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Abstract. Four new synchronisation primitives (SEMAPHOREs, RESOURCEs, EVENTs
and BUCKETs) were introduced in the KRoC 0.8beta release of occam for SPARC
(SunOS/Solaris) and Alpha (OSF/1) UNIX workstations [1][2][3]. This paper reports
on the rationale, application and implementation of two of these (SEMAPHOREs and
EVENTs). Details on the other two may be found on the web [4].

The new primitives are designed to support higher-level mechanisms of SHARING
between parallel processes and give us greater powers of expression. They will also
let greater levels of concurrency be safely exploited from future parallel architectures,
such as those providing (virtual) shared-memory. They demonstrate that occam is
neutral in any debate between the merits of message-passing versus shared-memory
parallelism, enabling applications to take advantage of whichever paradigm (or mix-
ture of paradigms) is the most appropriate.

The new primitives could be (but are not) implemented in terms of traditional
channels, but only at the expense of increased complexity and computational over-
head. The primitives are immediately useful even for uni-processors { for example,
the cost of a fair ALT can be reduced from O(n) to O(1). In fact, all the operations
associated with new primitives have constant space and time complexities; and the
constants are very low.

The KRoC release provides an Abstract Data Type interface to the primitives.
However, direct use of such mechanisms still allows the user to misuse them. They
must be used in the ways prescribed (in this paper and in [4]) else their semantics
become unpredictable. No tool is provided to check correct usage at this level.

The intention is to bind those primitives found to be useful into higher level
versions of occam. Some of the primitives (e.g. SEMAPHOREs) may never themselves be
made visible in the language, but may be used to implement bindings of higher-level
paradigms (such as SHARED channels and BLACKBOARDs). The compiler will perform the
relevant usage checking on all new language bindings, closing the security loopholes
opened by raw use of the primitives.

The paper closes by relating this work with the notions of virtual transputers,
microcoded schedulers, object orientation and Java threads.

1 Channels are not enough

An occam channel is a primitive combining communication and synchronisation. As

a synchronisation primitive, it applies to two processes at a time. Some applications
require many processes to synchronise before any can continue { for example, the barrier

synchronisations used by common shared-memory parallel algorithms.

Multi-way synchronisation is a fundamental idea in CSP [5], but is not implemented in

occam. The computational arrangements for allowing any of the synchronising processes
to back o� (which CSP allows) is even more costly than allowing both parties to back

o� during channel synchronisation. However, just as allowing only the receiver to back



o� an o�er to communicate enabled an e�cient channel implementation in occam, a

similarly drastic rule { allowing no parties to back o� a multi-way synchronisation {

makes possible an e�cient implementation of the CSP EVENT. Does such a restriction
still leave a useful primitive? Just as for occam channels, the answer seems to be yes.

A di�erent way of looking at channels is that they provide a peg on which to hang

a blocked process. If we have lots of processes we wish to suspend for some common

reason (e.g. they are waiting on a common event or for some shared resource, access to

which is restricted by some rules), we either have to have lots of channels on which to

hang them (and, later, organise their release) or we put them on a timer queue. Neither
of these may be convenient or computationally light.

What are needed are di�erent kinds of peg on which we may hang arbitrary numbers of

processes ... plus the ability to retrieve them one at a time (SEMAPHOREs and RESOURCEs)

... or all at once (EVENTs and BUCKETs) ... or some other way ...

2 Abstract Data Types

Each new primitive is presented as an Abstract Data Type. Each is implemented as

an occam2.1 [6] DATA TYPE, together with a set of operations de�ned through INLINEd
occam2.1 PROCs and FUNCTIONs.
Full source code is provided in the KRoC 0.9beta occam system. Each primitive is

accessed through a separate #INCLUDE �le. KRoC releases may be found on the Internet

Parallel Computing Archive:

<URL:http://www.hensa.ac.uk/parallel/occam/projects/occam-for-all/kroc/>

<URL:ftp://unix.hensa.ac.uk/pub/parallel/occam/projects/occam-for-all/kroc/>

Although users have visibility of the data structures used for each primitive, advantage
must not be taken of this visibility. Components of the data structures must not be

accessed directly by user programs. Instances of the primitives may only be operated

on by calling the PROCs and FUNCTIONs provided.

3 SEMAPHOREs

3.1 SEMAPHORE Abstract Data Type

These implement classic counting semaphores:

� DATA TYPE SEMAPHORE

Users may declare their own SEMAPHORE variables and pass them as reference param-
eters. One SEMAPHORE should be declared to control access to each shared resource
(which could be a data or channel structure). SEMAPHOREs must not be duplicated

by assignment or communication through channels.

� PROC initialise.semaphore (SEMAPHORE s, VAL INT count)

Each SEMAPHORE must be initialised with this routine before it is used. The count

value is the number of processes allowed simultaneous access to the shared resource.

For exclusive access, set this to 1.
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� PROC claim.semaphore (SEMAPHORE s)

Before accessing the shared resource, a process must call this routine to claim

the associated SEMAPHORE. If there are less than count (where count is the value

with which the SEMAPHORE was initialised) processes using the shared resource, this

process will be allowed through { i.e. the call will return immediately. Otherwise,

the process will be blocked and put on the queue of processes associated with the
SEMAPHORE.

� PROC release.semaphore (SEMAPHORE s)

When a process has �nished with the shared resource, it must call this routine to

register its release of the associated SEMAPHORE. If there are processes waiting to

claim that SEMAPHORE, the �rst process on that queue is re-scheduled { i.e. allowed

through to use the resource.

3.2 The normal pattern of use

So, the normal pattern of use is:

... thing declaration (where thing is to be SHARED by many processes)

#PRAGMA SHARED thing -- suppress parallel usage checking

SEMAPHORE thing.s:

#PRAGMA SHARED thing.s -- suppress parallel usage checking

SEQ

initialise.semaphore (thing.s, 1) -- for exclusive access (for example)

PAR

... process using thing

... another process using thing

... another process using thing

... another process using thing

... etc.

Within each `process using thing', each use must be protected within a claim and
release:

SEQ

claim.semaphore (thing.s)

... now use thing

release.semaphore (thing.s)

[Note: in the literature, claim is sometimes referred to as wait (or P) and release is
sometimes called signal (or V).]

3.3 occam3 SHARED channels (via SEMAPHOREs)

The main motivation for implementing SEMAPHOREs is to support the occam3 SHARED

channel [7]. This is a language construct to describe client-server applications, where
multiple clients compete for exclusive access to a single server. In occam2, this has to

be implemented through an array of channels (or channel-pairs for two-way interaction)

over which the server performs a fair ALT. The problems with this are:
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� the array of channels has to be declared and made visible to the server, which

means that the number of clients has to be known at the point where the server is

installed;

� the computational complexity of the server ALT is O(n), where n is the number of
clients. For not very large n, especially in a hard real-time application, this can

become prohibitive.

On the other hand, with the SEMAPHORE implementation of a SHARED channel:

� there is a �xed-sized space overhead (3 words), regardless of the number of clients;

� the computational complexity of setting up and closing down each client-server

transaction is O(1) { i.e. independent of the number of clients and the same order
of magnitude as an ordinary context switch (sub-microsecond);

� the server does not know that the client end is SHARED { it sees an ordinary channel

(or channel-pair). This means that a server may ALT over a set of SHARED (or

ordinary) channels using normal mechanisms.

3.3.1 Client transactions over a SHARED channel

An occam3 SHARED channel (or channel-pair) connects any number of client processes

with a server process. To use the SHARED channel, the client process must �rst claim it:

CLAIM c

... use any of the channels within c

occam3 has a CHAN TYPE structure that allows us to group a collection of channels (each

with di�ering PROTOCOLs and directions of use) as �elds in a record:

CHAN TYPE CONNECT -- CONNECT is the user-chosen name for this channel type

RECORD

CHAN OF REQUEST request:

CHAN OF REPLY reply:

:

SHARED CONNECT c:

So, a typical transaction might look like:

CLAIM c

--{{{ use any of the channels within c

SEQ

c[request] ! some.request

c[reply] ? some.reply

... follow-up questions and answers

--}}}

Note that any attempted use of c outside a CLAIM body would be jumped on by the

compiler. occam3 also forbids any synchronisation attempts inside the CLAIM body other
than those involving c. In particular, a process is not allowed to accumulate resources

through nested CLAIMs (which eliminates the classic danger of deadlock through partially

acquired resources).
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3.3.2 SHARED channels in occam2.1 (client end)

In occam2.1, the channel components need to be declared separately, together with a
controlling semaphore:

CHAN OF REQUEST c.request:

#PRAGMA SHARED c.request -- suppress parallel usage checking

CHAN OF REPLY c.reply:

#PRAGMA SHARED c.reply -- suppress parallel usage checking

SEMAPHORE c.s:

#PRAGMA SHARED c.s -- suppress parallel usage checking

The client transaction becomes:

SEQ

claim.semaphore (c.s)

--{{{ use any of the channels within c

SEQ

c.request ! some.request

c.reply ? some.reply

... follow-up questions and answers

--}}}

release.semaphore (c.s)

3.3.3 Server transactions over a SHARED channel

At the server end, occam3 establishes the client connection with an explicit:

GRANT c

... use any of the channels within c

As for the clients, the server is not allowed to use c outside a GRANT body and any

attempt would be disallowed by the compiler. However, servers are allowed to make
further synchronisations (e.g. CLAIMs or other GRANTs) within a GRANT body.

In this example, a transaction matching the client CLAIM might be:

GRANT c

--{{{ use any of the channels within c

... local declarations

SEQ

c[request] ? some.request

... compute the correct response

c[reply] ! some.reply

... follow-up questions and answers

--}}}
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3.3.4 SHARED channels in occam2.1 (server end)

The occam2.1 implementation for this GRANT is null. It simply maps to:

--{{{ use any of the channels within c

... local declarations

SEQ

c.request ? some.request

... compute the correct response

c.reply ! some.reply

... follow-up questions and answers

--}}}

Note that, provided each CLAIM opens with a communication to the server, ALTing

between the SHARED channel and any other ALT guard (SHARED or not) is immediately

possible by the server. If the transaction opens with a communication in the other
direction, a dummy request will need to be added to allow the server to ALT.

Finally, some transaction bodies may contain no communications at all! For example,

the server may be a SHARED signal-handler (where the signal is raised by a client simply
making a CLAIM with a SKIP body). In this case again, a dummy request will need to

be added to synchronise the client with the server.

3.4 Dining Philosophers (via SEMAPHOREs)

3.4.1 The classical occam model

Sometimes, SEMAPHOREs can be used to represent objects in their own right. For example,
the forks in Dijkstra's classic Dining Philosophers system are simply binary SEMAPHOREs
shared by the two philosophers whose place settings are on either side of the fork. In
classic occam, they are simply modelled by a fork process such as:

PROC fork (CHAN OF BOOL left, right)

WHILE TRUE

ALT -- should be a `fair' ALT

BOOL any:

left ? any -- philosopher left picks up fork

left ? any -- philosopher left puts down fork

BOOL any:

right ? any -- philosopher right picks up fork

right ? any -- philosopher right puts down fork

:

Similarly, the security guard (or butler), who only allows into the dining room up to
four philosophers at a time, is a counting semaphore initialised to four. In classic occam,
this is modelled:

PROC security ([5]CHAN OF BOOL down, up)

VAL BYTE max IS 4:

INITIAL BYTE n.sat.down IS 0:
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WHILE TRUE

ALT i = 0 FOR 5 -- should be a `fair' ALT

ALT

--{{{ philosopher i wants to sit down

BOOL any:

(n.sat.down < max) & down[i] ? any -- don't allow more

n.sat.down := n.sat.down + 1 -- than max at a time

--}}}

--{{{ philosopher i wants to stand up

BOOL any:

up[i] ? any -- always allow this

n.sat.down := n.sat.down - 1

--}}}

:

A philosopher interacts with two forks and the security guard:

PROC philosopher (CHAN OF BOOL left, right, -- forks

CHAN OF BOOL down, up) -- security guard

WHILE TRUE

SEQ

... think-a-while

--{{{ get past the security guard

down ! TRUE

--}}}

--{{{ pick up the forks

PAR

left ! TRUE -- pick up left fork

right ! TRUE -- pick up right fork

--}}}

... eat-a-while

--{{{ put down the forks

PAR

left ! TRUE -- put down left fork (no wait)

right ! TRUE -- put down right fork (no wait)

--}}}

--{{{ notify security you have finished

up ! TRUE

--}}}

:

The college consists of 5 philosophers, 5 forks and the security guard:

PROC college ()

[5]CHAN OF BOOL left, right, down, up:

PAR

security (down, up)

PAR i = 0 FOR 5

PAR

philosopher (left[i], right[i], down[i], up[i])

fork (left[i], right[(i + 1)\5])

:
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3.4.2 The occam2.1 model using SEMAPHOREs

With real SEMAPHOREs, there is no need for the fork and security processes:

PROC college ()

[5]SEMAPHORE fork:

#PRAGMA SHARED fork -- suppress parallel usage checking

SEMAPHORE security:

#PRAGMA SHARED security -- suppress parallel usage checking

SEQ

SEQ i = 0 FOR 5

initialise.semaphore (fork[i], 1) -- exclusive use

initialise.semaphore (security, 4) -- allow four at a time

PAR i = 0 FOR 5

philosopher (fork[i], fork[(i + 1)\5], security)

:

where the philosopher still interacts with two forks and the security guard:

PROC philosopher (SEMAPHORE left, right, -- forks

SEMAPHORE security) -- security guard

WHILE TRUE

SEQ

... think-a-while

--{{{ get past the security guard

claim.semaphore (security)

--}}}

--{{{ pick up the forks

PAR

claim.semaphore (left) -- pick up left fork

claim.semaphore (right) -- pick up right fork

--}}}

... eat-a-while

--{{{ put down the forks

PAR

release.semaphore (left) -- put down left fork (no wait)

release.semaphore (right) -- put down right fork (no wait)

--}}}

--{{{ notify security you have finished

release.semaphore (security)

--}}}

:

The SEMAPHORE implementations of the forks and security guard give us fair sharing.
No philosopher can get locked out inde�nitely by un-thinking neighbours racing back

to the dining room and grabbing forks. The SEMAPHORE implementations don't need
programming; they just need initialising! They give us more functionality and execute
far faster than the original processes. However, their use in the above has nothing to

do with occam3 SHARED channels, so such application requires care.
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3.5 Instrumenting parallel systems (via SEMAPHOREs)

One common problem solved by SHARED channels is multiplexing data streams to single
devices. For example, when animating the behaviour of a network of processes (for

diagnostic or demonstration purposes), we want to print information to some display or

�le. Writing, installing and wiring up the necessary multiplexors to route the informa-

tion coming from all the processes under inspection can be daunting ... we can't just

put in print statements!

Or, at least, that used to be the case!! By making, for example, the screen channel

SHARED, we can just-put-in-print-statements and we can do it within any number of

parallel processes and have full control over the atomicity of any particular message.

The dining philosophers' college (from the previous section) will compile and run

without deadlock, but is somewhat unexciting to watch { all the action is internal
and we can't see it. The following modi�cation instruments the college with a single

reporting channel that is SHARED by all the philosophers:

PROC college (CHAN OF BYTE screen)

#PRAGMA SHARED screen

SEMAPHORE screen.s:

#PRAGMA SHARED screen.s

[5]SEMAPHORE fork:

#PRAGMA SHARED fork

SEMAPHORE security:

#PRAGMA SHARED security

SEQ

SEQ i = 0 FOR 5

initialise.semaphore (fork[i], 1) -- exclusive use

initialise.semaphore (security, 4) -- allow four at a time

initialise.semaphore (screen.s, 1) -- exclusive use

PAR i = 0 FOR 5

philosopher (i, fork[i], fork[(i + 1)\5], security, screen, screen.s)

:

Each philosopher can now report its state, at any time, to the screen channel (pro-

vided, of course, it remembers to claim and release the guarding SEMAPHORE correctly).

A full version of this code, together with a much more exciting animation, may be found
on:

<URL:http://www.hensa.ac.uk/parallel/occam/projects/occam-for-all/hlps/>

<URL:ftp://unix.hensa.ac.uk/pub/parallel/occam/projects/occam-for-all/hlps/>

The animation was designed by a second year undergraduate (Nick Hollands) at Kent.

The system contains some 52 processes (42 to 47 simultaneously active), with 25 driving

the screen via a single SHARED channel.
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4 EVENTs

4.1 Barrier synchronisation

4.1.1 SPMD barriers

Barrier synchronisation is a common primitive in many models of parallel computing
{ in some cases, it is an essential element. In SIMD parallelism, there is global syn-

chronisation between all processors after every instruction. In the slightly more exible

SPMDmodel, there is still just one barrier on which all processors synchronise; however,

the point at which synchronisation takes place is application dependent and has to be

programmed explicitly (and, usually, cyclically).

For example, SPMD parallelism has the general form:

... shared global data

PAR i = 0 FOR n.processors

WHILE TRUE -- one identical serial process per processor

SEQ

... do something

SYNC -- barrier: wait for all processors to get here

occam already imposes an implicit barrier synchronisation at the end of each PAR

construct. This can be exploited to obtain the above model by moving the external PAR
inside the serial control structure:

... shared global data

WHILE TRUE

PAR i = 0 FOR n.processors

... do something

We now have a loop of parallel processes, each of which has to terminate, instead
of a parallel set of loops that have to synchronise once per cycle. This would be
disadvantageous if the start-up/shut-down overheads for parallel processes were large

in comparison to their compute times, but this would not normally be the case for

occam. A more serious problem arises if the processors use local state that has to
survive the barrier:

... shared global data

PAR i = 0 FOR n.processors

INITIAL INT x IS 0: -- local state

WHILE TRUE

SEQ

... do something

SYNC

This is, of course, a very common requirement. Bringing the parallelism inside the

loop forces the set of local states into the global data space:
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... shared global data

INITIAL [n.processors]INT X IS [0 | i = 0 FOR n.processors]:

WHILE TRUE

PAR i = 0 FOR n.processors

INT x IS X[i]:

... do something

which is not very pretty and threatens unnecessary run-time overhead! It also breaks

the natural object-oriented encapsulation of local state that occam processes normally
provide.

So, we need to introduce the explicit SYNC primitive to regain simplicity.

4.1.2 MIMD named barriers

However, occam is a MIMD parallel language and we don't want to be constrained by

SPMD thinking. In particular, we want to obtain a structured and dynamic form of

barrier synchronisation. For example, we want to allow our system to be composed
of multiple sets of processes, each set with its own local barriers. We also want the
exibility of allowing the number of processes synchronising on any particular barrier

to grow and shrink at run-time.
To achieve this, we need to be able to name barriers and associate themwith particular

sets of processes. A named barrier is simply a CSP event and its association with a set
of processes is just its inclusion in their alphabets. Barrier synchronisation is event
synchronisation, but with the restriction that processes cannot use it as a guard in a

choice operator (i.e. an ALT guard in occam terms). There is no semantic problem in
allowing the number of processes interested in an event to change dynamically.
There is no pragmatic problem either for an extended occam:

... shared global data

PAR i = 0 FOR n.processors EVENT e

INITIAL BOOL running IS TRUE:

WHILE running

SEQ

... do something

SYNC e -- named barrier

The named EVENT is declared explicitly by the above PAR construct1. This is the
only place where EVENTs can be declared. The EVENT is automatically in the alphabet

of all components of the PAR (which means that when one component SYNCs on it, all
components have to SYNC on it).

Since the EVENT is named, it can be passed as a parameter to PROCs that are called
in the body of the declaring PAR. Among other bene�ts, this allows the separate com-

pilation of processes that are later instanced to synchronise on any EVENTs the installer

chooses.

1Declaring items in constructors already takes place in occam { for example, the control value i in

this PAR. Some people say that channel declarations ought to be similarly bound to individual PARs.
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Note that processes sharing the same EVENT may terminate at di�erent times { as can

happen in the above example. Terminated processes do not block the barrier SYNCs of

those that are still running. An elegant application of this principle is given later.
Since this is occam, we are not restricted to the replicated PAR of SPMD. For, example,

the following system has three di�erent processes synchronising on the named barrier:

... shared global data

PAR EVENT e

... process A

... process B

... process C

We can also have di�erent groups of processes synchronising on di�erent barriers:

... shared global data

PAR

PAR EVENT e

... process A

... process B

... process C

PAR EVENT f

... process P

... process Q

... process R

4.1.3 Dynamic enrollment in barriers

Finally, an EVENT synchronising process may contain parallel sub-processes. Normal

scoping rules imply that the sub-processes can see the EVENT and may, therefore, SYNC
on it. A logical policy would be to say that the number of processes taking part in
the barrier automatically grows for the duration of those sub-processes. However, it
is more exible to be able to specify which sub-processes include the existing EVENT in
their alphabet (and are, therefore, obliged to SYNC if the barrier represented by the EVENT

needs to be overcome during their lifetime). There are two ways to get this: introduce

either a hiding operator or an enrolling operator into the PAR construct. There are

arguments both ways but, for now, we prefer the positive approach:

... shared global data

PAR i = 0 FOR n.processors EVENT e

IF

need.more.parallelism (i)

PAR j = 0 FOR more ENROLL e

... inner processes can (and, probably, better had) SYNC on e

TRUE

INITIAL BOOL running IS TRUE: -- the original code

WHILE running

SEQ

... do something

SYNC e -- named barrier
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Alternatively, components of inner PARs may be enrolled individually in an outer EVENT:

... shared global data

PAR i = 0 FOR n.processors EVENT e

IF

need.more.parallelism (i)

PAR

ENROLL e

... process A (includes e in its alphabet)

ENROLL e

... process B (includes e in its alphabet)

... process C (does not include e in its alphabet)

TRUE

INITIAL BOOL running IS TRUE: -- the original code

WHILE running

SEQ

... do something

SYNC e -- named barrier

Processes A and B in the above have to partake in SYNC e, but process C does not and
cannot! Explicit enrollment means that un-enrolled EVENTs are automatically hidden
from sub-components of the PAR and that any attempt to SYNC on them would be

rejected by the compiler.

Finally, we note the equivalence in Figure 1.

occam2.x occam2.x

PAR ENROLL e

... process A

... process B

... process C

PAR

ENROLL e

... process A

ENROLL e

... process B

ENROLL e

... process C

Figure 1: Factorisation of event enrollment across an inner PAR

4.2 EVENT Abstract Data Type

The current KRoC release implements:

� DATA TYPE EVENT

Users may declare their own EVENT variables and pass them as reference parameters.
They should only be declared in association with the PAR construct that sets up the

processes that synchronise on them. EVENTs must not be duplicated by assignment

or communication through channels.

13



occam2.x occam2.1

... shared global data

PAR i = 0 FOR n.processors EVENT e

INITIAL BOOL running IS TRUE:

WHILE running

SEQ

... do something

SYNC e -- named barrier

... shared global data

EVENT e:

#PRAGMA SHARED e

SEQ

initialise.event (e, n.processors)

PAR i = 0 FOR n.processors

SEQ

INITIAL BOOL running IS TRUE:

WHILE running

SEQ

... do something

synchronise.event (e)

resign.event (e)

... shared global data

PAR EVENT e

... process A

... process B

... process C

... shared global data

EVENT e:

#PRAGMA SHARED e

SEQ

initialise.event (e, 3)

PAR

SEQ

... process A

resign.event (e)

SEQ

... process B

resign.event (e)

SEQ

... process C

resign.event (e)

PAR ENROLL e

... process A

... process B

... process C

SEQ

enroll.event (e, 2)

PAR

SEQ

... process A

resign.event (e)

SEQ

... process B

resign.event (e)

SEQ

... process C

resign.event (e)

enroll.event (e, 1)

Figure 2: Mappings to occam2.1 from SPMD, MIMD and dynamic barriers

14



� PROC initialise.event (EVENT e, VAL INT count)

Each EVENT must be initialised with this routine before starting the associated PAR

construct. The count value is the number of processes in that PAR.

� PROC resign.event (EVENT e)

Each process in the associated PAR construct must execute this routine just before

it terminates.

� PROC synchronise.event (EVENT e)

This may be called by any process in the associated PAR construct. The calling

process will be blocked until all its sibling processes (in the PAR) have also called

it or have resigned.

� PROC enroll.event (EVENT e, VAL INT count)

This needs to be called before and after nested PAR constructs, whose components
are being enrolled on the EVENT. Before the PAR, the count value is one less than

the number of components being enrolled. After the PAR, the count is one.

4.3 Implementation of proposed barriers

Barrier synchronisation is normally intended to support physical concurrency. The syn-
tax and semantics with which we have been experimenting are aimed at (virtual) shared-
memorymulti-processors. The current implementation is only for uni-processors, where

event synchronisation is still a powerful tool for the management of processes.

Figure 2 shows the occam2.1 implementation of these barriers via the EVENT prim-
itives. Examples are given for SPMD, MIMD and for the dynamic enrollment of new

processes in an existing barrier.
However, there is one loose end that needs to be nailed down! The last enrolled

sub-process to resign should not really do so (as this may complete an external barrier

that is not warranted). The last resignation should be folded with the subsequent re-

enrollment and nothing should happen. With this prototype implementation, we don't
know when resigning whether we are the last resignation. With an implementation via
the run-time kernel, we will have this information and the loose end can be tied.

4.4 A simple example

The following is a complete KRoC occam2.1 program demonstrating a simple SPMD

network of processes synchronising on an EVENT barrier. Each process is cyclic, wait-

ing for a varying amount of time before synchronising once per cycle. Each process

is a client of the SHARED screen channel, which is protected by a SEMAPHORE. Each
process announces to the screen when it tries to synchronise and when it succeeds in
synchronising.

#INCLUDE "semaphore.inc"

#INCLUDE "event.inc"

#USE "utils" -- in the course directory of the KRoC release

15



PROC event.test (CHAN OF BYTE keyboard, screen, error)

#PRAGMA SHARED screen

SEMAPHORE screen.s:

#PRAGMA SHARED screen.s

PROC client (VAL INT id, n.clients, EVENT e,

SEMAPHORE out.s, CHAN OF BYTE out)

INT n:

SEQ

n := id

WHILE TRUE

SEQ

--{{{ wait n seconds

VAL INT seconds IS 1000000:

TIMER tim:

INT t:

SEQ

tim ? t

tim ? AFTER t PLUS (n*seconds)

--}}}

--{{{ say ready to synchronise

SEQ

claim.semaphore (out.s)

out.number (id, 0, out)

out.string (" ready to synchronise*c*n", 0, out)

release.semaphore (out.s)

--}}}

synchronise.event (e)

--{{{ tell the world

SEQ

claim.semaphore (out.s)

out.string ("==> ", 40, out)

out.number (id, 0, out)

out.string (" over the barrier ...*c*n", 0, out)

release.semaphore (out.s)

--}}}

n := (n.clients + 1) - n -- simple variation for the timeout

:

VAL INT n.clients IS 10:

EVENT e:

#PRAGMA SHARED e

SEQ

initialise.semaphore (screen.s, 1)

initialise.event (e, n.clients)

PAR n = 0 FOR n.clients

client (n + 1, n.clients, e, screen.s, screen)

:
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It is hard to resist (and we don't) turning this into higher-level occam2.x:

#USE "utils"

PROC event.test (CHAN OF BYTE keyboard, SHARED CHAN OF BYTE screen, error)

PROC client (VAL INT id, n.clients, EVENT e, SHARED CHAN OF BYTE out)

INT n:

SEQ

n := id

WHILE TRUE

SEQ

... wait n seconds

--{{{ say ready to synchronise

CLAIM out

SEQ

out.number (id, 0, out)

out.string (" ready to synchronise*c*n", 0, out)

--}}}

SYNC e

--{{{ tell the world

CLAIM out

SEQ

out.string ("==> ", 40, out)

out.number (id, 0, out)

out.string (" over the barrier ...*c*n", 0, out)

--}}}

n := (n.clients + 1) - n -- simple variation for the timeout

:

VAL INT n.clients IS 10:

PAR n = 0 FOR n.clients EVENT e

client (n + 1, n.clients, e, screen)

:

The point is not the modest reduction in code length but the absence of special
#PRAGMAs, explicit SEMAPHOREs and explicit SEMAPHORE and EVENT initialisation. It is these

absences, the automatic initialisation (by the compiler) of all necessary primitives, the

prevention (by the compiler) of any attempted EVENT duplication via assignment or

communication and the mandatory use of the CLAIM mechanism for the SHARED channel

(by the compiler) that makes the high-level bindings secure and, hence, very desirable.
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4.5 A shared accumulator (and implicitly parallel recursive lazy functional occam)

occam2 has a formal denotational semantics in terms of the traces, failures and diver-
gences model of CSP [8][9]. This can be extended, in a natural way, to cover all the

language extensions discussed here.

Otherwise, the state-of-the-art in parallel languages is somewhat bleak. There are

no formal semantics on o�er for lightweight threads libraries (even though they are

becoming standardised) nor for Java threads (where, at least, the concept is bound

into the language). Indeed, it is very di�cult to �nd even informal descriptions { their

semantics are mainly given by example.

Reference [10] describes ParC, a language extension for C giving explicit parallelism

and synchronisation (with primitives not too far from those in the extended occam).

In a section titled The Meaning of Parallelism, after analysing the issues for nearly one
page, it reaches the following depressing conclusion:

\As a consequence, distinct execution of the same program may lead to di�er-

ent results, and even to di�erent behaviours. For example, one execution may

spawn many more activities than another, or one execution may terminate

with a result while another enters an in�nite loop. It is therefore impossible

to specify the exact semantics of ParC programs. In the absence of formal

semantics, we make do with a set of rules to guide the implementation of a

ParC system."

Such conclusions give no optimism for a sound engineering basis for parallel computing

and raise fundamental questions as to its viability. Fortunately, the scienti�c insights

of occam and CSP, along with those of BSP, are becoming available to a wider audience.
Unfortunately, resistance to the concept of sound engineering is hard to overestimate
in today's mainstream computer culture.
Anyway, the example in this section is taken from [10] but expressed now in terms of

occam. The problem is to add up the elements of an array in O(log n) time.

4.5.1 Natural barrier solution

The �rst solution is expressed in only modestly upgraded occam, making use of the
natural barriers marking the termination of PAR constructs:

PROC sum ([]INT A) -- with implicit barrier synchronisation

-- assume : (SIZE A) = (2**N), for some N >= 0

-- spec : A'[0] = SIGMA {A[i] | i = 0 FOR SIZE A}

INITIAL INT n IS SIZE A: -- INVARIANT:

INITIAL INT stride IS 1: -- (n*stride) = (SIZE A)

WHILE n > 1

SEQ

n, stride := n >> 1, stride << 1

PAR i = 0 STEP stride FOR n

A[i] := A[i] + A[i + (stride >> 1)]

:
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The modest extensions are the INITIALising declarations (of occam3 and used previ-

ously), the STEP in the replicator (very convenient for numeric algorithms and straight-

forward to implement) and the variable number of replications in the PAR construct
(no semantic but a serious implementation problem, although a uni�ed virtual shared-

memory address space simpli�es matters considerably).

The algorithm is simple. In the �rst loop, a process is spawned for all the even

elements in the array (stride is 2 and n is half the array size); this process adds into its

element the value of its odd (senior) neighbour. In the second loop, a process is spawned

for every fourth element (stride = 4) that accumulates the contents of their neighbour
two (i.e. half-a-stride) above them; every fourth element now holds the sum of all the

elements within its stride. This continues for log(n) cycles until stride reaches the

size of the array (and n drops to 1); after which A[0] holds the complete sum and the

loop terminates.

A slight drawback is that the array size must be a power of two. Other sizes could
be handled but the simplicity of the code would be damaged.

Parallel security is easy to establish. Each parallel process updates element A[i],

where each i is di�erent (so no race-hazard there). The process updating A[i] uses
the value in an element half-a-stride away. But no other process is looking at these
half-stride values since they are all separated by a stride (so no race-hazard there).
QED. Getting such proofs checked mechanically (e.g. by the compiler) looks possible
and will ultimately be necessary.

Of course, the �ne granularity of the parallelism in the above example would scuttle
any hoped-for performance gain from current parallel architectures, although future
designs (such as the ParaPC [11][12]) could lap it up. In the meantime, the example
serves as a model for combining operations that are computationally more intensive
than addition and that current architectures may be able to exploit.

4.5.2 Explicit barrier solution

The second solution commutes the PAR and the WHILE constructs, catering for those
who fear the costs of starting up and shutting down processes. The result is a con-
ventional SPMD algorithm with explicit barrier synchronisation, which occam can now

comfortably express:

PROC sum ([]INT A) -- with explicit barrier synchronisation

-- assume : (SIZE A) = (2**N), for some N >= 0

-- spec : A'[0] = SIGMA {A[i] | i = 0 FOR SIZE A}

PAR i = 0 FOR SIZE A EVENT e

INT accumulate IS A[i]:

INITIAL INT n IS (i = 0) -> SIZE A, i:

INITIAL INT stride IS 1:

WHILE (n /\ 1) = 0 -- even (n)

SEQ

accumulate := accumulate + A[i + stride]

n, stride := n >> 1, stride << 1

SYNC e

:
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We have sneaked conditional expressions into the language (since they simplify one of

the initialising declarations above). The syntax used is just that already implemented

for the occam con�guration language in the SGS-Thomson Toolset:

boolean-expression -> expression, expression

This simply yields the �rst or second expression, depending on the value of the boolean-

expression. Both expressions must, of course, yield the same type. Note that occam2

already can express the above:

[expression, expression][INT boolean-expression]

although it is not quite so understandable! The order of the expressions must be

reversed since FALSE and TRUE map (under INT) to 0 and 1 respectively. Also, the
current implementation will evaluate both expressions at run-time before discarding

the unselected one (unless boolean-expression is constant).

The conditional expression is a distraction ... forget them! Please compare the new
version of sum with the old. This time processes are set up once for each element of the
array (abbreviated locally to accumulate). The odd processes immediately terminate.
That leaves the even processes adding their odd (senior) neighbours to themselves,
exactly as before. At the end of each loop, the active processes synchronise on the

barrier and half of them drop out. Recall that that does not prevent the remaining
processes synchronising on their next loop. Events continue until there is only one
process left, which accumulates the �nal answer into A[0] and terminates. There are
now no processes left and the outer PAR construct terminates and the PROC returns.
Security against race-hazards is somewhat harder to prove than before. An elegant

way to establish this would be to �nd some semantic-preserving transformations (that
can be mechanised) to change the �rst version into the second. This is left as an exercise
for the reader.

One optimising transformation on the second version that is too tempting to resist
is as follows. Since the odd processes terminate without ever doing anything, don't set

them up in the �rst place! This is achieved simply by changing the PAR constructor:

PROC sum ([]INT A) -- with explicit barrier synchronisation

... same specification

PAR i = 0 STEP 2 FOR (SIZE A) >> 1 EVENT e

... same replicated process (but only half as many of them!)

:

4.5.3 Recursive solution with only local synchronisations

Finally, for those who �nd barrier synchronisation a little unnatural, here is a taste of

some much wilder ideas. The following code also sums its array in O(log n) time but:

� is (�rst order) functional, relying on the compiler and run-time system to extract

the parallelism that is always implicit in occam expressions (which are free from

side-e�ects and can, therefore, be executed in any order or concurrently);
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� is recursive { however, implementation techniques that enable variable PAR repli-

cation also enable recursion;

� has no global synchronisations, only local synchronisations implied by (add) oper-

ators requiring the (two) processes computing their operands to terminate before

they can operate;

� is e�cient in that the (parallel) execution tree for small array fragments has been

preset by standard loop unrolling { however, the implementation of table lookup
at run-time needs to be made lazy for the way we have chosen to express the

unravelled loop to work sensibly;

� has automatic parallel security, derived from the semantics of occam expressions;

� handles arrays of any size { not just powers of two.

It's also pretty neat:

INT FUNCTION sum (VAL []INT A) IS

-- spec : returns SIGMA {A[i] | i = 0 FOR SIZE A}

(SIZE A) <= 8) ->

[A[0],

A[0] + A[1],

A[0] + (A[1] + A[2]),

(A[0] + A[1]) + (A[2] + A[3]),

(A[0] + A[1]) + (A[2] + (A[3] + A[4])),

(A[0] + (A[1] + A[2])) + (A[3] + (A[4] + A[5])),

(A[0] + (A[1] + A[2])) + ((A[3] + A[4]) + (A[5] + A[6])),

((A[0] + A[1]) + (A[2] + A[3])) + ((A[4] + A[5]) + (A[6] + A[7]))]

[(SIZE A) - 1],

sum ([A FOR (SIZE A) >> 1]) + sum ([A FROM (SIZE A) >> 1 ])]:

Now, all we need is a ParaPC on which to run it.

5 Implementation overview and platform independence

The new primitives have been introduced as abstract data types and with no changes
to the KRoC kernel. This means they will automatically run on any KRoC system.

The routines operating on the primitives are programmed as INLINE PROCs and use

transputer ASM blocks. This means that, with certain restrictions, they will also run on

real transputers (using standard occam Toolsets).
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5.1 SEMAPHOREs

A SEMAPHORE is an occam2.1 RECORD with three �elds: one holds a count and the others
hold front and back pointers to a process queue. Processes are held on this queue using

the same workspace link �elds that hold them on the run-queue (a process can never be

on a SEMAPHORE-queue and the run-queue at the same time). This means that no space

needs to be reserved to manage this queue (other than the front and back pointers).

A process claiming a SEMAPHORE will be put on its queue (and blocked) if its count is

zero. Otherwise the count is decremented.

A process releasing a SEMAPHORE will re-schedule the �rst process from its queue if

that queue is not null. Otherwise, it increments the count.

Both these operations work in constant time.

5.1.1 Transputer restrictions

Scheduling of processes on and o� the run-queue is managed using the normal transputer

scheduling instructions { run-queue registers are not modi�ed directly. This means they

will be secure on a transputer even in the presence of high-priority process pre-emption
(caused by transputer link, event or timer interrupts).
However, manipulation of the SEMAPHORE queues themselves (or their counters) can be

corrupted by process pre-emption. No danger arises if all processes sharing the same

SEMAPHORE also share the same transputer priority. Otherwise, the low-priority processes

must protect their claims and releases by �rst popping into high-priority { for example:

PRI PAR

claim.semaphore (s)

SKIP

T9000 and ST20-derived transputers have extended instruction sets that include

SEMAPHORE operations providing claim.semaphore and release.semaphore semantics

(called signal and wait). If asked, we can provide a version of the SEMAPHORE abstract
data type that exploits them (and the above work-around will not be necessary).

5.2 EVENTs

An EVENT is an occam2.1 RECORD with four �elds: two integer counts (for the number of
processes registered and the number that have not yet synchronised) and the front and

back pointers to a process queue.

A process synchronising on an EVENT decrements its synchronisation count. If this has

not reached zero, it attaches itself to the EVENT-queue and blocks. Otherwise, it releases

all the processes on the EVENT-queue (by simply concatenating it on to the run-queue)

and resets the synchronisation count back to the number currently registered. This is
a constant time operation.

A process resigning an EVENT decrements both its registration count and its syn-
chronisation count. If the latter has reached zero, it releases all the processes on the

EVENT-queue (just like a synchronising process) and resets the synchronisation count.
Again, this is a constant time operation.

A process enrolling on an EVENT just increments the registration and synchronisation

counts equally. No rescheduling of processes takes place.
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5.2.1 Transputer restrictions

Transputers have no atomic (non-preemptable) instructions for concatenating a process
queue on to a run-queue. Therefore, to implement EVENT operations, we have been

updating run-queue registers through a sequence of instructions. Transputer link, event

and timer interrupts may preempt this sequence and try to schedule processes on to

the same run-queue { with bad consequences!

Therefore, our EVENTs may be used safely on transputers provided:

� only low-priority processes use EVENTs and they protect synchronise.event and
resign.event operations by popping into high-priority;

� only high-priority processes handle transputer link, event or timer interrupts. [NB:
the term transputer event refers to the electronic assertion of its event pin by

some external device, which has nothing to do with the EVENT primitive in this

document.]

These are not severe restrictions { the second point above should properly be a design

rule in any case. Of course, if the application had no need for interrupt handling (which
implies that it is uni-processor), the �rst point can be ignored (unless, of course, the
EVENT is shared between high and low priority processes).

6 Discussion

6.1 Summary

This document has described some new synchronisation primitives for occam and some

higher-level language bindings that make them secure. The new primitives are directly
usable within occam2.1 through the abstract data types released from KRoC 0.8beta
onwards. The primitives complement, but do not replace, the traditional concept of
channel communication for networks of synchronising processes. In particular, they

provide an implementation for SHARED channels (as proposed for occam3), as well as a

range of higher-level and relaxed forms of safely SHARED resource that will allow more

parallelism to be extracted from applications. Details of these higher-level mechanisms

for sharing will be reported separately.

6.2 Performance and optimisation

The released primitives have not yet been benchmarked, but we believe that none

of the operations cost more in time than about two or three context-switches (i.e.

between one and two micro-seconds on a SPARC-20). For portability, the prototypes

have not been burnt into the KRoC kernel, but have been implemented with transputer

instructions (which KRoC uses as an abstract intermediate code). It is straightforward

to move the implementation of the primitives into the KRoC kernel and this will be done
later for those that prove useful. This should reduce the overheads for each operation

towards a single context-switch. It will also nail down the loose end currently exposing

a minor security problem in EVENTs (when the number of processes engaged in a barrier

synchronisation grows temporarily).
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6.3 Virtual transputers

Working with virtual transputers has its bene�ts over working with real ones: modern
micro-processors mean they run faster and we can experiment with new instructions

with relative ease. For example, to move the primitives into the kernel, the abstract (or

virtual) transputer machine used by KRoC will have to extended with new instructions

for the manipulation of process queues. We want to do this anyway for other rea-

sons { such as a full implementation of PRI PAR (that allows any number of prioritised

components).

When KRoC goes multi-priority and multi-processor, we want no constraints on our use

of the primitives (such as are necessary with the existing microcode on real transputers).

With control over the virtual architecture, this should be possible (and inexpensive) to

arrange.
The long-term (medium-term?) architectural goal, for which the new primitives would

give major bene�t, is shared-memory (real or virtual) multi-processing. To support this

further, we are investigating a richer form of EVENT that implements the contradictory-

sounding non-blocking barrier synchronisation, recently proposed for MPI-2. This is

a two-phase event synchronisation, where the �rst phase registers that the process is
ready to synchronise (but doesn't block) and the second phase does block (unless and
until all the other processes in the barrier have registered their �rst phase). With the
right algorithm, processes may be able to sail through most such barriers without ever

blocking!
We also want to extend the virtual instruction set to provide type information that

will allow KRoC to target Java Byte Code. Additionally, this type information makes
possible a TransputerByte Code veri�er that enables the distribution of occam processes

as compact binaries (occlets) with the same (or better) object-level security as Java.
Note that KRoC translates these Byte Codes to target object code for execution { it

doesn't interpret them at run-time. In that sense, it already provides just-in-time

compilation (but we do realise there is a little bit more involved than that).

6.4 Microcode, methods and objects

The algorithms underlying the new synchronisation primitives correspond to newmicro-

code for the virtual transputer. Just like the real micro-code that implements channel

synchronisation on real transputers, great care has to be taken in its design { these

algorithms are signi�cantly harder to get right than algorithms of a similar size at the
occam application level.

The reason for this is that algorithms within occam processes are naturally object-

oriented { in the literal sense of the term. By this, we mean that they directly express

the behaviour of objects from their own point of view { not as a set of procedure calls

that are made by (and, therefore, oriented towards) external agents. This is achieved
through implementing objects as active processes that run concurrently with other

objects, each with their own thread (or threads) of control. Of course, this is something

for which occam was speci�cally designed.

Most object-oriented programming languages allow the encapsulation of object data

and algorithms, but only provide for the expression of those algorithms through a set

of passive methods (which are no di�erent to procedures). Objects interact by calling
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each other's methods and, so far as algorithm design is concerned, there is no paradigm

shift from traditional procedural programming.

The problem is that expressing the behaviour of an object through a set of externally-
called methods is unnatural (it's literally not object-oriented!), and it gets especially

hard in a multi-threaded (or multi-processing) environment. The reason is that the

semantics of concurrently operated methods (even the synchronized methods of Java)

do not compose. This means that in order to design/understand two methods of some

object, we have to design/understand both at the same time. Of course, this gets worse

the more methods an object contains and puts a limit on the complexity of system that
can be designed in this way.

Unfortunately, we cannot build a system purely from active objects! An active object

cannot directly interfere with another active object (this would break the principle of

data abstraction and introduce all manner of semantic chaos) and it cannot directly

call on it (because active objects are active and don't provide passive facilities). So, we
need some passive medium through which they can interact.

Fortunately, we only need a small variety of passive objects to construct this medium

and these can be hidden in micro-code and/or burnt into a high-level language. Then,
the system engineer only needs to work with active (truly object-oriented) objects,
whose semantics do compose and put no limit on the complexity of the design.
Hence, we have occam and the virtual transputer, where the necessary (but hard to

program) passive objects are its CHANnels, SEMAPHOREs, RESOURCEs, EVENTs and BUCKETs

and, hopefully, not too many more!
The most complex in this list is the RESOURCE [4]. The non-compositional nature of

the semantics of its implementation bites as we are obliged to think simultaneously
about its claim and release algorithms { they cannot be understood individually. The
same is true for all the other primitives, including the original occam CHANnel whose

input and output methods (especially in the context of ALTs) are so elegant, but are

completely interdependent. It is an immense relief we don't have to understand this,
or program like this, at the occam level.

6.5 Java threads and occam

These ideas were examined in the context of Java at the Java Threads Workshop, which
took place at the University of Kent last September (1996). Java allows both passive

and active objects at the user-program level, with passive being the default mechanism
everyone learns �rst. Java threads are not based upon CSP, but on the earlier concept of

monitors. Thread synchronisation can only be achieved through calling synchronized

methods. These methods belong to passive objects and have to be programmed { which
is hard.

The workshop has stimulated the development (by at least three research groups)
of CSP class libraries that package a range of passive hard-to-program objects (like

channels, shared channels, bu�ers, shared bu�ers, events and buckets). Multi-threaded
Java applications can now be developed that interact with each other in the occam/CSP

style and use only active easy-to-program objects. Details from this workshop can be

found on:

<URL:http://www.hensa.ac.uk/parallel/groups/wotug/java/>

<URL:ftp://unix.hensa.ac.uk/pub/parallel/groups/wotug/java/>
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6.6 If only ...

These ideas could have been introduced at low cost over ten years ago { they do not
require any special hardware technology. They remain vital today because they enhance

any multi-processing (or multi-threaded) technology that doesn't have them { and that

seems to include most everything. Now if only we had had them since 1985, ...
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