The library is accessed via standard
procedure calls which adhere to the syntax and semantics
of the language.

There are a number of difficulties with C I/O which
make it extremely cryptic and confusing for students.
Considering input first, the standard input statement is
scanf. This takes a description of the format of the input
data as a string and a series of pointers to the variables in
which the input data should be stored. There are several
problems that arise with this approach. First, the syntax
of the format string is not checked until run-time,
delaying any error messages. Second, there is no type
checking. The scanf will happily attempt to format
anything as anything, often with surprising results.
Third, the addresses of the locations in which the input
data should be placed must be passed, i.e. &location.
Forgetting the address operator is an extremely common
error for students (and professionals!).

Output is only marginally better. Again, cryptic
format strings must be specified and the programmer
must ensure that an end-of-line character (\n) is included,
otherwise no output may appear.

2 . 3 C++
Many computer science departments have moved to
teaching an object-oriented language in their first course.
Probably the most popular language at present is C++
[7]. Although C++ is essentially an extension of C, a
different model of I/O is supported. This model is based
on streams and in some senses is an improvement over
I/O in C.

However, the stream model has a major drawback in
that it introduces the concept of overloading of operators.
As an example, consider the following C++ code which
outputs an integer, a, to the console:

cout << a

The interpretation of this code is that the integer a is
sent to the output stream cout. The result of this code is
an output stream, which allows these operations to be
concatenated. For example

cout << a << b

where a and b are integers, will output the value of a
followed by the value of b. Since these are expressions,
parentheses may be used and the following code is exactly
equivalent to the above.

(cout << a) << b

However, the student must be extremely careful with the
placement of the parentheses. For example, the

following code has a quite different meaning:
cout << (a << b)

The code outputs a single integer value formed by
shifting the value a left b binary places! Explaining this
to a student who is still trying to understand basic
concepts of programming is extremely difficult.

2 . 4 Java
Java [8] is becoming an increasingly popular candidate for
teaching an object-oriented language in a first year course.
While still not heavily used for teaching at present, all
signs indicate that it will be widely used for teaching
within a very short time.

Java, being based on C++, eliminates many of the
problems experienced with C++ and is in many respects
nicer and cleaner than C++. In the context of I/O,
however, it has its own problems. Consider the
following code fragment (taken from [8], page 191):

int ch;
int total;
int spaces = 0;
for (total = 0; (ch = in.read(0) != -1; total++) {
 if (Character.isSpace((char)ch)
 spaces++;
}

In this code (which counts the number of spaces in
the input stream) the variable in (which is declared
somewhere before the code fragment we have shown)
refers to an input stream. Its method read is used to read
in characters from that stream. This is the standard
method in Java to process character streams. Several
problems which are potentially confusing for students can
be noted:

• The variable ch, which is used to read characters,
is declared as an integer. This is necessary
because the stream's read function returns an
integer type, although it logically reads
characters.

• An explicit cast must be used to process ch as a
character. (If the processing of ch involved access
to ch more than once, it would have to be cast
each time, or a second variable of type char must
be used).

• The end of the stream is marked by returning -1.
This makes it necessary to use ch first as an
integer before casting it to char and prevents
casting at the time it is read in.

It is clearly unfortunate that a concept such as type
casting must be introduced early in the course to be able
to use character input.

2 . 5 Summary
The facilities provided to support input and output in
most common programming languages bring with them
considerable baggage which causes complications,
confusion and difficulties for students new to
programming. In the next section we briefly describe the
Blue language and environment which is the vehicle we
use to avoid I/O in the first few weeks of a course.

3 The Blue Language and Environment
It is difficult to separate the language and the environment
in Blue since it is an integrated system. Users are not

directly aware of the underlying operating system, the file
system, the command language, etc. All interaction with
the system takes place using a graphical interface. It is
not envisaged that there will ever be a version of Blue
with a textual interface.

Blue is a pure object-oriented programming language.
By this we mean that the only compilable construct is a
class and all data items (including built-in types) are
represented as objects. Syntactic sugar is provided to
allow a familiar syntax for the built-in types such as
integers. The notion of a program can be represented by
having an initial class with a single method, perhaps
called “run”. All objects are manipulated using reference
semantics.

Each Blue class defines some internal data (and
possibly internal routines), a creation routine
(constructor) and a set of methods. There are no
destructors. These are unnecessary since Blue has garbage
collection. Only the constructor and the methods are
visible from outside of the class.

Figure 1 shows a Blue class definition for the class
Person.

class Person is
 == The Person class
 internal

 var
 _firstName : String
 _lastName : String
 _yearOfBirth : Integer

 interface
 creation (firstName : String, lastName : String,
 yearOfBirth: Integer) is
 == Create a person object
 do
 _firstName := firstName
 _lastName := lastName
 _yearOfBirth := yearOfBirth
 end creation

 routines
 name -> (nm : String) is
 == Return person's first and last name
 do
 nm := str (_firstName, " ", _lastName)
 end name

 changeName (firstName : String,
 lastName : String) is
 == Change person's first and last name
 do
 _firstName := firstName
 _lastName := lastName
 end changeName
end class

Figure 1: A sample Blue class

There are three internal data items, _firstName,
_lastName and _yearOfBirth (by convention all instance
variable begin with the underscore character). The
constructor has two parameters. Constructors are called
when the create operation is executed..

Thus, an instance of a person may be created by the
following code:

aPerson := create Person ("John", "Rosenberg", 1953)

The variable "aPerson" is a reference to an object of
type Person. The class Person has two methods which
may be called using the familiar "dot" notation as
follows:

aPerson.changeName ("Michael", "Kolling")

Figure 2: Blue project window

Return parameters (there may be more than one) are
listed after the "->" symbol. These are accessed using
assignment notation, e.g.

theName := aPerson.name

Blue routines can also optionally specify pre and post
conditions and classes may have class invariants. These
have been omitted here for simplicity.The Blue
environment is based around the notion of projects. Each
program is treated as a separate project. Students begin
by defining the classes for the project.

This is done graphically with icons on the screen
representing classes. Existing classes from the library
may be included in the project using a graphical class
browser.

A sample project is shown in figure 2. Lines
between the classes indicate relationships. Double lines
indicate inheritance while the single lines represent
inclusion. These relationships may be defined graphically
using the mouse.

The code associated with a class may be edited by
double clicking on the class icon. This starts the editor
(known as “Red”). There are no header files. Instead the
code may either be viewed as the interface only or the
implementation.

Blue automatically maintains the relationships
between classes and a single button causes recompilation
of those classes which have been modified and all classes
which depend on these.

The region of the project window at the bottom is
known as the Object Bench and is the key to avoiding I/O
in the early stages of a course.

4 . An Alternative to I/O
It is instructive to review the reasons for requiring I/O
during the first few weeks. First, we need output so that
we can examine the results of the execution of some code.
We may also want to display intermediate values of
execution in order to test or debug. Second, we need
input so that we can provide input data or parameters to
programs, usually to thoroughly test them. It should be
noted that input can often be avoided by "hard coding"
input values and changing these and recompiling in order
to test different values. However, this is inconvenient
and inefficient in terms of computing resources.

The mechanisms described in this section support
both the display of results and the input of parameters and
therefore avoid the need for specialised I/O facilities to be
taught in the first few weeks.

4 . 1 The Basic Mechanisms
The Blue system provides three basic mechanisms which
eliminate the need for I/O during the early stages of a
course. These are the ability to interactively create an
instance of a class, the ability to interactively call the
methods of an object and the ability to examine the
internal state of an object.

An instance of a class may be created by selecting a
class in the project and clicking the Create button which
results in a dialogue box being displayed. The dialogue
includes the definition of the creation header and allows

Figure 3: Object creation dialogue

entry of the creation parameters (if required) and a name
for the instance (see figure 3). Previous creation
parameters are available for reuse in the area above the
entry field. After OK is clicked the object is created and
is represented on the Object Bench by an icon.

Selection of the object icon with the right mouse
button displays a popup menu of the methods of the
corresponding class as well as inspect and remove options
(see figure 4). Methods may be called by selecting them
from the menu. Again, a dialogue box is displayed for
parameter entry and returned results are displayed after the
method has been called. The internal data of an object
may be viewed by selecting inspect from the pop-up
menu.

Figure 4: Method menu

There are additional facilities provided for handling
object references which cannot simply be displayed as a
value and for following these references. These are
beyond the scope of this paper and are described in [4].

4 . 2 An Example
In this section we show how the mechanisms described
above may be used to test a fairly complex object-oriented
application without any use of input/output statements.
The code has been simplified by the removal of
comments and pre and post conditions.

The example is a database of people and is represented

by the project window in figure 2. The database is
implemented using a library class which implements a
simple sequence as a linked list. There are operations to
add people to the database and to scan through all of the
entries in the database.

The base class of records in the database is Person.
There are two specialised categories of people, namely
staff and students. This is implemented by defining two
new classes, Staff and Student, which inherit from the
class Person.

The code for the class Person was shown in figure 1.
The creation routine requires that the first name, last
name and date of birth are provided, and there are two
routines, one which returns the complete name and
another which allows the name to be changed.

The code for class Staff and class Student is shown in
figures 5 and 6 respectively. Both of these classes include
additional internal data, change the signature of the
constructor and add new routines.

class Staff is Person
 == The Staff class
 internal

 var
 _roomNumber : String
 _position : String

 interface
 creation (firstName : String, lastName : String,
 yearOfBirth : Integer,
 roomNumber : String, position : String) is
 == Create a Staff object
 do
 super!creation (firstName, lastName, yearOfBirth)
 _roomNumber := roomNumber
 _position := position
 end creation

 routines
 room -> (roomNumber: String) is
 == Return the room information for this person
 do
 roomNumber := _roomNumber
 end room

 changeRoom (newRoom : String) is
 == Change the room information for this person
 do
 _roomNumber := newRoom
 end changeRoom
end class

Figure 5: The code for the class Sta f f

class Student is Person
 == The Student class
 internal

 var
 _studentId: String
 _accountName: String

 interface
 creation (firstName : String, lastName : String,
 yearOfBirth : Integer, studentId : String,
 accountName : String) is
 == Create a Student object
 do
 super!creation (firstName, lastName, yearOfBirth)
 _studentId := studentId
 _accountName := accountName
 end creation

 routines
 studentId-> (sid : String) is
 == Return student id
 do
 sid := _studentId
 end studentId
end class

Figure 6: The code for the class Studen t

Finally, the code of the class Database is shown in
figure 7. This class creates a sequence of Person and

provides routines to add Persons and scan through the
database. It uses the class Seq (the code for which is not
shown) from the library.

class Database is

 uses Seq, Person

 internal
 var
 personSeq : Seq<Person>

 interface
 creation is
 == Create a Database object
 do
 personSeq := create Seq<Person>
 end creation

 routines
 add (p : Person) is
 == Add a Person to the database
 do
 personSeq.add(p)
 end add

 initScan is
 == Initialise a scan of the database
 do
 personSeq.initScan
 end initScan

 getNext -> (p : Person) is
 == Get the next Person in the database
 do
 p := personSeq.getNext
 end getNext
end class

Figure 7: The code for the class Database

Had we been developing this system in another
object-oriented language and environment, say C++, we
would have almost certainly included routines on the
interfaces of Person, Staff and Student to print out the
details of the objects. The class Database would have
used these to provide a routine to print all entries in the
database. Finally, we would needed some input routines
to be able to enter some Person, Staff and Student data.
This would have added considerable complexity and length

to the application.
With the tools described above, which are provided as

part of the Blue system, this application can be developed
and fully tested without including a single line of code to
support I/O. The testing could proceed as follows.

First, a Person object can be created as shown in
figure 3. The constructor parameters are entered and the
object appears as an icon on the Object Bench at the
bottom of the project window as shown in figure 4. The
routines of the class Person may then be tested using the
pull-down menu also shown in figure 4. The internal
data of the object may be examined using the inspect
option on the pull-down menu. Several different Person
objects may be created to thoroughly test the class. The
Staff and Student classes may be tested in a similar way
and objects of these classes may be created on the Object
Bench. Note that we have created several different classes
of object without the use of input statements.

An object of the class Database can also be created.
The constructor has no parameters and so the object is
immediately created and the corresponding icon appears on
the Object Bench. The situation may, at this stage look
like that shown in figure 8, with a number of Person,
Student and Staff objects, plus a Database object on the
Object Bench.

We would now like to create a database of Person
objects. We can do this using the add routine of the
Database object. The dialogue shown in figure 9 appears
and we are required to pass to the routine an object of
class Person. We have many objects of class Person on
the Object Bench (including all objects of class Staff or
Student, since, through inheritance, these are also of class
Person). We can pass one of the objects on the Object
Bench by clicking on its icon, or entering its name. By
repeated use of the add routine we can create a database of
Person objects.

Figure 8: A number of Person objects

Figure 9: Add a Person to the database

Finally, we would like to scan through the database to
ensure that it has been created correctly. This is achieved
in two steps. First, we select the initScan routine of the
Database object. This routine has no parameters and
simply initialises a traversal of the database. Each
subsequent call of the getNext routine returns an object of
class Person.

Let us assume that the first object to be placed in the
database was Student_1. Figure 10 shows the dialogue
displayed as a result of the first call on getNext. It
indicates that a reference to an object of class Person was
returned. (If the end of the database had been reached then
a nil reference would have been shown.) The object
reference returned may be inspected by selecting it and
clicking on the inspect button in the dialogue. The
window shown in figure 11 is then displayed. This
shows the actual class of the object (in this case Student)
and the internal data. Note that we have managed to view
the contents of the database without writing a single
output statement.

Figure 10: The first Person in the database

Figure 11: Inspection of the Person details

5 Conclusions
As educators we often underestimate the difficulties
encountered by students as they try to learn their first
programming language. It is important that we make
this experience as less painful as possible. Clearly one of
the stumbling blocks for beginners is input and output.
This is evidenced by the numerous examples shown
above in several different common programming
languages.

In this paper we have described a relatively simple set
of mechanisms, included as part of the Blue programming
system, which allow complex programs to be developed
and tested without using any input or output statements.
This allows students to concentrate on understanding the
basic concepts of programming without having to deal
with the particular idiosyncrasies of I/O in the language
they are learning. Of course, I/O must be introduced at
some point, but this can be delayed until several weeks
into the course when students have more confidence with
the constructs of the language.

The Blue language and program development
environment are being used for the first time starting in
March 1997 to teach object-oriented programming to
approximately seven hundred and fifty first year computer
science students. Although at the time of preparation of
this paper we are only two weeks into the course, initial
indications are that the students find the Blue facilities
both intuitive and valuable as an aid to understanding and
testing programs.

References
[1] Kölling, M., Koch, B. and Rosenberg, J.

“Requirements for a First Year Object-Oriented
Teaching Language”, ACM SIGCSE Bulletin, 27,
1, March 1995, pp. 173-177.

[2] Kölling, M.. and Rosenberg, J. “Blue - A Language
for Teaching Object-Oriented Programming",
Proceedings ACM SIGCSE Symposium, 1996, pp.
190-194.

[3] Kölling, M.. and Rosenberg, J. “An Object-Oriented
Program Development Environment for the First
Programming Course", Proceedings ACM SIGCSE
Symposium, 1996, pp. 83-87.3.

[4] Rosenberg, J. and Kölling, M. “Testing Object-
Oriented Programs: Making It Simple", Proceedings
ACM SIGCSE Symposium, San Jose, 1997, pp.
77-81.

[5] Jensen, K. and Wirth, N. "Pascal User Manual and
Report", Springer-Verlag, 1975.

[6] Kernighan, B. and Ritchie, D. "The C Programming
Language", Prentice_Hall, 1978.

[7] B. Stroustrup: The C++ Programming Language,
2nd edition, Addison-Wesley, 1991.

[8] Arnold, K., Gosling, J. "The Java Programming
Language", Addison Wesley, 1996.

